diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,791 @@
1
+ # Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+
21
+ from diffusers.loaders import FromOriginalModelMixin
22
+
23
+ from ...configuration_utils import ConfigMixin, register_to_config
24
+ from ...loaders import PeftAdapterMixin
25
+ from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
26
+ from ..attention import FeedForward
27
+ from ..attention_processor import Attention, AttentionProcessor
28
+ from ..embeddings import (
29
+ CombinedTimestepGuidanceTextProjEmbeddings,
30
+ CombinedTimestepTextProjEmbeddings,
31
+ get_1d_rotary_pos_embed,
32
+ )
33
+ from ..modeling_outputs import Transformer2DModelOutput
34
+ from ..modeling_utils import ModelMixin
35
+ from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
36
+
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+
41
+ class HunyuanVideoAttnProcessor2_0:
42
+ def __init__(self):
43
+ if not hasattr(F, "scaled_dot_product_attention"):
44
+ raise ImportError(
45
+ "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0."
46
+ )
47
+
48
+ def __call__(
49
+ self,
50
+ attn: Attention,
51
+ hidden_states: torch.Tensor,
52
+ encoder_hidden_states: Optional[torch.Tensor] = None,
53
+ attention_mask: Optional[torch.Tensor] = None,
54
+ image_rotary_emb: Optional[torch.Tensor] = None,
55
+ ) -> torch.Tensor:
56
+ if attn.add_q_proj is None and encoder_hidden_states is not None:
57
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
58
+
59
+ # 1. QKV projections
60
+ query = attn.to_q(hidden_states)
61
+ key = attn.to_k(hidden_states)
62
+ value = attn.to_v(hidden_states)
63
+
64
+ query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
65
+ key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
66
+ value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
67
+
68
+ # 2. QK normalization
69
+ if attn.norm_q is not None:
70
+ query = attn.norm_q(query)
71
+ if attn.norm_k is not None:
72
+ key = attn.norm_k(key)
73
+
74
+ # 3. Rotational positional embeddings applied to latent stream
75
+ if image_rotary_emb is not None:
76
+ from ..embeddings import apply_rotary_emb
77
+
78
+ if attn.add_q_proj is None and encoder_hidden_states is not None:
79
+ query = torch.cat(
80
+ [
81
+ apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
82
+ query[:, :, -encoder_hidden_states.shape[1] :],
83
+ ],
84
+ dim=2,
85
+ )
86
+ key = torch.cat(
87
+ [
88
+ apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
89
+ key[:, :, -encoder_hidden_states.shape[1] :],
90
+ ],
91
+ dim=2,
92
+ )
93
+ else:
94
+ query = apply_rotary_emb(query, image_rotary_emb)
95
+ key = apply_rotary_emb(key, image_rotary_emb)
96
+
97
+ # 4. Encoder condition QKV projection and normalization
98
+ if attn.add_q_proj is not None and encoder_hidden_states is not None:
99
+ encoder_query = attn.add_q_proj(encoder_hidden_states)
100
+ encoder_key = attn.add_k_proj(encoder_hidden_states)
101
+ encoder_value = attn.add_v_proj(encoder_hidden_states)
102
+
103
+ encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
104
+ encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
105
+ encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
106
+
107
+ if attn.norm_added_q is not None:
108
+ encoder_query = attn.norm_added_q(encoder_query)
109
+ if attn.norm_added_k is not None:
110
+ encoder_key = attn.norm_added_k(encoder_key)
111
+
112
+ query = torch.cat([query, encoder_query], dim=2)
113
+ key = torch.cat([key, encoder_key], dim=2)
114
+ value = torch.cat([value, encoder_value], dim=2)
115
+
116
+ # 5. Attention
117
+ hidden_states = F.scaled_dot_product_attention(
118
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
119
+ )
120
+ hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
121
+ hidden_states = hidden_states.to(query.dtype)
122
+
123
+ # 6. Output projection
124
+ if encoder_hidden_states is not None:
125
+ hidden_states, encoder_hidden_states = (
126
+ hidden_states[:, : -encoder_hidden_states.shape[1]],
127
+ hidden_states[:, -encoder_hidden_states.shape[1] :],
128
+ )
129
+
130
+ if getattr(attn, "to_out", None) is not None:
131
+ hidden_states = attn.to_out[0](hidden_states)
132
+ hidden_states = attn.to_out[1](hidden_states)
133
+
134
+ if getattr(attn, "to_add_out", None) is not None:
135
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
136
+
137
