diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,7 @@
|
|
14
14
|
|
15
15
|
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
|
16
16
|
|
17
|
+
import math
|
17
18
|
from typing import List, Optional, Tuple, Union
|
18
19
|
|
19
20
|
import numpy as np
|
@@ -44,6 +45,10 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
44
45
|
range is [0.2, 80.0].
|
45
46
|
sigma_data (`float`, *optional*, defaults to 0.5):
|
46
47
|
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
|
48
|
+
sigma_schedule (`str`, *optional*, defaults to `karras`):
|
49
|
+
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
50
|
+
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
|
51
|
+
incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
47
52
|
num_train_timesteps (`int`, defaults to 1000):
|
48
53
|
The number of diffusion steps to train the model.
|
49
54
|
solver_order (`int`, defaults to 2):
|
@@ -62,10 +67,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
62
67
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
63
68
|
`algorithm_type="dpmsolver++"`.
|
64
69
|
algorithm_type (`str`, defaults to `dpmsolver++`):
|
65
|
-
Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The
|
66
|
-
|
67
|
-
|
68
|
-
`sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
70
|
+
Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver++` type implements
|
71
|
+
the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to
|
72
|
+
use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
69
73
|
solver_type (`str`, defaults to `midpoint`):
|
70
74
|
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
71
75
|
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
@@ -77,8 +81,8 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
77
81
|
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
78
82
|
steps, but sometimes may result in blurring.
|
79
83
|
final_sigmas_type (`str`, defaults to `"zero"`):
|
80
|
-
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
81
|
-
is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
84
|
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
85
|
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
82
86
|
"""
|
83
87
|
|
84
88
|
_compatibles = []
|
@@ -90,6 +94,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
90
94
|
sigma_min: float = 0.002,
|
91
95
|
sigma_max: float = 80.0,
|
92
96
|
sigma_data: float = 0.5,
|
97
|
+
sigma_schedule: str = "karras",
|
93
98
|
num_train_timesteps: int = 1000,
|
94
99
|
prediction_type: str = "epsilon",
|
95
100
|
rho: float = 7.0,
|
@@ -114,7 +119,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
114
119
|
if solver_type in ["logrho", "bh1", "bh2"]:
|
115
120
|
self.register_to_config(solver_type="midpoint")
|
116
121
|
else:
|
117
|
-
raise NotImplementedError(f"{solver_type}
|
122
|
+
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
118
123
|
|
119
124
|
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
|
120
125
|
raise ValueError(
|
@@ -122,10 +127,14 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
122
127
|
)
|
123
128
|
|
124
129
|
ramp = torch.linspace(0, 1, num_train_timesteps)
|
125
|
-
|
130
|
+
if sigma_schedule == "karras":
|
131
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
132
|
+
elif sigma_schedule == "exponential":
|
133
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
134
|
+
|
126
135
|
self.timesteps = self.precondition_noise(sigmas)
|
127
136
|
|
128
|
-
self.sigmas =
|
137
|
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
129
138
|
|
130
139
|
# setable values
|
131
140
|
self.num_inference_steps = None
|
@@ -143,7 +152,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
143
152
|
@property
|
144
153
|
def step_index(self):
|
145
154
|
"""
|
146
|
-
The index counter for current timestep. It will
|
155
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
147
156
|
"""
|
148
157
|
return self._step_index
|
149
158
|
|
@@ -197,21 +206,19 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
197
206
|
return denoised
|
198
207
|
|
199
208
|
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
|
200
|
-
def scale_model_input(
|
201
|
-
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
202
|
-
) -> torch.FloatTensor:
|
209
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
203
210
|
"""
|
204
211
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
205
212
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
206
213
|
|
207
214
|
Args:
|
208
|
-
sample (`torch.
|
215
|
+
sample (`torch.Tensor`):
|
209
216
|
The input sample.
|
210
217
|
timestep (`int`, *optional*):
|
211
218
|
The current timestep in the diffusion chain.
|
212
219
|
|
213
220
|
Returns:
|
214
|
-
`torch.
|
221
|
+
`torch.Tensor`:
|
215
222
|
A scaled input sample.
