diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1094 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import PIL.Image
19
+ import torch
20
+ from packaging import version
21
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
22
+
23
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from ...configuration_utils import FrozenDict
25
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
26
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
28
+ from ...models.lora import adjust_lora_scale_text_encoder
29
+ from ...schedulers import KarrasDiffusionSchedulers
30
+ from ...utils import (
31
+ USE_PEFT_BACKEND,
32
+ deprecate,
33
+ logging,
34
+ replace_example_docstring,
35
+ scale_lora_layers,
36
+ unscale_lora_layers,
37
+ )
38
+ from ...utils.torch_utils import randn_tensor
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
41
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
42
+ from .pag_utils import PAGMixin
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+ EXAMPLE_DOC_STRING = """
48
+ Examples:
49
+ ```py
50
+ >>> import torch
51
+ >>> from diffusers import AutoPipelineForImage2Image
52
+ >>> from diffusers.utils import load_image
53
+
54
+ >>> pipe = AutoPipelineForImage2Image.from_pretrained(
55
+ ... "runwayml/stable-diffusion-v1-5",
56
+ ... torch_dtype=torch.float16,
57
+ ... enable_pag=True,
58
+ ... )
59
+ >>> pipe = pipe.to("cuda")
60
+ >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
61
+
62
+ >>> init_image = load_image(url).convert("RGB")
63
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
64
+ >>> image = pipe(prompt, image=init_image, pag_scale=0.3).images[0]
65
+ ```
66
+ """
67
+
68
+
69
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
70
+ def retrieve_latents(
71
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
72
+ ):
73
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
74
+ return encoder_output.latent_dist.sample(generator)
75
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
76
+ return encoder_output.latent_dist.mode()
77
+ elif hasattr(encoder_output, "latents"):
78
+ return encoder_output.latents
79
+ else:
80
+ raise AttributeError("Could not access latents of provided encoder_output")
81
+
82
+
83
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
84
+ def retrieve_timesteps(
85
+ scheduler,
86
+ num_inference_steps: Optional[int] = None,
87
+ device: Optional[Union[str, torch.device]] = None,
88
+ timesteps: Optional[List[int]] = None,
89
+ sigmas: Optional[List[float]] = None,
90
+ **kwargs,
91
+ ):
92
+ r"""
93
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
94
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
95
+
96
+ Args:
97
+ scheduler (`SchedulerMixin`):
98
+ The scheduler to get timesteps from.
99
+ num_inference_steps (`int`):
100
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
101
+ must be `None`.
102
+ device (`str` or `torch.device`, *optional*):
103
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
104
+ timesteps (`List[int]`, *optional*):
105
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
106
+ `num_inference_steps` and `sigmas` must be `None`.
107
+ sigmas (`List[float]`, *optional*):
108
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
109
+ `num_inference_steps` and `timesteps` must be `None`.
110
+
111
+ Returns:
112
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
113
+ second element is the number of inference steps.
114
+ """
115
+ if timesteps is not None and sigmas is not None:
116
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
117
+ if timesteps is not None:
118
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
119
+ if not accepts_timesteps:
120
+ raise ValueError(
121
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
122
+ f" timestep schedules. Please check whether you are using the correct scheduler."
123
+ )
124
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ num_inference_steps = len(timesteps)
127
+ elif sigmas is not None:
128
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
129
+ if not accept_sigmas:
130
+ raise ValueError(
131
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
132
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
133
+ )
134
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
135
+ timesteps = scheduler.timesteps
136
+ num_inference_steps = len(timesteps)
137
+ else:
138
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ return timesteps, num_inference_steps
141
+
142
+
143
+ class StableDiffusionPAGImg2ImgPipeline(
144
+ DiffusionPipeline,
145
+ StableDiffusionMixin,
146
+ TextualInversionLoaderMixin,
147
+ IPAdapterMixin,
148
+ StableDiffusionLoraLoaderMixin,
149
+ FromSingleFileMixin,
150
+ PAGMixin,
151
+ ):
152
+ r"""
153
+ Pipeline for text-guided image-to-image generation using Stable Diffusion.
