diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -9,13 +9,12 @@ import PIL.Image
|
|
9
9
|
import torch
|
10
10
|
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
11
11
|
|
12
|
-
from ...loaders import
|
12
|
+
from ...loaders import StableDiffusionLoraLoaderMixin
|
13
13
|
from ...models import UNet2DConditionModel
|
14
14
|
from ...schedulers import DDPMScheduler
|
15
15
|
from ...utils import (
|
16
16
|
BACKENDS_MAPPING,
|
17
17
|
PIL_INTERPOLATION,
|
18
|
-
is_accelerate_available,
|
19
18
|
is_bs4_available,
|
20
19
|
is_ftfy_available,
|
21
20
|
logging,
|
@@ -112,7 +111,7 @@ EXAMPLE_DOC_STRING = """
|
|
112
111
|
"""
|
113
112
|
|
114
113
|
|
115
|
-
class IFInpaintingPipeline(DiffusionPipeline,
|
114
|
+
class IFInpaintingPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
|
116
115
|
tokenizer: T5Tokenizer
|
117
116
|
text_encoder: T5EncoderModel
|
118
117
|
|
@@ -142,6 +141,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
142
141
|
|
143
142
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
144
143
|
model_cpu_offload_seq = "text_encoder->unet"
|
144
|
+
_exclude_from_cpu_offload = ["watermarker"]
|
145
145
|
|
146
146
|
def __init__(
|
147
147
|
self,
|
@@ -183,21 +183,6 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
183
183
|
)
|
184
184
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
185
185
|
|
186
|
-
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks
|
187
|
-
def remove_all_hooks(self):
|
188
|
-
if is_accelerate_available():
|
189
|
-
from accelerate.hooks import remove_hook_from_module
|
190
|
-
else:
|
191
|
-
raise ImportError("Please install accelerate via `pip install accelerate`")
|
192
|
-
|
193
|
-
for model in [self.text_encoder, self.unet, self.safety_checker]:
|
194
|
-
if model is not None:
|
195
|
-
remove_hook_from_module(model, recurse=True)
|
196
|
-
|
197
|
-
self.unet_offload_hook = None
|
198
|
-
self.text_encoder_offload_hook = None
|
199
|
-
self.final_offload_hook = None
|
200
|
-
|
201
186
|
@torch.no_grad()
|
202
187
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt
|
203
188
|
def encode_prompt(
|
@@ -207,8 +192,8 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
207
192
|
num_images_per_prompt: int = 1,
|
208
193
|
device: Optional[torch.device] = None,
|
209
194
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
210
|
-
prompt_embeds: Optional[torch.
|
211
|
-
negative_prompt_embeds: Optional[torch.
|
195
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
196
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
212
197
|
clean_caption: bool = False,
|
213
198
|
):
|
214
199
|
r"""
|
@@ -227,10 +212,10 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
227
212
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
228
213
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
229
214
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
230
|
-
prompt_embeds (`torch.
|
215
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
231
216
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
232
217
|
provided, text embeddings will be generated from `prompt` input argument.
|
233
|
-
negative_prompt_embeds (`torch.
|
218
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
234
219
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
235
220
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
236
221
|
argument.
|
@@ -365,9 +350,6 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
365
350
|
nsfw_detected = None
|
366
351
|
watermark_detected = None
|
367
352
|
|
368
|
-
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
|
369
|
-
self.unet_offload_hook.offload()
|
370
|
-
|
371
353
|
return image, nsfw_detected, watermark_detected
|
372
354
|
|
373
355
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
|
@@ -446,7 +428,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
446
428
|
and not isinstance(check_image_type, np.ndarray)
|
447
429
|
):
|
448
430
|
raise ValueError(
|
449
|
-
"`image` has to be of type `torch.
|
431
|
+
"`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
|
450
432
|
f" {type(check_image_type)}"
|
451
433
|
)
|
452
434
|
|
@@ -477,7 +459,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
477
459
|
and not isinstance(check_image_type, np.ndarray)
|
478
460
|
):
|
479
461
|
raise ValueError(
|
480
|
-
"`mask_image` has to be of type `torch.
