diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -100,8 +100,10 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
100
100
  )
101
101
  self.register_to_config(latent_dim_scale=latent_dim_scale)
102
102
 
103
- def prepare_latents(self, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler):
104
- batch_size, channels, height, width = image_embeddings.shape
103
+ def prepare_latents(
104
+ self, batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler
105
+ ):
106
+ _, channels, height, width = image_embeddings.shape
105
107
  latents_shape = (
106
108
  batch_size * num_images_per_prompt,
107
109
  4,
@@ -127,10 +129,10 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
127
129
  do_classifier_free_guidance,
128
130
  prompt=None,
129
131
  negative_prompt=None,
130
- prompt_embeds: Optional[torch.FloatTensor] = None,
131
- prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
132
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
133
- negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
132
+ prompt_embeds: Optional[torch.Tensor] = None,
133
+ prompt_embeds_pooled: Optional[torch.Tensor] = None,
134
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
135
+ negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
134
136
  ):
135
137
  if prompt_embeds is None:
136
138
  # get prompt text embeddings
@@ -279,22 +281,32 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
279
281
  def num_timesteps(self):
280
282
  return self._num_timesteps
281
283
 
284
+ def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
285
+ s = torch.tensor([0.008])
286
+ clamp_range = [0, 1]
287
+ min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
288
+ var = alphas_cumprod[t]
289
+ var = var.clamp(*clamp_range)
290
+ s, min_var = s.to(var.device), min_var.to(var.device)
291
+ ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
292
+ return ratio
293
+
282
294
  @torch.no_grad()
283
295
  @replace_example_docstring(EXAMPLE_DOC_STRING)
284
296
  def __call__(
285
297
  self,
286
- image_embeddings: Union[torch.FloatTensor, List[torch.FloatTensor]],
298
+ image_embeddings: Union[torch.Tensor, List[torch.Tensor]],
287
299
  prompt: Union[str, List[str]] = None,
288
300
  num_inference_steps: int = 10,
289
301
  guidance_scale: float = 0.0,
290
302
  negative_prompt: Optional[Union[str, List[str]]] = None,
291
- prompt_embeds: Optional[torch.FloatTensor] = None,
292
- prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
293
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
294
- negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
303
+ prompt_embeds: Optional[torch.Tensor] = None,
304
+ prompt_embeds_pooled: Optional[torch.Tensor] = None,
305
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
306
+ negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
295
307
  num_images_per_prompt: int = 1,
296
308
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
297
- latents: Optional[torch.FloatTensor] = None,
309
+ latents: Optional[torch.Tensor] = None,
298
310
  output_type: Optional[str] = "pil",
299
311
  return_dict: bool = True,
300
312
  callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -304,7 +316,7 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
304
316
  Function invoked when calling the pipeline for generation.
305
317
 
306
318
  Args:
307
- image_embedding (`torch.FloatTensor` or `List[torch.FloatTensor]`):
319
+ image_embedding (`torch.Tensor` or `List[torch.Tensor]`):
308
320
  Image Embeddings either extracted from an image or generated by a Prior Model.
309
321
  prompt (`str` or `List[str]`):
310
322
  The prompt or prompts to guide the image generation.
@@ -320,26 +332,26 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
320
332
  negative_prompt (`str` or `List[str]`, *optional*):
321
333
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
322
334
  if `decoder_guidance_scale` is less than `1`).
323
- prompt_embeds (`torch.FloatTensor`, *optional*):
335
+ prompt_embeds (`torch.Tensor`, *optional*):
324
336
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
325
337
  provided, text embeddings will be generated from `prompt` input argument.
326
- prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
338
+ prompt_embeds_pooled (`torch.Tensor`, *optional*):
327
339
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
328
340
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
329
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
341
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
330
342
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
331
343
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
332
344
  argument.
333
- negative_prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
345
+ negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
334
346
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
335
- weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input
336
- argument.
347
+ weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
348
+ input argument.
337
349
  num_images_per_prompt (`int`, *optional*, defaults to 1):
338
350
  The number of images to generate per prompt.
339
351
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
340
352
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
341
353
  to make generation deterministic.