154
+
155
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
156
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
157
+
158
+ The pipeline also inherits the following loading methods:
159
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
160
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
161
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
162
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
163
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
164
+
165
+ Args:
166
+ vae ([`AutoencoderKL`]):
167
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
168
+ text_encoder ([`~transformers.CLIPTextModel`]):
169
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
170
+ tokenizer ([`~transformers.CLIPTokenizer`]):
171
+ A `CLIPTokenizer` to tokenize text.
172
+ unet ([`UNet2DConditionModel`]):
173
+ A `UNet2DConditionModel` to denoise the encoded image latents.
174
+ scheduler ([`SchedulerMixin`]):
175
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
176
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
177
+ safety_checker ([`StableDiffusionSafetyChecker`]):
178
+ Classification module that estimates whether generated images could be considered offensive or harmful.
179
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
180
+ about a model's potential harms.
181
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
182
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
183
+ """
184
+
185
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
186
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
187
+ _exclude_from_cpu_offload = ["safety_checker"]
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
189
+
190
+ def __init__(
191
+ self,
192
+ vae: AutoencoderKL,
193
+ text_encoder: CLIPTextModel,
194
+ tokenizer: CLIPTokenizer,
195
+ unet: UNet2DConditionModel,
196
+ scheduler: KarrasDiffusionSchedulers,
197
+ safety_checker: StableDiffusionSafetyChecker,
198
+ feature_extractor: CLIPImageProcessor,
199
+ image_encoder: CLIPVisionModelWithProjection = None,
200
+ requires_safety_checker: bool = True,
201
+ pag_applied_layers: Union[str, List[str]] = "mid", # ["mid"], ["down.block_1", "up.block_0.attentions_0"]
202
+ ):
203
+ super().__init__()
204
+
205
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
206
+ deprecation_message = (
207
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
208
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
209
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
210
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
211
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
212
+ " file"
213
+ )
214
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
215
+ new_config = dict(scheduler.config)
216
+ new_config["steps_offset"] = 1
217
+ scheduler._internal_dict = FrozenDict(new_config)
218
+
219
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
220
+ deprecation_message = (
221
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
222
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
223
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
224
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
225
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
226
+ )
227
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
228
+ new_config = dict(scheduler.config)
229
+ new_config["clip_sample"] = False
230
+ scheduler._internal_dict = FrozenDict(new_config)
231
+
232
+ if safety_checker is None and requires_safety_checker:
233
+ logger.warning(
234
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
235
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
236
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
237
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
238
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
239
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
240
+ )
241
+
242
+ if safety_checker is not None and feature_extractor is None:
243
+ raise ValueError(
244
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
245
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
246
+ )
247
+
248
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
249
+ version.parse(unet.config._diffusers_version).base_version
250
+ ) < version.parse("0.9.0.dev0")
251
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
252
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
253
+ deprecation_message = (
254
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
255
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
256
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
257
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
258
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
259
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
260
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
261
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
262
+ " the `unet/config.json` file"
263
+ )
264
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
265
+ new_config = dict(unet.config)
266
+ new_config["sample_size"] = 64
267
+ unet._internal_dict = FrozenDict(new_config)
268
+
269
+ self.register_modules(
270
+ vae=vae,
271
+ text_encoder=text_encoder,
272
+ tokenizer=tokenizer,
273
+ unet=unet,
274
+ scheduler=scheduler,
275
+ safety_checker=safety_checker,
276
+ feature_extractor=feature_extractor,
277
+ image_encoder=image_encoder,
278
+ )
279
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
280
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
281
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
282
+
283
+ self.set_pag_applied_layers(pag_applied_layers)
284
+
285
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
286
+ def encode_prompt(
287
+ self,
288
+ prompt,
289
+ device,
290
+ num_images_per_prompt,
291
+ do_classifier_free_guidance,
292
+ negative_prompt=None,
293
+ prompt_embeds: Optional[torch.Tensor] = None,
294
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
295
+ lora_scale: Optional[float] = None,
296
+ clip_skip: Optional[int] = None,
297
+ ):
298
+ r"""
299
+ Encodes the prompt into text encoder hidden states.