|
462
|
+
"`mask_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
|
481
463
|
f" {type(check_image_type)}"
|
482
464
|
)
|
483
465
|
|
@@ -654,7 +636,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
654
636
|
|
655
637
|
for image_ in image:
|
656
638
|
image_ = image_.convert("RGB")
|
657
|
-
image_ = resize(image_, self.unet.sample_size)
|
639
|
+
image_ = resize(image_, self.unet.config.sample_size)
|
658
640
|
image_ = np.array(image_)
|
659
641
|
image_ = image_.astype(np.float32)
|
660
642
|
image_ = image_ / 127.5 - 1
|
@@ -701,7 +683,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
701
683
|
|
702
684
|
for mask_image_ in mask_image:
|
703
685
|
mask_image_ = mask_image_.convert("L")
|
704
|
-
mask_image_ = resize(mask_image_, self.unet.sample_size)
|
686
|
+
mask_image_ = resize(mask_image_, self.unet.config.sample_size)
|
705
687
|
mask_image_ = np.array(mask_image_)
|
706
688
|
mask_image_ = mask_image_[None, None, :]
|
707
689
|
new_mask_image.append(mask_image_)
|
@@ -723,13 +705,15 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
723
705
|
|
724
706
|
return mask_image
|
725
707
|
|
726
|
-
# Copied from diffusers.pipelines.
|
708
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
727
709
|
def get_timesteps(self, num_inference_steps, strength):
|
728
710
|
# get the original timestep using init_timestep
|
729
711
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
730
712
|
|
731
713
|
t_start = max(num_inference_steps - init_timestep, 0)
|
732
|
-
timesteps = self.scheduler.timesteps[t_start:]
|
714
|
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
715
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
716
|
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
733
717
|
|
734
718
|
return timesteps, num_inference_steps - t_start
|
735
719
|
|
@@ -776,11 +760,11 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
776
760
|
num_images_per_prompt: Optional[int] = 1,
|
777
761
|
eta: float = 0.0,
|
778
762
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
779
|
-
prompt_embeds: Optional[torch.
|
780
|
-
negative_prompt_embeds: Optional[torch.
|
763
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
764
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
781
765
|
output_type: Optional[str] = "pil",
|
782
766
|
return_dict: bool = True,
|
783
|
-
callback: Optional[Callable[[int, int, torch.
|
767
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
784
768
|
callback_steps: int = 1,
|
785
769
|
clean_caption: bool = True,
|
786
770
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -792,7 +776,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
792
776
|
prompt (`str` or `List[str]`, *optional*):
|
793
777
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
794
778
|
instead.
|
795
|
-
image (`torch.
|
779
|
+
image (`torch.Tensor` or `PIL.Image.Image`):
|
796
780
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
797
781
|
process.
|
798
782
|
mask_image (`PIL.Image.Image`):
|
@@ -830,10 +814,10 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
830
814
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
831
815
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
832
816
|
to make generation deterministic.
|
833
|
-
prompt_embeds (`torch.
|
817
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
834
818
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
835
819
|
provided, text embeddings will be generated from `prompt` input argument.
|
836
|
-
negative_prompt_embeds (`torch.
|
820
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
837
821
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
838
822
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
839
823
|
argument.
|
@@ -844,7 +828,7 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
844
828
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
845
829
|
callback (`Callable`, *optional*):
|
846
830
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
847
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
831
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
848
832
|
callback_steps (`int`, *optional*, defaults to 1):
|
849
833
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
850
834
|
called at every step.