|
216
223
|
"""
|
217
224
|
if self.step_index is None:
|
@@ -236,10 +243,13 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
236
243
|
|
237
244
|
self.num_inference_steps = num_inference_steps
|
238
245
|
|
239
|
-
ramp =
|
240
|
-
|
246
|
+
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
247
|
+
if self.config.sigma_schedule == "karras":
|
248
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
249
|
+
elif self.config.sigma_schedule == "exponential":
|
250
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
241
251
|
|
242
|
-
sigmas =
|
252
|
+
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
243
253
|
self.timesteps = self.precondition_noise(sigmas)
|
244
254
|
|
245
255
|
if self.config.final_sigmas_type == "sigma_min":
|
@@ -263,10 +273,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
263
273
|
self._begin_index = None
|
264
274
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
265
275
|
|
266
|
-
#
|
267
|
-
def
|
276
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
|
277
|
+
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
268
278
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
269
|
-
|
270
279
|
sigma_min = sigma_min or self.config.sigma_min
|
271
280
|
sigma_max = sigma_max or self.config.sigma_max
|
272
281
|
|
@@ -276,8 +285,19 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
276
285
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
277
286
|
return sigmas
|
278
287
|
|
288
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
|
289
|
+
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
290
|
+
"""Implementation closely follows k-diffusion.
|
291
|
+
|
292
|
+
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
|
293
|
+
"""
|
294
|
+
sigma_min = sigma_min or self.config.sigma_min
|
295
|
+
sigma_max = sigma_max or self.config.sigma_max
|
296
|
+
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
|
297
|
+
return sigmas
|
298
|
+
|
279
299
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
280
|
-
def _threshold_sample(self, sample: torch.
|
300
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
281
301
|
"""
|
282
302
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
283
303
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -342,9 +362,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
342
362
|
|
343
363
|
def convert_model_output(
|
344
364
|
self,
|
345
|
-
model_output: torch.
|
346
|
-
sample: torch.
|
347
|
-
) -> torch.
|
365
|
+
model_output: torch.Tensor,
|
366
|
+
sample: torch.Tensor = None,
|
367
|
+
) -> torch.Tensor:
|
348
368
|
"""
|
349
369
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
350
370
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
@@ -358,13 +378,13 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
358
378
|
</Tip>
|
359
379
|
|
360
380
|
Args:
|
361
|
-
model_output (`torch.
|
381
|
+
model_output (`torch.Tensor`):
|
362
382
|
The direct output from the learned diffusion model.
|
363
|
-
sample (`torch.
|
383
|
+
sample (`torch.Tensor`):
|
364
384
|
A current instance of a sample created by the diffusion process.
|
365
385
|
|
366
386
|
Returns:
|
367
|
-
`torch.
|
387
|
+
`torch.Tensor`:
|
368
388
|
The converted model output.
|
369
389
|
"""
|
370
390
|
sigma = self.sigmas[self.step_index]
|
@@ -377,21 +397,21 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
377
397
|
|
378
398
|
def dpm_solver_first_order_update(
|
379
399
|
self,
|
380
|
-
model_output: torch.
|
381
|
-
sample: torch.
|
382
|
-
noise: Optional[torch.
|
383
|
-
) -> torch.
|
400
|
+
model_output: torch.Tensor,
|
401
|
+
sample: torch.Tensor = None,
|
402
|
+
noise: Optional[torch.Tensor] = None,
|
403
|
+
) -> torch.Tensor:
|
384
404
|
"""
|
385
405
|
One step for the first-order DPMSolver (equivalent to DDIM).
|
386
406
|
|
387
407
|
Args:
|
388
|
-
model_output (`torch.
|
408
|
+
model_output (`torch.Tensor`):
|
389
409
|
The direct output from the learned diffusion model.
|
390
|
-
sample (`torch.
|
410
|
+
sample (`torch.Tensor`):
|
391
411
|
A current instance of a sample created by the diffusion process.
|
392
412
|
|
393
413
|
Returns:
|
394
|
-
`torch.
|
414
|
+
`torch.Tensor`:
|
395
415
|
The sample tensor at the previous timestep.
|
396
416
|
"""
|
397
417
|
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
@@ -415,21 +435,21 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
415
435
|
|
416
436
|
def multistep_dpm_solver_second_order_update(
|
417
437
|
self,
|
418
|
-
model_output_list: List[torch.
|
419
|
-
sample: torch.
|
420
|
-
noise: Optional[torch.
|
421
|
-
) -> torch.
|
438
|
+
model_output_list: List[torch.Tensor],
|
439
|
+
sample: torch.Tensor = None,
|
440
|
+
noise: Optional[torch.Tensor] = None,
|
441
|
+
) -> torch.Tensor:
|
422
442
|
"""
|
423
443
|
One step for the second-order multistep DPMSolver.