300
+
301
+ Args:
302
+ prompt (`str` or `List[str]`, *optional*):
303
+ prompt to be encoded
304
+ device: (`torch.device`):
305
+ torch device
306
+ num_images_per_prompt (`int`):
307
+ number of images that should be generated per prompt
308
+ do_classifier_free_guidance (`bool`):
309
+ whether to use classifier free guidance or not
310
+ negative_prompt (`str` or `List[str]`, *optional*):
311
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
312
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
313
+ less than `1`).
314
+ prompt_embeds (`torch.Tensor`, *optional*):
315
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
316
+ provided, text embeddings will be generated from `prompt` input argument.
317
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
318
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
319
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
320
+ argument.
321
+ lora_scale (`float`, *optional*):
322
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
323
+ clip_skip (`int`, *optional*):
324
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
325
+ the output of the pre-final layer will be used for computing the prompt embeddings.
326
+ """
327
+ # set lora scale so that monkey patched LoRA
328
+ # function of text encoder can correctly access it
329
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
330
+ self._lora_scale = lora_scale
331
+
332
+ # dynamically adjust the LoRA scale
333
+ if not USE_PEFT_BACKEND:
334
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
335
+ else:
336
+ scale_lora_layers(self.text_encoder, lora_scale)
337
+
338
+ if prompt is not None and isinstance(prompt, str):
339
+ batch_size = 1
340
+ elif prompt is not None and isinstance(prompt, list):
341
+ batch_size = len(prompt)
342
+ else:
343
+ batch_size = prompt_embeds.shape[0]
344
+
345
+ if prompt_embeds is None:
346
+ # textual inversion: process multi-vector tokens if necessary
347
+ if isinstance(self, TextualInversionLoaderMixin):
348
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
349
+
350
+ text_inputs = self.tokenizer(
351
+ prompt,
352
+ padding="max_length",
353
+ max_length=self.tokenizer.model_max_length,
354
+ truncation=True,
355
+ return_tensors="pt",
356
+ )
357
+ text_input_ids = text_inputs.input_ids
358
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
359
+
360
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
361
+ text_input_ids, untruncated_ids
362
+ ):
363
+ removed_text = self.tokenizer.batch_decode(
364
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
365
+ )
366
+ logger.warning(
367
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
368
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
369
+ )
370
+
371
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
372
+ attention_mask = text_inputs.attention_mask.to(device)
373
+ else:
374
+ attention_mask = None
375
+
376
+ if clip_skip is None:
377
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
378
+ prompt_embeds = prompt_embeds[0]
379
+ else:
380
+ prompt_embeds = self.text_encoder(
381
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
382
+ )
383
+ # Access the `hidden_states` first, that contains a tuple of
384
+ # all the hidden states from the encoder layers. Then index into
385
+ # the tuple to access the hidden states from the desired layer.
386
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
387
+ # We also need to apply the final LayerNorm here to not mess with the
388
+ # representations. The `last_hidden_states` that we typically use for
389
+ # obtaining the final prompt representations passes through the LayerNorm
390
+ # layer.
391
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
392
+
393
+ if self.text_encoder is not None:
394
+ prompt_embeds_dtype = self.text_encoder.dtype
395
+ elif self.unet is not None:
396
+ prompt_embeds_dtype = self.unet.dtype
397
+ else:
398
+ prompt_embeds_dtype = prompt_embeds.dtype
399
+
400
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
401
+
402
+ bs_embed, seq_len, _ = prompt_embeds.shape
403
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
404
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
405
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
406
+
407
+ # get unconditional embeddings for classifier free guidance
408
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
409
+ uncond_tokens: List[str]
410
+ if negative_prompt is None:
411
+ uncond_tokens = [""] * batch_size
412
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
413
+ raise TypeError(
414
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
415
+ f" {type(prompt)}."