|
@@ -10,13 +10,12 @@ import torch
|
|
10
10
|
import torch.nn.functional as F
|
11
11
|
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
12
12
|
|
13
|
-
from ...loaders import
|
13
|
+
from ...loaders import StableDiffusionLoraLoaderMixin
|
14
14
|
from ...models import UNet2DConditionModel
|
15
15
|
from ...schedulers import DDPMScheduler
|
16
16
|
from ...utils import (
|
17
17
|
BACKENDS_MAPPING,
|
18
18
|
PIL_INTERPOLATION,
|
19
|
-
is_accelerate_available,
|
20
19
|
is_bs4_available,
|
21
20
|
is_ftfy_available,
|
22
21
|
logging,
|
@@ -114,7 +113,7 @@ EXAMPLE_DOC_STRING = """
|
|
114
113
|
"""
|
115
114
|
|
116
115
|
|
117
|
-
class IFInpaintingSuperResolutionPipeline(DiffusionPipeline,
|
116
|
+
class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
|
118
117
|
tokenizer: T5Tokenizer
|
119
118
|
text_encoder: T5EncoderModel
|
120
119
|
|
@@ -145,6 +144,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
145
144
|
|
146
145
|
model_cpu_offload_seq = "text_encoder->unet"
|
147
146
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
147
|
+
_exclude_from_cpu_offload = ["watermarker"]
|
148
148
|
|
149
149
|
def __init__(
|
150
150
|
self,
|
@@ -193,21 +193,6 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
193
193
|
)
|
194
194
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
195
195
|
|
196
|
-
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks
|
197
|
-
def remove_all_hooks(self):
|
198
|
-
if is_accelerate_available():
|
199
|
-
from accelerate.hooks import remove_hook_from_module
|
200
|
-
else:
|
201
|
-
raise ImportError("Please install accelerate via `pip install accelerate`")
|
202
|
-
|
203
|
-
for model in [self.text_encoder, self.unet, self.safety_checker]:
|
204
|
-
if model is not None:
|
205
|
-
remove_hook_from_module(model, recurse=True)
|
206
|
-
|
207
|
-
self.unet_offload_hook = None
|
208
|
-
self.text_encoder_offload_hook = None
|
209
|
-
self.final_offload_hook = None
|
210
|
-
|
211
196
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
212
197
|
def _text_preprocessing(self, text, clean_caption=False):
|
213
198
|
if clean_caption and not is_bs4_available():
|
@@ -357,8 +342,8 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
357
342
|
num_images_per_prompt: int = 1,
|
358
343
|
device: Optional[torch.device] = None,
|
359
344
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
360
|
-
prompt_embeds: Optional[torch.
|
361
|
-
negative_prompt_embeds: Optional[torch.
|
345
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
346
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
362
347
|
clean_caption: bool = False,
|
363
348
|
):
|
364
349
|
r"""
|
@@ -377,10 +362,10 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
377
362
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
378
363
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
379
364
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
380
|
-
prompt_embeds (`torch.
|
365
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
381
366
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
382
367
|
provided, text embeddings will be generated from `prompt` input argument.
|
383
|
-
negative_prompt_embeds (`torch.
|
368
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
384
369
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
385
370
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
386
371
|
argument.
|
@@ -515,9 +500,6 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
515
500
|
nsfw_detected = None
|
516
501
|
watermark_detected = None
|
517
502
|
|
518
|
-
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
|
519
|
-
self.unet_offload_hook.offload()
|
520
|
-
|
521
503
|
return image, nsfw_detected, watermark_detected
|
522
504
|
|
523
505
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
|
@@ -597,7 +579,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
597
579
|
and not isinstance(check_image_type, np.ndarray)
|
598
580
|
):
|
599
581
|
raise ValueError(
|
600
|
-
"`image` has to be of type `torch.
|
582
|
+
"`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
|
601
583
|
f" {type(check_image_type)}"
|
602
584
|
)
|
603
585
|
|
@@ -628,7 +610,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
628
610
|
and not isinstance(check_image_type, np.ndarray)
|
629
611
|
):
|
630
612
|
raise ValueError(
|
631
|
-
"`original_image` has to be of type `torch.
|
613
|
+
"`original_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
|
632
614
|
f" {type(check_image_type)}"
|
633
615
|
)
|
634
616
|
|
@@ -661,7 +643,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
661
643
|
and not isinstance(check_image_type, np.ndarray)
|
662
644
|
):
|
663
645
|
raise ValueError(
|
664
|
-
"`mask_image` has to be of type `torch.
|
646
|
+
"`mask_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
|
665
647
|
f" {type(check_image_type)}"
|
666
648
|
)
|
667
649
|
|
@@ -698,7 +680,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
698
680
|
|
699
681
|
for image_ in image:
|
700
682
|
image_ = image_.convert("RGB")
|
701
|
-
image_ = resize(image_, self.unet.sample_size)
|
683
|
+
image_ = resize(image_, self.unet.config.sample_size)
|
702
684
|
image_ = np.array(image_)
|
703
685
|
image_ = image_.astype(np.float32)
|
704
686
|
image_ = image_ / 127.5 - 1
|
@@ -778,7 +760,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
778
760
|
|
779
761
|
for mask_image_ in mask_image:
|
780
762
|
mask_image_ = mask_image_.convert("L")
|
781
|
-
mask_image_ = resize(mask_image_, self.unet.sample_size)
|
763
|
+
mask_image_ = resize(mask_image_, self.unet.config.sample_size)
|
782
764
|
mask_image_ = np.array(mask_image_)
|
783
765
|
mask_image_ = mask_image_[None, None, :]
|
784
766
|
new_mask_image.append(mask_image_)