+ return hidden_states, encoder_hidden_states
138
+
139
+
140
+ class HunyuanVideoPatchEmbed(nn.Module):
141
+ def __init__(
142
+ self,
143
+ patch_size: Union[int, Tuple[int, int, int]] = 16,
144
+ in_chans: int = 3,
145
+ embed_dim: int = 768,
146
+ ) -> None:
147
+ super().__init__()
148
+
149
+ patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size
150
+ self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
151
+
152
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
153
+ hidden_states = self.proj(hidden_states)
154
+ hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC
155
+ return hidden_states
156
+
157
+
158
+ class HunyuanVideoAdaNorm(nn.Module):
159
+ def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
160
+ super().__init__()
161
+
162
+ out_features = out_features or 2 * in_features
163
+ self.linear = nn.Linear(in_features, out_features)
164
+ self.nonlinearity = nn.SiLU()
165
+
166
+ def forward(
167
+ self, temb: torch.Tensor
168
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
169
+ temb = self.linear(self.nonlinearity(temb))
170
+ gate_msa, gate_mlp = temb.chunk(2, dim=1)
171
+ gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
172
+ return gate_msa, gate_mlp
173
+
174
+
175
+ class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
176
+ def __init__(
177
+ self,
178
+ num_attention_heads: int,
179
+ attention_head_dim: int,
180
+ mlp_width_ratio: str = 4.0,
181
+ mlp_drop_rate: float = 0.0,
182
+ attention_bias: bool = True,
183
+ ) -> None:
184
+ super().__init__()
185
+
186
+ hidden_size = num_attention_heads * attention_head_dim
187
+
188
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
189
+ self.attn = Attention(
190
+ query_dim=hidden_size,
191
+ cross_attention_dim=None,
192
+ heads=num_attention_heads,
193
+ dim_head=attention_head_dim,
194
+ bias=attention_bias,
195
+ )
196
+
197
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
198
+ self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
199
+
200
+ self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
201
+
202
+ def forward(
203
+ self,
204
+ hidden_states: torch.Tensor,
205
+ temb: torch.Tensor,
206
+ attention_mask: Optional[torch.Tensor] = None,
207
+ ) -> torch.Tensor:
208
+ norm_hidden_states = self.norm1(hidden_states)
209
+
210
+ attn_output = self.attn(
211
+ hidden_states=norm_hidden_states,
212
+ encoder_hidden_states=None,
213
+ attention_mask=attention_mask,
214
+ )
215
+
216
+ gate_msa, gate_mlp = self.norm_out(temb)
217
+ hidden_states = hidden_states + attn_output * gate_msa
218
+
219
+ ff_output = self.ff(self.norm2(hidden_states))
220
+ hidden_states = hidden_states + ff_output * gate_mlp
221
+
222
+ return hidden_states
223
+
224
+
225
+ class HunyuanVideoIndividualTokenRefiner(nn.Module):
226
+ def __init__(
227
+ self,
228
+ num_attention_heads: int,
229
+ attention_head_dim: int,
230
+ num_layers: int,
231
+ mlp_width_ratio: float = 4.0,
232
+ mlp_drop_rate: float = 0.0,
233
+ attention_bias: bool = True,
234
+ ) -> None:
235
+ super().__init__()
236
+
237
+ self.refiner_blocks = nn.ModuleList(
238
+ [
239
+ HunyuanVideoIndividualTokenRefinerBlock(
240
+ num_attention_heads=num_attention_heads,
241
+ attention_head_dim=attention_head_dim,
242
+ mlp_width_ratio=mlp_width_ratio,
243
+ mlp_drop_rate=mlp_drop_rate,
244
+ attention_bias=attention_bias,
245
+ )
246
+ for _ in range(num_layers)
247
+ ]
248
+ )
249
+
250
+ def forward(
251
+ self,
252
+ hidden_states: torch.Tensor,
253
+ temb: torch.Tensor,
254
+ attention_mask: Optional[torch.Tensor] = None,
255
+ ) -> None:
256
+ self_attn_mask = None
257
+ if attention_mask is not None:
258
+ batch_size = attention_mask.shape[0]
259
+ seq_len = attention_mask.shape[1]
260
+ attention_mask = attention_mask.to(hidden_states.device).bool()
261
+ self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
262
+ self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
263
+ self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
264
+ self_attn_mask[:, :, :, 0] = True
265
+
266
+ for block in self.refiner_blocks:
267
+ hidden_states = block(hidden_states, temb, self_attn_mask)
268
+
269
+ return hidden_states
270
+
271
+
272
+ class HunyuanVideoTokenRefiner(nn.Module):
273
+ def __init__(
274
+ self,
275
+ in_channels: int,
276
+ num_attention_heads: int,
277
+ attention_head_dim: int,
278
+ num_layers: int,