342
- latents (`torch.FloatTensor`, *optional*):
354
+ latents (`torch.Tensor`, *optional*):
343
355
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
344
356
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
345
357
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -383,7 +395,19 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
383
395
  )
384
396
  if isinstance(image_embeddings, list):
385
397
  image_embeddings = torch.cat(image_embeddings, dim=0)
386
- batch_size = image_embeddings.shape[0]
398
+
399
+ if prompt is not None and isinstance(prompt, str):
400
+ batch_size = 1
401
+ elif prompt is not None and isinstance(prompt, list):
402
+ batch_size = len(prompt)
403
+ else:
404
+ batch_size = prompt_embeds.shape[0]
405
+
406
+ # Compute the effective number of images per prompt
407
+ # We must account for the fact that the image embeddings from the prior can be generated with num_images_per_prompt > 1
408
+ # This results in a case where a single prompt is associated with multiple image embeddings
409
+ # Divide the number of image embeddings by the batch size to determine if this is the case.
410
+ num_images_per_prompt = num_images_per_prompt * (image_embeddings.shape[0] // batch_size)
387
411
 
388
412
  # 2. Encode caption
389
413
  if prompt_embeds is None and negative_prompt_embeds is None:
@@ -417,13 +441,33 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
417
441
 
418
442
  # 5. Prepare latents
419
443
  latents = self.prepare_latents(
420
- image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
444
+ batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
421
445
  )
422
446
 
447
+ if isinstance(self.scheduler, DDPMWuerstchenScheduler):
448
+ timesteps = timesteps[:-1]
449
+ else:
450
+ if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample:
451
+ self.scheduler.config.clip_sample = False # disample sample clipping
452
+ logger.warning(" set `clip_sample` to be False")
453
+
423
454
  # 6. Run denoising loop
424
- self._num_timesteps = len(timesteps[:-1])
425
- for i, t in enumerate(self.progress_bar(timesteps[:-1])):
426
- timestep_ratio = t.expand(latents.size(0)).to(dtype)
455
+ if hasattr(self.scheduler, "betas"):
456
+ alphas = 1.0 - self.scheduler.betas
457
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
458
+ else:
459
+ alphas_cumprod = []
460
+
461
+ self._num_timesteps = len(timesteps)
462
+ for i, t in enumerate(self.progress_bar(timesteps)):
463
+ if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
464
+ if len(alphas_cumprod) > 0:
465
+ timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod)
466
+ timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device)
467
+ else:
468
+ timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype)
469
+ else:
470
+ timestep_ratio = t.expand(latents.size(0)).to(dtype)
427
471
 
428
472
  # 7. Denoise latents
429
473
  predicted_latents = self.decoder(
@@ -440,6 +484,8 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
440
484
  predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale)
441
485
 
442
486
  # 9. Renoise latents to next timestep
487
+ if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
488
+ timestep_ratio = t
443
489
  latents = self.scheduler.step(
444
490
  model_output=predicted_latents,
445
491
  timestep=timestep_ratio,
@@ -31,7 +31,10 @@ TEXT2IMAGE_EXAMPLE_DOC_STRING = """
31
31
  ```py
32
32
  >>> import torch
33
33
  >>> from diffusers import StableCascadeCombinedPipeline
34
- >>> pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
34
+
35
+ >>> pipe = StableCascadeCombinedPipeline.from_pretrained(
36
+ ... "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16
37
+ ... )
35
38
  >>> pipe.enable_model_cpu_offload()
36
39
  >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
37
40
  >>> images = pipe(prompt=prompt)
@@ -68,6 +71,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
68
71
  """
69
72
 
70
73
  _load_connected_pipes = True
74
+ _optional_components = ["prior_feature_extractor", "prior_image_encoder"]
71
75
 
72
76
  def __init__(
73
77
  self,
@@ -117,25 +121,25 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
117
121
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
118
122
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
119
123
 
120
- def enable_model_cpu_offload(self, gpu_id=0):
124
+ def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
121
125
  r"""
122
126
  Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
123
127
  to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
124
128
  method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
125
129
  `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
126
130
  """
127
- self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id)
128
- self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id)
131
+ self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
132
+ self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
129
133
 
130
- def enable_sequential_cpu_offload(self, gpu_id=0):
134
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
131
135
  r"""
132
136
  Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗
133
137
  Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a
134
138
  GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis.
135
139
  Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower.