|
424
444
|
|
425
445
|
Args:
|
426
|
-
model_output_list (`List[torch.
|
446
|
+
model_output_list (`List[torch.Tensor]`):
|
427
447
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
428
|
-
sample (`torch.
|
448
|
+
sample (`torch.Tensor`):
|
429
449
|
A current instance of a sample created by the diffusion process.
|
430
450
|
|
431
451
|
Returns:
|
432
|
-
`torch.
|
452
|
+
`torch.Tensor`:
|
433
453
|
The sample tensor at the previous timestep.
|
434
454
|
"""
|
435
455
|
sigma_t, sigma_s0, sigma_s1 = (
|
@@ -486,20 +506,20 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
486
506
|
|
487
507
|
def multistep_dpm_solver_third_order_update(
|
488
508
|
self,
|
489
|
-
model_output_list: List[torch.
|
490
|
-
sample: torch.
|
491
|
-
) -> torch.
|
509
|
+
model_output_list: List[torch.Tensor],
|
510
|
+
sample: torch.Tensor = None,
|
511
|
+
) -> torch.Tensor:
|
492
512
|
"""
|
493
513
|
One step for the third-order multistep DPMSolver.
|
494
514
|
|
495
515
|
Args:
|
496
|
-
model_output_list (`List[torch.
|
516
|
+
model_output_list (`List[torch.Tensor]`):
|
497
517
|
The direct outputs from learned diffusion model at current and latter timesteps.
|
498
|
-
sample (`torch.
|
518
|
+
sample (`torch.Tensor`):
|
499
519
|
A current instance of a sample created by diffusion process.
|
500
520
|
|
501
521
|
Returns:
|
502
|
-
`torch.
|
522
|
+
`torch.Tensor`:
|
503
523
|
The sample tensor at the previous timestep.
|
504
524
|
"""
|
505
525
|
sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
|
@@ -573,9 +593,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
573
593
|
|
574
594
|
def step(
|
575
595
|
self,
|
576
|
-
model_output: torch.
|
577
|
-
timestep: int,
|
578
|
-
sample: torch.
|
596
|
+
model_output: torch.Tensor,
|
597
|
+
timestep: Union[int, torch.Tensor],
|
598
|
+
sample: torch.Tensor,
|
579
599
|
generator=None,
|
580
600
|
return_dict: bool = True,
|
581
601
|
) -> Union[SchedulerOutput, Tuple]:
|
@@ -584,11 +604,11 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
584
604
|
the multistep DPMSolver.
|
585
605
|
|
586
606
|
Args:
|
587
|
-
model_output (`torch.
|
607
|
+
model_output (`torch.Tensor`):
|
588
608
|
The direct output from learned diffusion model.
|
589
609
|
timestep (`int`):
|
590
610
|
The current discrete timestep in the diffusion chain.
|
591
|
-
sample (`torch.
|
611
|
+
sample (`torch.Tensor`):
|
592
612
|
A current instance of a sample created by the diffusion process.
|
593
613
|
generator (`torch.Generator`, *optional*):
|
594
614
|
A random number generator.
|
@@ -652,10 +672,10 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
652
672
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
653
673
|
def add_noise(
|
654
674
|
self,
|
655
|
-
original_samples: torch.
|
656
|
-
noise: torch.
|
657
|
-
timesteps: torch.
|
658
|
-
) -> torch.
|
675
|
+
original_samples: torch.Tensor,
|
676
|
+
noise: torch.Tensor,
|
677
|
+
timesteps: torch.Tensor,
|
678
|
+
) -> torch.Tensor:
|
659
679
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
660
680
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
661
681
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -669,7 +689,11 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
669
689
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
670
690
|
if self.begin_index is None:
|
671
691
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
692
|
+
elif self.step_index is not None:
|
693
|
+
# add_noise is called after first denoising step (for inpainting)
|
694
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
672
695
|
else:
|
696
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
673
697
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
674
698
|
|
675
699
|
sigma = sigmas[step_indices].flatten()
|
@@ -12,10 +12,10 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
+
import math
|
15
16
|
from dataclasses import dataclass
|
16
17
|
from typing import Optional, Tuple, Union
|
17
18
|
|
18
|
-
import numpy as np
|
19
19
|
import torch
|
20
20
|
|
21
21
|
from ..configuration_utils import ConfigMixin, register_to_config
|
@@ -34,16 +34,16 @@ class EDMEulerSchedulerOutput(BaseOutput):
|
|
34
34
|
Output class for the scheduler's `step` function output.