279
+ mlp_ratio: float = 4.0,
280
+ mlp_drop_rate: float = 0.0,
281
+ attention_bias: bool = True,
282
+ ) -> None:
283
+ super().__init__()
284
+
285
+ hidden_size = num_attention_heads * attention_head_dim
286
+
287
+ self.time_text_embed = CombinedTimestepTextProjEmbeddings(
288
+ embedding_dim=hidden_size, pooled_projection_dim=in_channels
289
+ )
290
+ self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
291
+ self.token_refiner = HunyuanVideoIndividualTokenRefiner(
292
+ num_attention_heads=num_attention_heads,
293
+ attention_head_dim=attention_head_dim,
294
+ num_layers=num_layers,
295
+ mlp_width_ratio=mlp_ratio,
296
+ mlp_drop_rate=mlp_drop_rate,
297
+ attention_bias=attention_bias,
298
+ )
299
+
300
+ def forward(
301
+ self,
302
+ hidden_states: torch.Tensor,
303
+ timestep: torch.LongTensor,
304
+ attention_mask: Optional[torch.LongTensor] = None,
305
+ ) -> torch.Tensor:
306
+ if attention_mask is None:
307
+ pooled_projections = hidden_states.mean(dim=1)
308
+ else:
309
+ original_dtype = hidden_states.dtype
310
+ mask_float = attention_mask.float().unsqueeze(-1)
311
+ pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
312
+ pooled_projections = pooled_projections.to(original_dtype)
313
+
314
+ temb = self.time_text_embed(timestep, pooled_projections)
315
+ hidden_states = self.proj_in(hidden_states)
316
+ hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
317
+
318
+ return hidden_states
319
+
320
+
321
+ class HunyuanVideoRotaryPosEmbed(nn.Module):
322
+ def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None:
323
+ super().__init__()
324
+
325
+ self.patch_size = patch_size
326
+ self.patch_size_t = patch_size_t
327
+ self.rope_dim = rope_dim
328
+ self.theta = theta
329
+
330
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
331
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
332
+ rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size]
333
+
334
+ axes_grids = []
335
+ for i in range(3):
336
+ # Note: The following line diverges from original behaviour. We create the grid on the device, whereas
337
+ # original implementation creates it on CPU and then moves it to device. This results in numerical
338
+ # differences in layerwise debugging outputs, but visually it is the same.
339
+ grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32)
340
+ axes_grids.append(grid)
341
+ grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T]
342
+ grid = torch.stack(grid, dim=0) # [3, W, H, T]
343
+
344
+ freqs = []
345
+ for i in range(3):
346
+ freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True)
347
+ freqs.append(freq)
348
+
349
+ freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2)
350
+ freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2)
351
+ return freqs_cos, freqs_sin
352
+
353
+
354
+ class HunyuanVideoSingleTransformerBlock(nn.Module):
355
+ def __init__(
356
+ self,
357
+ num_attention_heads: int,
358
+ attention_head_dim: int,
359
+ mlp_ratio: float = 4.0,
360
+ qk_norm: str = "rms_norm",
361
+ ) -> None:
362
+ super().__init__()
363
+
364
+ hidden_size = num_attention_heads * attention_head_dim
365
+ mlp_dim = int(hidden_size * mlp_ratio)
366
+
367
+ self.attn = Attention(
368
+ query_dim=hidden_size,
369
+ cross_attention_dim=None,
370
+ dim_head=attention_head_dim,
371
+ heads=num_attention_heads,
372
+ out_dim=hidden_size,
373
+ bias=True,
374
+ processor=HunyuanVideoAttnProcessor2_0(),
375
+ qk_norm=qk_norm,
376
+ eps=1e-6,
377
+ pre_only=True,
378
+ )
379
+
380
+ self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
381
+ self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
382
+ self.act_mlp = nn.GELU(approximate="tanh")
383
+ self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
384
+
385
+ def forward(
386
+ self,
387
+ hidden_states: torch.Tensor,
388
+ encoder_hidden_states: torch.Tensor,
389
+ temb: torch.Tensor,
390
+ attention_mask: Optional[torch.Tensor] = None,
391
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
392
+ ) -> torch.Tensor:
393
+ text_seq_length = encoder_hidden_states.shape[1]
394
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
395
+
396
+ residual = hidden_states
397
+
398
+ # 1. Input normalization
399
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
400
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
401
+
402