136
140
  """
137
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
138
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
141
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
142
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
139
143
 
140
144
  def progress_bar(self, iterable=None, total=None):
141
145
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -158,13 +162,13 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
158
162
  num_inference_steps: int = 12,
159
163
  decoder_guidance_scale: float = 0.0,
160
164
  negative_prompt: Optional[Union[str, List[str]]] = None,
161
- prompt_embeds: Optional[torch.FloatTensor] = None,
162
- prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
163
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
164
- negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
165
+ prompt_embeds: Optional[torch.Tensor] = None,
166
+ prompt_embeds_pooled: Optional[torch.Tensor] = None,
167
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
168
+ negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
165
169
  num_images_per_prompt: int = 1,
166
170
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
167
- latents: Optional[torch.FloatTensor] = None,
171
+ latents: Optional[torch.Tensor] = None,
168
172
  output_type: Optional[str] = "pil",
169
173
  return_dict: bool = True,
170
174
  prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -183,17 +187,17 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
183
187
  negative_prompt (`str` or `List[str]`, *optional*):
184
188
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
185
189
  if `guidance_scale` is less than `1`).
186
- prompt_embeds (`torch.FloatTensor`, *optional*):
190
+ prompt_embeds (`torch.Tensor`, *optional*):
187
191
  Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt
188
192
  weighting. If not provided, text embeddings will be generated from `prompt` input argument.
189
- prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
193
+ prompt_embeds_pooled (`torch.Tensor`, *optional*):
190
194
  Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt
191
195
  weighting. If not provided, text embeddings will be generated from `prompt` input argument.
192
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
196
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
193
197
  Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.*
194
198
  prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt`
195
199
  input argument.
196
- negative_prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
200
+ negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
197
201
  Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.*
198
202
  prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt`
199
203
  input argument.
@@ -226,7 +230,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
226
230
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
227
231
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
228
232
  to make generation deterministic.
229
- latents (`torch.FloatTensor`, *optional*):
233
+ latents (`torch.Tensor`, *optional*):
230
234
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
231
235
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
232
236
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -242,7 +246,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
242
246
  prior_callback_on_step_end_tensor_inputs (`List`, *optional*):
243
247
  The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the
244
248
  list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in
245
- the `._callback_tensor_inputs` attribute of your pipeine class.
249
+ the `._callback_tensor_inputs` attribute of your pipeline class.
246
250
  callback_on_step_end (`Callable`, *optional*):
247
251
  A function that calls at the end of each denoising steps during the inference. The function is called
248
252
  with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
@@ -251,7 +255,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
251
255
  callback_on_step_end_tensor_inputs (`List`, *optional*):
252
256
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
253
257
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
254
- `._callback_tensor_inputs` attribute of your pipeine class.
258
+ `._callback_tensor_inputs` attribute of your pipeline class.
255
259
 
256
260
  Examples:
257
261
 
@@ -54,19 +54,19 @@ class StableCascadePriorPipelineOutput(BaseOutput):
54
54
  Output class for WuerstchenPriorPipeline.
55
55
 
56
56
  Args:
57
- image_embeddings (`torch.FloatTensor` or `np.ndarray`)
57
+ image_embeddings (`torch.Tensor` or `np.ndarray`)
58
58
  Prior image embeddings for text prompt
59
- prompt_embeds (`torch.FloatTensor`):
59
+ prompt_embeds (`torch.Tensor`):
60
60
  Text embeddings for the prompt.
61
- negative_prompt_embeds (`torch.FloatTensor`):
61
+ negative_prompt_embeds (`torch.Tensor`):
62
62
  Text embeddings for the negative prompt.
63
63
  """
64
64
 
65
- image_embeddings: Union[torch.FloatTensor, np.ndarray]
66
- prompt_embeds: Union[torch.FloatTensor, np.ndarray]
67
- prompt_embeds_pooled: Union[torch.FloatTensor, np.ndarray]
68
- negative_prompt_embeds: Union[torch.FloatTensor, np.ndarray]
69
- negative_prompt_embeds_pooled: Union[torch.FloatTensor, np.ndarray]
65
+ image_embeddings: Union[torch.Tensor, np.ndarray]
66
+ prompt_embeds: Union[torch.Tensor, np.ndarray]
67
+ prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
68
+ negative_prompt_embeds: Union[torch.Tensor, np.ndarray]
69
+ negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
70
70
 
71
71
 
72
72
  class StableCascadePriorPipeline(DiffusionPipeline):
@@ -80,7 +80,8 @@ class StableCascadePriorPipeline(DiffusionPipeline):
80
80
  prior ([`StableCascadeUNet`]):
81
81
  The Stable Cascade prior to approximate the image embedding from the text and/or image embedding.
82
82
  text_encoder ([`CLIPTextModelWithProjection`]):
83
- Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
83
+ Frozen text-encoder
84
+ ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
84
85
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
85
86
  Model that extracts features from generated images to be used as inputs for the `image_encoder`.