|
@@ -800,13 +782,15 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
800
782
|
|
801
783
|
return mask_image
|
802
784
|
|
803
|
-
# Copied from diffusers.pipelines.
|
785
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
804
786
|
def get_timesteps(self, num_inference_steps, strength):
|
805
787
|
# get the original timestep using init_timestep
|
806
788
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
807
789
|
|
808
790
|
t_start = max(num_inference_steps - init_timestep, 0)
|
809
|
-
timesteps = self.scheduler.timesteps[t_start:]
|
791
|
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
792
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
793
|
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
810
794
|
|
811
795
|
return timesteps, num_inference_steps - t_start
|
812
796
|
|
@@ -839,7 +823,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
839
823
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
840
824
|
def __call__(
|
841
825
|
self,
|
842
|
-
image: Union[PIL.Image.Image, np.ndarray, torch.
|
826
|
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
843
827
|
original_image: Union[
|
844
828
|
PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]
|
845
829
|
] = None,
|
@@ -855,11 +839,11 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
855
839
|
num_images_per_prompt: Optional[int] = 1,
|
856
840
|
eta: float = 0.0,
|
857
841
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
858
|
-
prompt_embeds: Optional[torch.
|
859
|
-
negative_prompt_embeds: Optional[torch.
|
842
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
843
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
860
844
|
output_type: Optional[str] = "pil",
|
861
845
|
return_dict: bool = True,
|
862
|
-
callback: Optional[Callable[[int, int, torch.
|
846
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
863
847
|
callback_steps: int = 1,
|
864
848
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
865
849
|
noise_level: int = 0,
|
@@ -869,10 +853,10 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
869
853
|
Function invoked when calling the pipeline for generation.
|
870
854
|
|
871
855
|
Args:
|
872
|
-
image (`torch.
|
856
|
+
image (`torch.Tensor` or `PIL.Image.Image`):
|
873
857
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
874
858
|
process.
|
875
|
-
original_image (`torch.
|
859
|
+
original_image (`torch.Tensor` or `PIL.Image.Image`):
|
876
860
|
The original image that `image` was varied from.
|
877
861
|
mask_image (`PIL.Image.Image`):
|
878
862
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
@@ -912,10 +896,10 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
912
896
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
913
897
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
914
898
|
to make generation deterministic.
|
915
|
-
prompt_embeds (`torch.
|
899
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
916
900
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
917
901
|
provided, text embeddings will be generated from `prompt` input argument.
|
918
|
-
negative_prompt_embeds (`torch.
|
902
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
919
903
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
920
904
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
921
905
|
argument.
|
@@ -926,7 +910,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
926
910
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
927
911
|
callback (`Callable`, *optional*):
|
928
912
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
929
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
913
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
930
914
|
callback_steps (`int`, *optional*, defaults to 1):
|
931
915
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
932
916
|
called at every step.