|
35
35
|
|
36
36
|
Args:
|
37
|
-
prev_sample (`torch.
|
37
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
38
38
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
39
39
|
denoising loop.
|
40
|
-
pred_original_sample (`torch.
|
40
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
41
41
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
42
42
|
`pred_original_sample` can be used to preview progress or for guidance.
|
43
43
|
"""
|
44
44
|
|
45
|
-
prev_sample: torch.
|
46
|
-
pred_original_sample: Optional[torch.
|
45
|
+
prev_sample: torch.Tensor
|
46
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
47
47
|
|
48
48
|
|
49
49
|
class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
@@ -65,6 +65,10 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
65
65
|
range is [0.2, 80.0].
|
66
66
|
sigma_data (`float`, *optional*, defaults to 0.5):
|
67
67
|
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
|
68
|
+
sigma_schedule (`str`, *optional*, defaults to `karras`):
|
69
|
+
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
70
|
+
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
|
71
|
+
incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
68
72
|
num_train_timesteps (`int`, defaults to 1000):
|
69
73
|
The number of diffusion steps to train the model.
|
70
74
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
@@ -84,15 +88,23 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
84
88
|
sigma_min: float = 0.002,
|
85
89
|
sigma_max: float = 80.0,
|
86
90
|
sigma_data: float = 0.5,
|
91
|
+
sigma_schedule: str = "karras",
|
87
92
|
num_train_timesteps: int = 1000,
|
88
93
|
prediction_type: str = "epsilon",
|
89
94
|
rho: float = 7.0,
|
90
95
|
):
|
96
|
+
if sigma_schedule not in ["karras", "exponential"]:
|
97
|
+
raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`")
|
98
|
+
|
91
99
|
# setable values
|
92
100
|
self.num_inference_steps = None
|
93
101
|
|
94
102
|
ramp = torch.linspace(0, 1, num_train_timesteps)
|
95
|
-
|
103
|
+
if sigma_schedule == "karras":
|
104
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
105
|
+
elif sigma_schedule == "exponential":
|
106
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
107
|
+
|
96
108
|
self.timesteps = self.precondition_noise(sigmas)
|
97
109
|
|
98
110
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
@@ -111,7 +123,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
111
123
|
@property
|
112
124
|
def step_index(self):
|
113
125
|
"""
|
114
|
-
The index counter for current timestep. It will
|
126
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
115
127
|
"""
|
116
128
|
return self._step_index
|
117
129
|
|
@@ -161,21 +173,19 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
161
173
|
|
162
174
|
return denoised
|
163
175
|
|
164
|
-
def scale_model_input(
|
165
|
-
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
166
|
-
) -> torch.FloatTensor:
|
176
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
167
177
|
"""
|
168
178
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
169
179
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
170
180
|
|
171
181
|
Args:
|
172
|
-
sample (`torch.
|
182
|
+
sample (`torch.Tensor`):
|
173
183
|
The input sample.
|
174
184
|
timestep (`int`, *optional*):
|
175
185
|
The current timestep in the diffusion chain.
|
176
186
|
|
177
187
|
Returns:
|
178
|
-
`torch.
|
188
|
+
`torch.Tensor`:
|
179
189
|
A scaled input sample.
|
180
190
|
"""
|
181
191
|
if self.step_index is None:
|
@@ -199,10 +209,13 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
199
209
|
"""
|
200
210
|
self.num_inference_steps = num_inference_steps
|
201
211
|
|
202
|
-
ramp =
|
203
|
-
|
212
|
+
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
213
|
+
if self.config.sigma_schedule == "karras":
|
214
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
215
|
+
elif self.config.sigma_schedule == "exponential":
|
216
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
204
217
|
|
205
|
-
sigmas =
|
218
|
+
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
206
219
|
self.timesteps = self.precondition_noise(sigmas)
|
207
220
|
|
208
221
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
@@ -211,9 +224,8 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
211
224
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
212
225
|
|
213
226
|
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
|
214
|
-
def
|
227
|
+
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
215
228
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
216
|
-
|
217
229
|
sigma_min = sigma_min or self.config.sigma_min
|
218
230
|
sigma_max = sigma_max or self.config.sigma_max
|
219
231
|
|
@@ -223,6 +235,16 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
223
235
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
224
236
|
return sigmas
|
225
237
|
|
238
|
+
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
239
|
+
"""Implementation closely follows k-diffusion.