416
+ )
417
+ elif isinstance(negative_prompt, str):
418
+ uncond_tokens = [negative_prompt]
419
+ elif batch_size != len(negative_prompt):
420
+ raise ValueError(
421
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
422
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
423
+ " the batch size of `prompt`."
424
+ )
425
+ else:
426
+ uncond_tokens = negative_prompt
427
+
428
+ # textual inversion: process multi-vector tokens if necessary
429
+ if isinstance(self, TextualInversionLoaderMixin):
430
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
431
+
432
+ max_length = prompt_embeds.shape[1]
433
+ uncond_input = self.tokenizer(
434
+ uncond_tokens,
435
+ padding="max_length",
436
+ max_length=max_length,
437
+ truncation=True,
438
+ return_tensors="pt",
439
+ )
440
+
441
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
442
+ attention_mask = uncond_input.attention_mask.to(device)
443
+ else:
444
+ attention_mask = None
445
+
446
+ negative_prompt_embeds = self.text_encoder(
447
+ uncond_input.input_ids.to(device),
448
+ attention_mask=attention_mask,
449
+ )
450
+ negative_prompt_embeds = negative_prompt_embeds[0]
451
+
452
+ if do_classifier_free_guidance:
453
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
454
+ seq_len = negative_prompt_embeds.shape[1]
455
+
456
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
457
+
458
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
459
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
460
+
461
+ if self.text_encoder is not None:
462
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
463
+ # Retrieve the original scale by scaling back the LoRA layers
464
+ unscale_lora_layers(self.text_encoder, lora_scale)
465
+
466
+ return prompt_embeds, negative_prompt_embeds
467
+
468
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
469
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
470
+ dtype = next(self.image_encoder.parameters()).dtype
471
+
472
+ if not isinstance(image, torch.Tensor):
473
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
474
+
475
+ image = image.to(device=device, dtype=dtype)
476
+ if output_hidden_states:
477
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
478
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
479
+ uncond_image_enc_hidden_states = self.image_encoder(
480
+ torch.zeros_like(image), output_hidden_states=True
481
+ ).hidden_states[-2]
482
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
483
+ num_images_per_prompt, dim=0
484
+ )
485
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
486
+ else:
487
+ image_embeds = self.image_encoder(image).image_embeds
488
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
489
+ uncond_image_embeds = torch.zeros_like(image_embeds)
490
+
491
+ return image_embeds, uncond_image_embeds
492
+
493
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
494
+ def prepare_ip_adapter_image_embeds(
495
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
496
+ ):
497
+ image_embeds = []
498
+ if do_classifier_free_guidance:
499
+ negative_image_embeds = []
500
+ if ip_adapter_image_embeds is None:
501
+ if not isinstance(ip_adapter_image, list):
502
+ ip_adapter_image = [ip_adapter_image]
503
+
504
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
505
+ raise ValueError(
506
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
507
+ )
508
+
509
+ for single_ip_adapter_image, image_proj_layer in zip(
510
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
511
+ ):
512
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
513
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
514
+ single_ip_adapter_image, device, 1, output_hidden_state
515
+ )
516
+
517
+ image_embeds.append(single_image_embeds[None, :])
518
+ if do_classifier_free_guidance:
519
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
520
+ else:
521
+ for single_image_embeds in ip_adapter_image_embeds:
522
+ if do_classifier_free_guidance:
523
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
524
+ negative_image_embeds.append(single_negative_image_embeds)
525
+ image_embeds.append(single_image_embeds)
526
+
527
+ ip_adapter_image_embeds = []
528
+ for i, single_image_embeds in enumerate(image_embeds):
529
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
530
+ if do_classifier_free_guidance:
531
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
532
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
533
+
534
+ single_image_embeds = single_image_embeds.to(device=device)
535
+ ip_adapter_image_embeds.append(single_image_embeds)
536
+
537
+ return ip_adapter_image_embeds
538
+
539
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
540
+ def run_safety_checker(self, image, device, dtype):
541
+ if self.safety_checker is None:
542
+ has_nsfw_concept = None
543
+ else:
544
+ if torch.is_tensor(image):
545
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
546
+ else:
547
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
548
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
549
+ image, has_nsfw_concept = self.safety_checker(
550
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