86
87
  image_encoder ([`CLIPVisionModelWithProjection`]):
@@ -149,10 +150,10 @@ class StableCascadePriorPipeline(DiffusionPipeline):
149
150
  do_classifier_free_guidance,
150
151
  prompt=None,
151
152
  negative_prompt=None,
152
- prompt_embeds: Optional[torch.FloatTensor] = None,
153
- prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
154
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
155
- negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
153
+ prompt_embeds: Optional[torch.Tensor] = None,
154
+ prompt_embeds_pooled: Optional[torch.Tensor] = None,
155
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
156
+ negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
156
157
  ):
157
158
  if prompt_embeds is None:
158
159
  # get prompt text embeddings
@@ -352,7 +353,7 @@ class StableCascadePriorPipeline(DiffusionPipeline):
352
353
  return self._num_timesteps
353
354
 
354
355
  def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
355
- s = torch.tensor([0.003])
356
+ s = torch.tensor([0.008])
356
357
  clamp_range = [0, 1]
357
358
  min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
358
359
  var = alphas_cumprod[t]
@@ -373,14 +374,14 @@ class StableCascadePriorPipeline(DiffusionPipeline):
373
374
  timesteps: List[float] = None,
374
375
  guidance_scale: float = 4.0,
375
376
  negative_prompt: Optional[Union[str, List[str]]] = None,
376
- prompt_embeds: Optional[torch.FloatTensor] = None,
377
- prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
378
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
379
- negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
380
- image_embeds: Optional[torch.FloatTensor] = None,
377
+ prompt_embeds: Optional[torch.Tensor] = None,
378
+ prompt_embeds_pooled: Optional[torch.Tensor] = None,
379
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
380
+ negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
381
+ image_embeds: Optional[torch.Tensor] = None,
381
382
  num_images_per_prompt: Optional[int] = 1,
382
383
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
383
- latents: Optional[torch.FloatTensor] = None,
384
+ latents: Optional[torch.Tensor] = None,
384
385
  output_type: Optional[str] = "pt",
385
386
  return_dict: bool = True,
386
387
  callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
@@ -408,29 +409,29 @@ class StableCascadePriorPipeline(DiffusionPipeline):
408
409
  negative_prompt (`str` or `List[str]`, *optional*):
409
410
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
410
411
  if `decoder_guidance_scale` is less than `1`).
411
- prompt_embeds (`torch.FloatTensor`, *optional*):
412
+ prompt_embeds (`torch.Tensor`, *optional*):
412
413
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
413
414
  provided, text embeddings will be generated from `prompt` input argument.
414
- prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
415
+ prompt_embeds_pooled (`torch.Tensor`, *optional*):
415
416
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
416
417
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
417
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
418
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
418
419
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
419
420
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
420
421
  argument.
421
- negative_prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
422
+ negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
422
423
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
423
- weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input
424
- argument.
425
- image_embeds (`torch.FloatTensor`, *optional*):
426
- Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting.
427
- If not provided, image embeddings will be generated from `image` input argument if existing.
424
+ weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
425
+ input argument.
426
+ image_embeds (`torch.Tensor`, *optional*):
427
+ Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If
428
+ not provided, image embeddings will be generated from `image` input argument if existing.
428
429
  num_images_per_prompt (`int`, *optional*, defaults to 1):
429
430
  The number of images to generate per prompt.
430
431
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
431
432
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
432
433
  to make generation deterministic.
433
- latents (`torch.FloatTensor`, *optional*):
434
+ latents (`torch.Tensor`, *optional*):
434
435
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
435
436
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
436
437
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -452,9 +453,9 @@ class StableCascadePriorPipeline(DiffusionPipeline):
452
453
  Examples:
453
454
 
454
455
  Returns:
455
- [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if
456
- `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
457
- generated image embeddings.
456
+ [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is
457
+ True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
458
+ embeddings.
458
459
  """
459
460
 
460
461
  # 0. Define commonly used variables
@@ -556,7 +557,7 @@ class StableCascadePriorPipeline(DiffusionPipeline):
556
557
  if isinstance(self.scheduler, DDPMWuerstchenScheduler):
557
558
  timesteps = timesteps[:-1]
558
559
  else:
559
- if self.scheduler.config.clip_sample:
560
+ if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample:
560
561
  self.scheduler.config.clip_sample = False # disample sample clipping
561
562
  logger.warning(" set `clip_sample` to be False")
562
563
  # 6. Run denoising loop
@@ -113,7 +113,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
113
113
  from .pipeline_stable_diffusion import (
114
114
  StableDiffusionPipeline,
115
115
  StableDiffusionPipelineOutput,
116
- StableDiffusionSafetyChecker,
117
116
  )
118
117
  from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
119
118
  from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
@@ -12,7 +12,7 @@
12
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
- """ Conversion script for the Stable Diffusion checkpoints."""