|
240
|
+
|
241
|
+
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
|
242
|
+
"""
|
243
|
+
sigma_min = sigma_min or self.config.sigma_min
|
244
|
+
sigma_max = sigma_max or self.config.sigma_max
|
245
|
+
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
|
246
|
+
return sigmas
|
247
|
+
|
226
248
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
227
249
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
228
250
|
if schedule_timesteps is None:
|
@@ -249,9 +271,9 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
249
271
|
|
250
272
|
def step(
|
251
273
|
self,
|
252
|
-
model_output: torch.
|
253
|
-
timestep: Union[float, torch.
|
254
|
-
sample: torch.
|
274
|
+
model_output: torch.Tensor,
|
275
|
+
timestep: Union[float, torch.Tensor],
|
276
|
+
sample: torch.Tensor,
|
255
277
|
s_churn: float = 0.0,
|
256
278
|
s_tmin: float = 0.0,
|
257
279
|
s_tmax: float = float("inf"),
|
@@ -264,11 +286,11 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
264
286
|
process from the learned model outputs (most often the predicted noise).
|
265
287
|
|
266
288
|
Args:
|
267
|
-
model_output (`torch.
|
289
|
+
model_output (`torch.Tensor`):
|
268
290
|
The direct output from learned diffusion model.
|
269
291
|
timestep (`float`):
|
270
292
|
The current discrete timestep in the diffusion chain.
|
271
|
-
sample (`torch.
|
293
|
+
sample (`torch.Tensor`):
|
272
294
|
A current instance of a sample created by the diffusion process.
|
273
295
|
s_churn (`float`):
|
274
296
|
s_tmin (`float`):
|
@@ -278,8 +300,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
278
300
|
generator (`torch.Generator`, *optional*):
|
279
301
|
A random number generator.
|
280
302
|
return_dict (`bool`):
|
281
|
-
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or
|
282
|
-
tuple.
|
303
|
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple.
|
283
304
|
|
284
305
|
Returns:
|
285
306
|
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
|
@@ -287,11 +308,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
287
308
|
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
288
309
|
"""
|
289
310
|
|
290
|
-
if (
|
291
|
-
isinstance(timestep, int)
|
292
|
-
or isinstance(timestep, torch.IntTensor)
|
293
|
-
or isinstance(timestep, torch.LongTensor)
|
294
|
-
):
|
311
|
+
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
|
295
312
|
raise ValueError(
|
296
313
|
(
|
297
314
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
@@ -316,14 +333,13 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
316
333
|
|
317
334
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
318
335
|
|
319
|
-
noise = randn_tensor(
|
320
|
-
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
321
|
-
)
|
322
|
-
|
323
|
-
eps = noise * s_noise
|
324
336
|
sigma_hat = sigma * (gamma + 1)
|
325
337
|
|
326
338
|
if gamma > 0:
|
339
|
+
noise = randn_tensor(
|
340
|
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
341
|
+
)
|
342
|
+
eps = noise * s_noise
|
327
343
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
328
344
|
|
329
345
|
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
@@ -343,17 +359,20 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
343
359
|
self._step_index += 1
|
344
360
|
|
345
361
|
if not return_dict:
|
346
|
-
return (
|
362
|
+
return (
|
363
|
+
prev_sample,
|
364
|
+
pred_original_sample,
|
365
|
+
)
|
347
366
|
|
348
367
|
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
349
368
|
|
350
369
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
351
370
|
def add_noise(
|
352
371
|
self,
|
353
|
-
original_samples: torch.
|
354
|
-
noise: torch.
|
355
|
-
timesteps: torch.
|
356
|
-
) -> torch.
|
372
|
+
original_samples: torch.Tensor,
|
373
|
+
noise: torch.Tensor,
|
374
|
+
timesteps: torch.Tensor,
|
375
|
+
) -> torch.Tensor:
|
357
376
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
358
377
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
359
378
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -367,7 +386,11 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
|
367
386
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
368
387
|
if self.begin_index is None:
|
369
388
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
389
|
+
elif self.step_index is not None:
|
390
|
+
# add_noise is called after first denoising step (for inpainting)
|
391
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
370
392
|
else:
|
393
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
371
394
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
372
395
|
|
373
396
|
sigma = sigmas[step_indices].flatten()
|