551
+ )
552
+ return image, has_nsfw_concept
553
+
554
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
555
+ def prepare_extra_step_kwargs(self, generator, eta):
556
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
557
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
558
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
559
+ # and should be between [0, 1]
560
+
561
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
562
+ extra_step_kwargs = {}
563
+ if accepts_eta:
564
+ extra_step_kwargs["eta"] = eta
565
+
566
+ # check if the scheduler accepts generator
567
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
568
+ if accepts_generator:
569
+ extra_step_kwargs["generator"] = generator
570
+ return extra_step_kwargs
571
+
572
+ def check_inputs(
573
+ self,
574
+ prompt,
575
+ strength,
576
+ negative_prompt=None,
577
+ prompt_embeds=None,
578
+ negative_prompt_embeds=None,
579
+ ip_adapter_image=None,
580
+ ip_adapter_image_embeds=None,
581
+ callback_on_step_end_tensor_inputs=None,
582
+ ):
583
+ if strength < 0 or strength > 1:
584
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
585
+
586
+ if callback_on_step_end_tensor_inputs is not None and not all(
587
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
588
+ ):
589
+ raise ValueError(
590
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
591
+ )
592
+ if prompt is not None and prompt_embeds is not None:
593
+ raise ValueError(
594
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
595
+ " only forward one of the two."
596
+ )
597
+ elif prompt is None and prompt_embeds is None:
598
+ raise ValueError(
599
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
600
+ )
601
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
602
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
603
+
604
+ if negative_prompt is not None and negative_prompt_embeds is not None:
605
+ raise ValueError(
606
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
607
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
608
+ )
609
+
610
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
611
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
612
+ raise ValueError(
613
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
614
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
615
+ f" {negative_prompt_embeds.shape}."
616
+ )
617
+
618
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
619
+ raise ValueError(
620
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
621
+ )
622
+
623
+ if ip_adapter_image_embeds is not None:
624
+ if not isinstance(ip_adapter_image_embeds, list):
625
+ raise ValueError(
626
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
627
+ )
628
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
629
+ raise ValueError(
630
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
631
+ )
632
+
633
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
634
+ def get_timesteps(self, num_inference_steps, strength, device):
635
+ # get the original timestep using init_timestep
636
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
637
+
638
+ t_start = max(num_inference_steps - init_timestep, 0)
639
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
640
+ if hasattr(self.scheduler, "set_begin_index"):
641
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
642
+
643
+ return timesteps, num_inference_steps - t_start
644
+
645
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
646
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
647
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
648
+ raise ValueError(
649
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
650
+ )
651
+
652
+ image = image.to(device=device, dtype=dtype)
653
+
654
+ batch_size = batch_size * num_images_per_prompt
655
+
656
+ if image.shape[1] == 4:
657
+ init_latents = image
658
+
659
+ else:
660
+ if isinstance(generator, list) and len(generator) != batch_size:
661
+ raise ValueError(
662
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
663
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
664
+ )
665
+
666
+ elif isinstance(generator, list):
667
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
668
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
669
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
670
+ raise ValueError(
671
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
672
+ )
673
+
674
+ init_latents = [
675
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
676
+ for i in range(batch_size)
677
+ ]
678
+ init_latents = torch.cat(init_latents, dim=0)
679
+ else:
680
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
681
+
682
+ init_latents = self.vae.config.scaling_factor * init_latents
683
+
684
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
685
+ # expand init_latents for batch_size
686
+ deprecation_message = (
687
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
688
+ " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
689
+ " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
690
+ " your script to pass as many initial images as text prompts to suppress this warning."