15
+ """Conversion script for the Stable Diffusion checkpoints."""
16
16
 
17
17
  import re
18
18
  from contextlib import nullcontext
@@ -557,7 +557,7 @@ def convert_ldm_unet_checkpoint(
557
557
  paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
558
558
  )
559
559
 
560
- output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
560
+ output_block_list = {k: sorted(v) for k, v in sorted(output_block_list.items())}
561
561
  if ["conv.bias", "conv.weight"] in output_block_list.values():
562
562
  index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
563
563
  new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
@@ -1153,6 +1153,8 @@ def download_from_original_stable_diffusion_ckpt(
1153
1153
  controlnet: Optional[bool] = None,
1154
1154
  adapter: Optional[bool] = None,
1155
1155
  load_safety_checker: bool = True,
1156
+ safety_checker: Optional[StableDiffusionSafetyChecker] = None,
1157
+ feature_extractor: Optional[AutoFeatureExtractor] = None,
1156
1158
  pipeline_class: DiffusionPipeline = None,
1157
1159
  local_files_only=False,
1158
1160
  vae_path=None,
@@ -1205,6 +1207,12 @@ def download_from_original_stable_diffusion_ckpt(
1205
1207
  If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
1206
1208
  load_safety_checker (`bool`, *optional*, defaults to `True`):
1207
1209
  Whether to load the safety checker or not. Defaults to `True`.
1210
+ safety_checker (`StableDiffusionSafetyChecker`, *optional*, defaults to `None`):
1211
+ Safety checker to use. If this parameter is `None`, the function will load a new instance of
1212
+ [StableDiffusionSafetyChecker] by itself, if needed.
1213
+ feature_extractor (`AutoFeatureExtractor`, *optional*, defaults to `None`):
1214
+ Feature extractor to use. If this parameter is `None`, the function will load a new instance of
1215
+ [AutoFeatureExtractor] by itself, if needed.
1208
1216
  pipeline_class (`str`, *optional*, defaults to `None`):
1209
1217
  The pipeline class to use. Pass `None` to determine automatically.
1210
1218
  local_files_only (`bool`, *optional*, defaults to `False`):
@@ -1362,6 +1370,8 @@ def download_from_original_stable_diffusion_ckpt(
1362
1370
 
1363
1371
  if "unet_config" in original_config["model"]["params"]:
1364
1372
  original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
1373
+ elif "network_config" in original_config["model"]["params"]:
1374
+ original_config["model"]["params"]["network_config"]["params"]["in_channels"] = num_in_channels
1365
1375
 
1366
1376
  if (
1367
1377
  "parameterization" in original_config["model"]["params"]
@@ -1530,8 +1540,8 @@ def download_from_original_stable_diffusion_ckpt(
1530
1540
  unet=unet,
1531
1541
  scheduler=scheduler,
1532
1542
  controlnet=controlnet,
1533
- safety_checker=None,
1534
- feature_extractor=None,
1543
+ safety_checker=safety_checker,
1544
+ feature_extractor=feature_extractor,
1535
1545
  )
1536
1546
  if hasattr(pipe, "requires_safety_checker"):
1537
1547
  pipe.requires_safety_checker = False
@@ -1551,8 +1561,8 @@ def download_from_original_stable_diffusion_ckpt(
1551
1561
  unet=unet,
1552
1562
  scheduler=scheduler,
1553
1563
  low_res_scheduler=low_res_scheduler,
1554
- safety_checker=None,
1555
- feature_extractor=None,
1564
+ safety_checker=safety_checker,
1565
+ feature_extractor=feature_extractor,
1556
1566
  )
1557
1567
 
1558
1568
  else:
@@ -1562,8 +1572,8 @@ def download_from_original_stable_diffusion_ckpt(
1562
1572
  tokenizer=tokenizer,
1563
1573
  unet=unet,
1564
1574
  scheduler=scheduler,
1565
- safety_checker=None,
1566
- feature_extractor=None,
1575
+ safety_checker=safety_checker,
1576
+ feature_extractor=feature_extractor,
1567
1577
  )
1568
1578
  if hasattr(pipe, "requires_safety_checker"):
1569
1579
  pipe.requires_safety_checker = False
@@ -1684,9 +1694,6 @@ def download_from_original_stable_diffusion_ckpt(
1684
1694
  feature_extractor = AutoFeatureExtractor.from_pretrained(
1685
1695
  "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
1686
1696
  )
1687
- else:
1688
- safety_checker = None
1689
- feature_extractor = None
1690
1697
 
1691
1698
  if controlnet:
1692
1699
  pipe = pipeline_class(
@@ -1838,6 +1845,8 @@ def download_controlnet_from_original_ckpt(