+ norm_hidden_states, norm_encoder_hidden_states = (
403
+ norm_hidden_states[:, :-text_seq_length, :],
404
+ norm_hidden_states[:, -text_seq_length:, :],
405
+ )
406
+
407
+ # 2. Attention
408
+ attn_output, context_attn_output = self.attn(
409
+ hidden_states=norm_hidden_states,
410
+ encoder_hidden_states=norm_encoder_hidden_states,
411
+ attention_mask=attention_mask,
412
+ image_rotary_emb=image_rotary_emb,
413
+ )
414
+ attn_output = torch.cat([attn_output, context_attn_output], dim=1)
415
+
416
+ # 3. Modulation and residual connection
417
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
418
+ hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states)
419
+ hidden_states = hidden_states + residual
420
+
421
+ hidden_states, encoder_hidden_states = (
422
+ hidden_states[:, :-text_seq_length, :],
423
+ hidden_states[:, -text_seq_length:, :],
424
+ )
425
+ return hidden_states, encoder_hidden_states
426
+
427
+
428
+ class HunyuanVideoTransformerBlock(nn.Module):
429
+ def __init__(
430
+ self,
431
+ num_attention_heads: int,
432
+ attention_head_dim: int,
433
+ mlp_ratio: float,
434
+ qk_norm: str = "rms_norm",
435
+ ) -> None:
436
+ super().__init__()
437
+
438
+ hidden_size = num_attention_heads * attention_head_dim
439
+
440
+ self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
441
+ self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
442
+
443
+ self.attn = Attention(
444
+ query_dim=hidden_size,
445
+ cross_attention_dim=None,
446
+ added_kv_proj_dim=hidden_size,
447
+ dim_head=attention_head_dim,
448
+ heads=num_attention_heads,
449
+ out_dim=hidden_size,
450
+ context_pre_only=False,
451
+ bias=True,
452
+ processor=HunyuanVideoAttnProcessor2_0(),
453
+ qk_norm=qk_norm,
454
+ eps=1e-6,
455
+ )
456
+
457
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
458
+ self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
459
+
460
+ self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
461
+ self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
462
+
463
+ def forward(
464
+ self,
465
+ hidden_states: torch.Tensor,
466
+ encoder_hidden_states: torch.Tensor,
467
+ temb: torch.Tensor,
468
+ attention_mask: Optional[torch.Tensor] = None,
469
+ freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
470
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
471
+ # 1. Input normalization
472
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
473
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
474
+ encoder_hidden_states, emb=temb
475
+ )
476
+
477
+ # 2. Joint attention
478
+ attn_output, context_attn_output = self.attn(
479
+ hidden_states=norm_hidden_states,
480
+ encoder_hidden_states=norm_encoder_hidden_states,
481
+ attention_mask=attention_mask,
482
+ image_rotary_emb=freqs_cis,
483
+ )
484
+
485
+ # 3. Modulation and residual connection
486
+ hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
487
+ encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
488
+
489
+ norm_hidden_states = self.norm2(hidden_states)
490
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
491
+
492
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
493
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
494
+
495
+ # 4. Feed-forward
496
+ ff_output = self.ff(norm_hidden_states)
497
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
498
+
499
+ hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
500
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
501
+
502
+ return hidden_states, encoder_hidden_states
503
+
504
+
505
+ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
506
+ r"""
507
+ A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo).
508
+
509
+ Args:
510
+ in_channels (`int`, defaults to `16`):
511
+ The number of channels in the input.
512
+ out_channels (`int`, defaults to `16`):
513
+ The number of channels in the output.
514
+ num_attention_heads (`int`, defaults to `24`):
515
+ The number of heads to use for multi-head attention.
516
+ attention_head_dim (`int`, defaults to `128`):
517
+ The number of channels in each head.
518
+ num_layers (`int`, defaults to `20`):
519
+ The number of layers of dual-stream blocks to use.
520
+ num_single_layers (`int`, defaults to `40`):
521
+ The number of layers of single-stream blocks to use.
522
+ num_refiner_layers (`int`, defaults to `2`):
523
+ The number of layers of refiner blocks to use.