691
+ )
692
+ deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
693
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
694
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
695
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
696
+ raise ValueError(
697
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
698
+ )
699
+ else:
700
+ init_latents = torch.cat([init_latents], dim=0)
701
+
702
+ shape = init_latents.shape
703
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
704
+
705
+ # get latents
706
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
707
+ latents = init_latents
708
+
709
+ return latents
710
+
711
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
712
+ def get_guidance_scale_embedding(
713
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
714
+ ) -> torch.Tensor:
715
+ """
716
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
717
+
718
+ Args:
719
+ w (`torch.Tensor`):
720
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
721
+ embedding_dim (`int`, *optional*, defaults to 512):
722
+ Dimension of the embeddings to generate.
723
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
724
+ Data type of the generated embeddings.
725
+
726
+ Returns:
727
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
728
+ """
729
+ assert len(w.shape) == 1
730
+ w = w * 1000.0
731
+
732
+ half_dim = embedding_dim // 2
733
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
734
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
735
+ emb = w.to(dtype)[:, None] * emb[None, :]
736
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
737
+ if embedding_dim % 2 == 1: # zero pad
738
+ emb = torch.nn.functional.pad(emb, (0, 1))
739
+ assert emb.shape == (w.shape[0], embedding_dim)
740
+ return emb
741
+
742
+ @property
743
+ def guidance_scale(self):
744
+ return self._guidance_scale
745
+
746
+ @property
747
+ def clip_skip(self):
748
+ return self._clip_skip
749
+
750
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
751
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
752
+ # corresponds to doing no classifier free guidance.
753
+ @property
754
+ def do_classifier_free_guidance(self):
755
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
756
+
757
+ @property
758
+ def cross_attention_kwargs(self):
759
+ return self._cross_attention_kwargs
760
+
761
+ @property
762
+ def num_timesteps(self):
763
+ return self._num_timesteps
764
+
765
+ @property
766
+ def interrupt(self):
767
+ return self._interrupt
768
+
769
+ @torch.no_grad()
770
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
771
+ def __call__(
772
+ self,
773
+ prompt: Union[str, List[str]] = None,
774
+ image: PipelineImageInput = None,
775
+ strength: float = 0.8,
776
+ num_inference_steps: Optional[int] = 50,
777
+ timesteps: List[int] = None,
778
+ sigmas: List[float] = None,
779
+ guidance_scale: Optional[float] = 7.5,
780
+ negative_prompt: Optional[Union[str, List[str]]] = None,
781
+ num_images_per_prompt: Optional[int] = 1,
782
+ eta: Optional[float] = 0.0,
783
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
784
+ prompt_embeds: Optional[torch.Tensor] = None,
785
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
786
+ ip_adapter_image: Optional[PipelineImageInput] = None,
787
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
788
+ output_type: Optional[str] = "pil",
789
+ return_dict: bool = True,
790
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
791
+ clip_skip: int = None,
792
+ callback_on_step_end: Optional[
793
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
794
+ ] = None,
795
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
796
+ pag_scale: float = 3.0,
797
+ pag_adaptive_scale: float = 0.0,
798
+ ):
799
+ r"""
800
+ The call function to the pipeline for generation.
801
+
802
+ Args:
803
+ prompt (`str` or `List[str]`, *optional*):
804
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
805
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
806
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
807
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
808
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
809
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
810
+ latents as `image`, but if passing latents directly it is not encoded again.
811
+ strength (`float`, *optional*, defaults to 0.8):
812
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
813
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
814
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
815
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
816
+ essentially ignores `image`.
817
+ num_inference_steps (`int`, *optional*, defaults to 50):
818
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
819
+ expense of slower inference. This parameter is modulated by `strength`.
820
+ timesteps (`List[int]`, *optional*):
821
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
822
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
823
+ passed will be used. Must be in descending order.
824
+ sigmas (`List[float]`, *optional*):
825
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
826
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
827
+ will be used.