|
@@ -10,12 +10,11 @@ import torch
|
|
10
10
|
import torch.nn.functional as F
|
11
11
|
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
12
12
|
|
13
|
-
from ...loaders import
|
13
|
+
from ...loaders import StableDiffusionLoraLoaderMixin
|
14
14
|
from ...models import UNet2DConditionModel
|
15
15
|
from ...schedulers import DDPMScheduler
|
16
16
|
from ...utils import (
|
17
17
|
BACKENDS_MAPPING,
|
18
|
-
is_accelerate_available,
|
19
18
|
is_bs4_available,
|
20
19
|
is_ftfy_available,
|
21
20
|
logging,
|
@@ -70,7 +69,7 @@ EXAMPLE_DOC_STRING = """
|
|
70
69
|
"""
|
71
70
|
|
72
71
|
|
73
|
-
class IFSuperResolutionPipeline(DiffusionPipeline,
|
72
|
+
class IFSuperResolutionPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
|
74
73
|
tokenizer: T5Tokenizer
|
75
74
|
text_encoder: T5EncoderModel
|
76
75
|
|
@@ -101,6 +100,7 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
101
100
|
|
102
101
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
103
102
|
model_cpu_offload_seq = "text_encoder->unet"
|
103
|
+
_exclude_from_cpu_offload = ["watermarker"]
|
104
104
|
|
105
105
|
def __init__(
|
106
106
|
self,
|
@@ -149,21 +149,6 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
149
149
|
)
|
150
150
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
151
151
|
|
152
|
-
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks
|
153
|
-
def remove_all_hooks(self):
|
154
|
-
if is_accelerate_available():
|
155
|
-
from accelerate.hooks import remove_hook_from_module
|
156
|
-
else:
|
157
|
-
raise ImportError("Please install accelerate via `pip install accelerate`")
|
158
|
-
|
159
|
-
for model in [self.text_encoder, self.unet, self.safety_checker]:
|
160
|
-
if model is not None:
|
161
|
-
remove_hook_from_module(model, recurse=True)
|
162
|
-
|
163
|
-
self.unet_offload_hook = None
|
164
|
-
self.text_encoder_offload_hook = None
|
165
|
-
self.final_offload_hook = None
|
166
|
-
|
167
152
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
168
153
|
def _text_preprocessing(self, text, clean_caption=False):
|
169
154
|
if clean_caption and not is_bs4_available():
|
@@ -313,8 +298,8 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
313
298
|
num_images_per_prompt: int = 1,
|
314
299
|
device: Optional[torch.device] = None,
|
315
300
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
316
|
-
prompt_embeds: Optional[torch.
|
317
|
-
negative_prompt_embeds: Optional[torch.
|
301
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
302
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
318
303
|
clean_caption: bool = False,
|
319
304
|
):
|
320
305
|
r"""
|
@@ -333,10 +318,10 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
333
318
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
334
319
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
335
320
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
336
|
-
prompt_embeds (`torch.
|
321
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
337
322
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
338
323
|
provided, text embeddings will be generated from `prompt` input argument.
|
339
|
-
negative_prompt_embeds (`torch.
|
324
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
340
325
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
341
326
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
342
327
|
argument.
|
@@ -471,9 +456,6 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
471
456
|
nsfw_detected = None
|
472
457
|
watermark_detected = None
|
473
458
|
|
474
|
-
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
|
475
|
-
self.unet_offload_hook.offload()
|
476
|
-
|
477
459
|
return image, nsfw_detected, watermark_detected
|
478
460
|
|
479
461
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
|
@@ -555,7 +537,7 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
555
537
|
and not isinstance(check_image_type, np.ndarray)
|
556
538
|
):
|
557
539
|
raise ValueError(
|
558
|
-
"`image` has to be of type `torch.
|
540
|
+
"`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
|
559
541
|
f" {type(check_image_type)}"
|
560
542
|
)
|
561
543
|
|
@@ -626,7 +608,7 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
626
608
|
prompt: Union[str, List[str]] = None,
|
627
609
|
height: int = None,
|
628
610
|
width: int = None,
|
629
|
-
image: Union[PIL.Image.Image, np.ndarray, torch.
|
611
|
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor] = None,
|
630
612
|
num_inference_steps: int = 50,
|
631
613
|
timesteps: List[int] = None,
|
632
614
|
guidance_scale: float = 4.0,
|
@@ -634,11 +616,11 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
634
616
|
num_images_per_prompt: Optional[int] = 1,
|
635
617
|
eta: float = 0.0,
|
636
618
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
637
|
-
prompt_embeds: Optional[torch.
|
638
|
-
negative_prompt_embeds: Optional[torch.
|
619
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
620
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
639
621
|
output_type: Optional[str] = "pil",
|
640
622
|
return_dict: bool = True,
|
641
|
-
callback: Optional[Callable[[int, int, torch.
|
623
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
642
624
|
callback_steps: int = 1,
|
643
625
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
644
626
|
noise_level: int = 250,
|
@@ -655,7 +637,7 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
655
637
|
The height in pixels of the generated image.
|
656
638
|
width (`int`, *optional*, defaults to None):
|
657
639
|
The width in pixels of the generated image.
|
658
|
-
image (`PIL.Image.Image`, `np.ndarray`, `torch.
|
640
|
+
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`):
|
659
641
|
The image to be upscaled.
|
660
642
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
661
643
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
@@ -681,10 +663,10 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
681
663
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
682
664
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
683
665
|
to make generation deterministic.