524
+ mlp_ratio (`float`, defaults to `4.0`):
525
+ The ratio of the hidden layer size to the input size in the feedforward network.
526
+ patch_size (`int`, defaults to `2`):
527
+ The size of the spatial patches to use in the patch embedding layer.
528
+ patch_size_t (`int`, defaults to `1`):
529
+ The size of the tmeporal patches to use in the patch embedding layer.
530
+ qk_norm (`str`, defaults to `rms_norm`):
531
+ The normalization to use for the query and key projections in the attention layers.
532
+ guidance_embeds (`bool`, defaults to `True`):
533
+ Whether to use guidance embeddings in the model.
534
+ text_embed_dim (`int`, defaults to `4096`):
535
+ Input dimension of text embeddings from the text encoder.
536
+ pooled_projection_dim (`int`, defaults to `768`):
537
+ The dimension of the pooled projection of the text embeddings.
538
+ rope_theta (`float`, defaults to `256.0`):
539
+ The value of theta to use in the RoPE layer.
540
+ rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`):
541
+ The dimensions of the axes to use in the RoPE layer.
542
+ """
543
+
544
+ _supports_gradient_checkpointing = True
545
+
546
+ @register_to_config
547
+ def __init__(
548
+ self,
549
+ in_channels: int = 16,
550
+ out_channels: int = 16,
551
+ num_attention_heads: int = 24,
552
+ attention_head_dim: int = 128,
553
+ num_layers: int = 20,
554
+ num_single_layers: int = 40,
555
+ num_refiner_layers: int = 2,
556
+ mlp_ratio: float = 4.0,
557
+ patch_size: int = 2,
558
+ patch_size_t: int = 1,
559
+ qk_norm: str = "rms_norm",
560
+ guidance_embeds: bool = True,
561
+ text_embed_dim: int = 4096,
562
+ pooled_projection_dim: int = 768,
563
+ rope_theta: float = 256.0,
564
+ rope_axes_dim: Tuple[int] = (16, 56, 56),
565
+ ) -> None:
566
+ super().__init__()
567
+
568
+ inner_dim = num_attention_heads * attention_head_dim
569
+ out_channels = out_channels or in_channels
570
+
571
+ # 1. Latent and condition embedders
572
+ self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
573
+ self.context_embedder = HunyuanVideoTokenRefiner(
574
+ text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
575
+ )
576
+ self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
577
+
578
+ # 2. RoPE
579
+ self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta)
580
+
581
+ # 3. Dual stream transformer blocks
582
+ self.transformer_blocks = nn.ModuleList(
583
+ [
584
+ HunyuanVideoTransformerBlock(
585
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
586
+ )
587
+ for _ in range(num_layers)
588
+ ]
589
+ )
590
+
591
+ # 4. Single stream transformer blocks
592
+ self.single_transformer_blocks = nn.ModuleList(
593
+ [
594
+ HunyuanVideoSingleTransformerBlock(
595
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
596
+ )
597
+ for _ in range(num_single_layers)
598
+ ]
599
+ )
600
+
601
+ # 5. Output projection
602
+ self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
603
+ self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
604
+
605
+ self.gradient_checkpointing = False
606
+
607
+ @property
608
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
609
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
610
+ r"""
611
+ Returns:
612
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
613
+ indexed by its weight name.
614
+ """
615
+ # set recursively
616
+ processors = {}
617
+
618
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
619
+ if hasattr(module, "get_processor"):
620
+ processors[f"{name}.processor"] = module.get_processor()
621
+
622
+ for sub_name, child in module.named_children():
623
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
624
+
625
+ return processors
626
+
627
+ for name, module in self.named_children():
628
+ fn_recursive_add_processors(name, module, processors)
629
+
630
+ return processors
631
+
632
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
633
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
634
+ r"""
635
+ Sets the attention processor to use to compute attention.
636
+
637
+ Parameters:
638
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
639
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
640
+ for **all** `Attention` layers.
641
+
642
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
643
+ processor. This is strongly recommended when setting trainable attention processors.