828
+ guidance_scale (`float`, *optional*, defaults to 7.5):
829
+ A higher guidance scale value encourages the model to generate images closely linked to the text
830
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
831
+ negative_prompt (`str` or `List[str]`, *optional*):
832
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
833
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
834
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
835
+ The number of images to generate per prompt.
836
+ eta (`float`, *optional*, defaults to 0.0):
837
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
838
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
839
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
840
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
841
+ generation deterministic.
842
+ prompt_embeds (`torch.Tensor`, *optional*):
843
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
844
+ provided, text embeddings are generated from the `prompt` input argument.
845
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
846
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
847
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
848
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
849
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
850
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
851
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
852
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
853
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
854
+ output_type (`str`, *optional*, defaults to `"pil"`):
855
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
856
+ return_dict (`bool`, *optional*, defaults to `True`):
857
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
858
+ plain tuple.
859
+ cross_attention_kwargs (`dict`, *optional*):
860
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
861
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
862
+ clip_skip (`int`, *optional*):
863
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
864
+ the output of the pre-final layer will be used for computing the prompt embeddings.
865
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
866
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
867
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
868
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
869
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
870
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
871
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
872
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
873
+ `._callback_tensor_inputs` attribute of your pipeline class.
874
+ pag_scale (`float`, *optional*, defaults to 3.0):
875
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
876
+ guidance will not be used.
877
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
878
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
879
+ used.
880
+
881
+ Examples:
882
+
883
+ Returns:
884
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
885
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
886
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
887
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
888
+ "not-safe-for-work" (nsfw) content.
889
+ """
890
+
891
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
892
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
893
+
894
+ # 1. Check inputs. Raise error if not correct
895
+ self.check_inputs(
896
+ prompt,
897
+ strength,
898
+ negative_prompt,
899
+ prompt_embeds,
900
+ negative_prompt_embeds,
901
+ ip_adapter_image,
902
+ ip_adapter_image_embeds,
903
+ callback_on_step_end_tensor_inputs,
904
+ )
905
+
906
+ self._guidance_scale = guidance_scale
907
+ self._clip_skip = clip_skip
908
+ self._cross_attention_kwargs = cross_attention_kwargs
909
+ self._interrupt = False
910
+
911
+ self._pag_scale = pag_scale
912
+ self._pag_adaptive_scale = pag_adaptive_scale
913
+
914
+ # 2. Define call parameters
915
+ if prompt is not None and isinstance(prompt, str):
916
+ batch_size = 1
917
+ elif prompt is not None and isinstance(prompt, list):
918
+ batch_size = len(prompt)
919
+ else:
920
+ batch_size = prompt_embeds.shape[0]
921
+
922
+ device = self._execution_device
923
+
924
+ # 3. Encode input prompt
925
+ text_encoder_lora_scale = (
926
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
927
+ )
928
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
929
+ prompt,
930
+ device,
931
+ num_images_per_prompt,
932
+ self.do_classifier_free_guidance,
933
+ negative_prompt,
934
+ prompt_embeds=prompt_embeds,
935
+ negative_prompt_embeds=negative_prompt_embeds,
936
+ lora_scale=text_encoder_lora_scale,
937
+ clip_skip=self.clip_skip,
938
+ )
939
+ # For classifier free guidance, we need to do two forward passes.