1838
1845
  while "state_dict" in checkpoint:
1839
1846
  checkpoint = checkpoint["state_dict"]
1840
1847
 
1848
+ with open(original_config_file, "r") as f:
1849
+ original_config_file = f.read()
1841
1850
  original_config = yaml.safe_load(original_config_file)
1842
1851
 
1843
1852
  if num_in_channels is not None:
@@ -55,7 +55,7 @@ EXAMPLE_DOC_STRING = """
55
55
  >>> from diffusers import FlaxStableDiffusionPipeline
56
56
 
57
57
  >>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
58
- ... "runwayml/stable-diffusion-v1-5", revision="bf16", dtype=jax.numpy.bfloat16
58
+ ... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16
59
59
  ... )
60
60
 
61
61
  >>> prompt = "a photo of an astronaut riding a horse on mars"
@@ -288,7 +288,7 @@ class OnnxStableDiffusionPipeline(DiffusionPipeline):
288
288
  prompt (`str` or `List[str]`, *optional*):
289
289
  The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
290
290
  instead.
291
- image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`):
291
+ image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.Tensor`):
292
292
  `Image`, or tensor representing an image batch which will be upscaled. *
293
293
  num_inference_steps (`int`, *optional*, defaults to 50):
294
294
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
@@ -329,7 +329,7 @@ class OnnxStableDiffusionPipeline(DiffusionPipeline):
329
329
  plain tuple.
330
330
  callback (`Callable`, *optional*):
331
331
  A function that will be called every `callback_steps` steps during inference. The function will be
332
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
332
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
333
333
  callback_steps (`int`, *optional*, defaults to 1):
334
334
  The frequency at which the `callback` function will be called. If not specified, the callback will be
335
335
  called at every step.
@@ -197,7 +197,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
197
197
  )
198
198
 
199
199
  # verify batch size of prompt and image are same if image is a list or tensor or numpy array
200
- if isinstance(image, list) or isinstance(image, np.ndarray):
200
+ if isinstance(image, (list, np.ndarray)):
201
201
  if prompt is not None and isinstance(prompt, str):
202
202
  batch_size = 1
203
203
  elif prompt is not None and isinstance(prompt, list):
@@ -395,7 +395,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
395
395
  [`schedulers.DDIMScheduler`], will be ignored for others.
396
396
  generator (`np.random.RandomState`, *optional*):
397
397
  A np.random.RandomState to make generation deterministic.
398
- latents (`torch.FloatTensor`, *optional*):
398
+ latents (`torch.Tensor`, *optional*):
399
399
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
400
400
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
401
401
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -469,7 +469,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
469
469
 
470
470
  latents = self.prepare_latents(
471
471
  batch_size * num_images_per_prompt,
472
- self.num_latent_channels,
472
+ self.config.num_latent_channels,
473
473
  height,
474
474
  width,
475
475
  latents_dtype,
@@ -498,12 +498,12 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
498
498
 
499
499
  # 7. Check that sizes of image and latents match
500
500
  num_channels_image = image.shape[1]
501
- if self.num_latent_channels + num_channels_image != self.num_unet_input_channels:
501
+ if self.config.num_latent_channels + num_channels_image != self.config.num_unet_input_channels:
502
502
  raise ValueError(
503
503
  "Incorrect configuration settings! The config of `pipeline.unet` expects"
504
- f" {self.num_unet_input_channels} but received `num_channels_latents`: {self.num_latent_channels} +"
504
+ f" {self.config.num_unet_input_channels} but received `num_channels_latents`: {self.config.num_latent_channels} +"
505
505
  f" `num_channels_image`: {num_channels_image} "
506
- f" = {self.num_latent_channels + num_channels_image}. Please verify the config of"
506
+ f" = {self.config.num_latent_channels + num_channels_image}. Please verify the config of"
507
507
  " `pipeline.unet` or your `image` input."
508
508
  )
509
509