644
+
645
+ """
646
+ count = len(self.attn_processors.keys())
647
+
648
+ if isinstance(processor, dict) and len(processor) != count:
649
+ raise ValueError(
650
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
651
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
652
+ )
653
+
654
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
655
+ if hasattr(module, "set_processor"):
656
+ if not isinstance(processor, dict):
657
+ module.set_processor(processor)
658
+ else:
659
+ module.set_processor(processor.pop(f"{name}.processor"))
660
+
661
+ for sub_name, child in module.named_children():
662
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
663
+
664
+ for name, module in self.named_children():
665
+ fn_recursive_attn_processor(name, module, processor)
666
+
667
+ def _set_gradient_checkpointing(self, module, value=False):
668
+ if hasattr(module, "gradient_checkpointing"):
669
+ module.gradient_checkpointing = value
670
+
671
+ def forward(
672
+ self,
673
+ hidden_states: torch.Tensor,
674
+ timestep: torch.LongTensor,
675
+ encoder_hidden_states: torch.Tensor,
676
+ encoder_attention_mask: torch.Tensor,
677
+ pooled_projections: torch.Tensor,
678
+ guidance: torch.Tensor = None,
679
+ attention_kwargs: Optional[Dict[str, Any]] = None,
680
+ return_dict: bool = True,
681
+ ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
682
+ if attention_kwargs is not None:
683
+ attention_kwargs = attention_kwargs.copy()
684
+ lora_scale = attention_kwargs.pop("scale", 1.0)
685
+ else:
686
+ lora_scale = 1.0
687
+
688
+ if USE_PEFT_BACKEND:
689
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
690
+ scale_lora_layers(self, lora_scale)
691
+ else:
692
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
693
+ logger.warning(
694
+ "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
695
+ )
696
+
697
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
698
+ p, p_t = self.config.patch_size, self.config.patch_size_t
699
+ post_patch_num_frames = num_frames // p_t
700
+ post_patch_height = height // p
701
+ post_patch_width = width // p
702
+
703
+ # 1. RoPE
704
+ image_rotary_emb = self.rope(hidden_states)
705
+
706
+ # 2. Conditional embeddings
707
+ temb = self.time_text_embed(timestep, guidance, pooled_projections)
708
+ hidden_states = self.x_embedder(hidden_states)
709
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)
710
+
711
+ # 3. Attention mask preparation
712
+ latent_sequence_length = hidden_states.shape[1]
713
+ condition_sequence_length = encoder_hidden_states.shape[1]
714
+ sequence_length = latent_sequence_length + condition_sequence_length
715
+ attention_mask = torch.zeros(
716
+ batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
717
+ ) # [B, N]
718
+
719
+ effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,]
720
+ effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
721
+
722
+ for i in range(batch_size):
723
+ attention_mask[i, : effective_sequence_length[i]] = True
724
+ # [B, 1, 1, N], for broadcasting across attention heads
725
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
726
+
727
+ # 4. Transformer blocks
728
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
729
+
730
+ def create_custom_forward(module, return_dict=None):
731
+ def custom_forward(*inputs):
732
+ if return_dict is not None:
733
+ return module(*inputs, return_dict=return_dict)
734
+ else:
735
+ return module(*inputs)
736
+
737
+ return custom_forward
738
+
739
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
740
+
741
+ for block in self.transformer_blocks:
742
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
743
+ create_custom_forward(block),
744
+ hidden_states,
745
+ encoder_hidden_states,
746
+ temb,
747
+ attention_mask,
748
+ image_rotary_emb,
749
+ **ckpt_kwargs,
750
+ )
751
+
752
+ for block in self.single_transformer_blocks:
753
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
754
+ create_custom_forward(block),
755
+ hidden_states,
756
+ encoder_hidden_states,
757
+ temb,
758
+ attention_mask,
759
+ image_rotary_emb,
760
+ **ckpt_kwargs,
761
+ )
762
+
763
+ else:
764
+ for block in self.transformer_blocks:
765
+ hidden_states, encoder_hidden_states = block(
766
+ hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb
767
+ )
768
+
769
+ for block in self.single_transformer_blocks:
770
+ hidden_states, encoder_hidden_states = block(
771
+ hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb
772
+ )
773
+
774
+ # 5. Output projection
775
+ hidden_states = self.norm_out(hidden_states, temb)
776
+ hidden_states = self.proj_out(hidden_states)
777
+
778
+ hidden_states = hidden_states.reshape(
779
+ batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
780
+ )
781
+ hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
782
+ hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
783
+
784
+ if USE_PEFT_BACKEND:
785
+ # remove `lora_scale` from each PEFT layer
786
+ unscale_lora_layers(self, lora_scale)
787
+
788
+ if not return_dict:
789
+ return (hidden_states,)
790
+
791
+ return Transformer2DModelOutput(sample=hidden_states)