940
+ # Here we concatenate the unconditional and text embeddings into a single batch
941
+ # to avoid doing two forward passes
942
+ if self.do_perturbed_attention_guidance:
943
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
944
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
945
+ )
946
+ elif self.do_classifier_free_guidance:
947
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
948
+
949
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
950
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
951
+ ip_adapter_image,
952
+ ip_adapter_image_embeds,
953
+ device,
954
+ batch_size * num_images_per_prompt,
955
+ self.do_classifier_free_guidance,
956
+ )
957
+
958
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
959
+ negative_image_embeds = None
960
+ if self.do_classifier_free_guidance:
961
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
962
+ if self.do_perturbed_attention_guidance:
963
+ image_embeds = self._prepare_perturbed_attention_guidance(
964
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
965
+ )
966
+
967
+ elif self.do_classifier_free_guidance:
968
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
969
+ image_embeds = image_embeds.to(device)
970
+ ip_adapter_image_embeds[i] = image_embeds
971
+
972
+ # 4. Preprocess image
973
+ image = self.image_processor.preprocess(image)
974
+
975
+ # 5. set timesteps
976
+ timesteps, num_inference_steps = retrieve_timesteps(
977
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
978
+ )
979
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
980
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
981
+
982
+ # 6. Prepare latent variables
983
+ latents = self.prepare_latents(
984
+ image,
985
+ latent_timestep,
986
+ batch_size,
987
+ num_images_per_prompt,
988
+ prompt_embeds.dtype,
989
+ device,
990
+ generator,
991
+ )
992
+
993
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
994
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
995
+
996
+ # 7.1 Add image embeds for IP-Adapter
997
+ added_cond_kwargs = (
998
+ {"image_embeds": image_embeds}
999
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1000
+ else None
1001
+ )
1002
+
1003
+ # 7.2 Optionally get Guidance Scale Embedding
1004
+ timestep_cond = None
1005
+ if self.unet.config.time_cond_proj_dim is not None:
1006
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1007
+ timestep_cond = self.get_guidance_scale_embedding(
1008
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1009
+ ).to(device=device, dtype=latents.dtype)
1010
+
1011
+ # 8. Denoising loop
1012
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1013
+ if self.do_perturbed_attention_guidance:
1014
+ original_attn_proc = self.unet.attn_processors
1015
+ self._set_pag_attn_processor(
1016
+ pag_applied_layers=self.pag_applied_layers,
1017
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1018
+ )
1019
+ self._num_timesteps = len(timesteps)
1020
+
1021
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1022
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1023
+ for i, t in enumerate(timesteps):
1024
+ if self.interrupt:
1025
+ continue
1026
+
1027
+ # expand the latents if we are doing classifier free guidance
1028
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1029
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1030
+
1031
+ # predict the noise residual
1032
+ if ip_adapter_image_embeds is not None:
1033
+ added_cond_kwargs["image_embeds"] = ip_adapter_image_embeds
1034
+ noise_pred = self.unet(
1035
+ latent_model_input,
1036
+ t,
1037
+ encoder_hidden_states=prompt_embeds,
1038
+ timestep_cond=timestep_cond,
1039
+ cross_attention_kwargs=self.cross_attention_kwargs,
1040
+ added_cond_kwargs=added_cond_kwargs,
1041
+ return_dict=False,
1042
+ )[0]
1043
+
1044
+ # perform guidance
1045
+ if self.do_perturbed_attention_guidance:
1046
+ noise_pred = self._apply_perturbed_attention_guidance(
1047
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1048
+ )
1049
+ elif self.do_classifier_free_guidance:
1050
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1051
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1052
+
1053
+ # compute the previous noisy sample x_t -> x_t-1
1054
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1055
+
1056
+ if callback_on_step_end is not None:
1057
+ callback_kwargs = {}
1058
+ for k in callback_on_step_end_tensor_inputs:
1059
+ callback_kwargs[k] = locals()[k]
1060
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1061
+
1062
+ latents = callback_outputs.pop("latents", latents)
1063
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1064
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1065
+
1066
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1067
+ progress_bar.update()
1068
+
1069
+ if not output_type == "latent":
1070
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1071
+ 0
1072
+ ]
1073
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1074
+ else:
1075
+ image = latents
1076
+ has_nsfw_concept = None
1077
+
1078
+ if has_nsfw_concept is None:
1079
+ do_denormalize = [True] * image.shape[0]
1080
+ else:
1081
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1082
+
1083
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1084
+
1085
+ # Offload all models
1086
+ self.maybe_free_model_hooks()
1087
+
1088
+ if self.do_perturbed_attention_guidance:
1089
+ self.unet.set_attn_processor(original_attn_proc)
1090
+
1091
+ if not return_dict:
1092
+ return (image, has_nsfw_concept)
1093
+
1094
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)