|
684
|
-
prompt_embeds (`torch.
|
666
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
685
667
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
686
668
|
provided, text embeddings will be generated from `prompt` input argument.
|
687
|
-
negative_prompt_embeds (`torch.
|
669
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
688
670
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
689
671
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
690
672
|
argument.
|
@@ -695,7 +677,7 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
695
677
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
696
678
|
callback (`Callable`, *optional*):
|
697
679
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
698
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
680
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
699
681
|
callback_steps (`int`, *optional*, defaults to 1):
|
700
682
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
701
683
|
called at every step.
|
@@ -775,6 +757,9 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
775
757
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
776
758
|
timesteps = self.scheduler.timesteps
|
777
759
|
|
760
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
761
|
+
self.scheduler.set_begin_index(0)
|
762
|
+
|
778
763
|
# 5. Prepare intermediate images
|
779
764
|
num_channels = self.unet.config.in_channels // 2
|
780
765
|
intermediate_images = self.prepare_intermediate_images(
|
@@ -9,16 +9,17 @@ from ...utils import BaseOutput
|
|
9
9
|
|
10
10
|
@dataclass
|
11
11
|
class IFPipelineOutput(BaseOutput):
|
12
|
-
"""
|
13
|
-
Args:
|
12
|
+
r"""
|
14
13
|
Output class for Stable Diffusion pipelines.
|
15
|
-
|
14
|
+
|
15
|
+
Args:
|
16
|
+
images (`List[PIL.Image.Image]` or `np.ndarray`):
|
16
17
|
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
17
18
|
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
18
|
-
nsfw_detected (`List[bool]`)
|
19
|
+
nsfw_detected (`List[bool]`):
|
19
20
|
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
20
21
|
(nsfw) content or a watermark. `None` if safety checking could not be performed.
|
21
|
-
watermark_detected (`List[bool]`)
|
22
|
+
watermark_detected (`List[bool]`):
|
22
23
|
List of flags denoting whether the corresponding generated image likely has a watermark. `None` if safety
|
23
24
|
checking could not be performed.
|
24
25
|
"""
|
@@ -17,7 +17,7 @@ class IFWatermarker(ModelMixin, ConfigMixin):
|
|
17
17
|
self.watermark_image_as_pil = None
|
18
18
|
|
19
19
|
def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None):
|
20
|
-
#
|
20
|
+
# Copied from https://github.com/deep-floyd/IF/blob/b77482e36ca2031cb94dbca1001fc1e6400bf4ab/deepfloyd_if/modules/base.py#L287
|
21
21
|
|
22
22
|
h = images[0].height
|
23
23
|
w = images[0].width
|
@@ -13,27 +13,27 @@ class TransformationModelOutput(ModelOutput):
|
|
13
13
|
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
14
14
|
|
15
15
|
Args:
|
16
|
-
text_embeds (`torch.
|
16
|
+
text_embeds (`torch.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
17
17
|
The text embeddings obtained by applying the projection layer to the pooler_output.
|
18
|
-
last_hidden_state (`torch.
|
18
|
+
last_hidden_state (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
19
19
|
Sequence of hidden-states at the output of the last layer of the model.
|
20
|
-
hidden_states (`tuple(torch.
|
21
|
-
Tuple of `torch.
|
22
|
-
|
20
|
+
hidden_states (`tuple(torch.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
21
|
+
Tuple of `torch.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one
|
22
|
+
for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
23
23
|
|
24
24
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
25
|
-
attentions (`tuple(torch.
|
26
|
-
Tuple of `torch.
|
25
|
+
attentions (`tuple(torch.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
26
|
+
Tuple of `torch.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
27
27
|
sequence_length)`.
|
28
28
|
|
29
29
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
30
30
|
heads.
|
31
31
|
"""
|
32
32
|
|
33
|
-
projection_state: Optional[torch.
|
34
|
-
last_hidden_state: torch.
|
35
|
-
hidden_states: Optional[Tuple[torch.
|
36
|
-
attentions: Optional[Tuple[torch.
|
33
|
+
projection_state: Optional[torch.Tensor] = None
|
34
|
+
last_hidden_state: torch.Tensor = None
|
35
|
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
36
|
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
37
37
|
|
38
38
|
|
39
39
|
class RobertaSeriesConfig(XLMRobertaConfig):
|