diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -15,15 +15,15 @@
15
15
  import inspect
16
16
  from typing import Any, Callable, Dict, List, Optional, Union
17
17
 
18
- import numpy as np
19
18
  import PIL.Image
20
19
  import torch
21
20
  from packaging import version
22
21
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
23
22
 
23
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
24
24
  from ...configuration_utils import FrozenDict
25
25
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
- from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
27
27
  from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
28
28
  from ...models.lora import adjust_lora_scale_text_encoder
29
29
  from ...schedulers import KarrasDiffusionSchedulers
@@ -37,128 +37,6 @@ from .safety_checker import StableDiffusionSafetyChecker
37
37
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
38
 
39
39
 
40
- def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
41
- """
42
- Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
43
- converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
44
- ``image`` and ``1`` for the ``mask``.
45
-
46
- The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
47
- binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
48
-
49
- Args:
50
- image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
51
- It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
52
- ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
53
- mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
54
- It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
55
- ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
56
-
57
-
58
- Raises:
59
- ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
60
- should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
61
- TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
62
- (ot the other way around).
63
-
64
- Returns:
65
- tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
66
- dimensions: ``batch x channels x height x width``.
67
- """
68
- deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
69
- deprecate(
70
- "prepare_mask_and_masked_image",
71
- "0.30.0",
72
- deprecation_message,
73
- )
74
- if image is None:
75
- raise ValueError("`image` input cannot be undefined.")
76
-
77
- if mask is None:
78
- raise ValueError("`mask_image` input cannot be undefined.")
79
-
80
- if isinstance(image, torch.Tensor):
81
- if not isinstance(mask, torch.Tensor):
82
- raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
83
-
84
- # Batch single image
85
- if image.ndim == 3:
86
- assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
87
- image = image.unsqueeze(0)
88
-
89
- # Batch and add channel dim for single mask
90
- if mask.ndim == 2:
91
- mask = mask.unsqueeze(0).unsqueeze(0)
92
-
93
- # Batch single mask or add channel dim
94
- if mask.ndim == 3:
95
- # Single batched mask, no channel dim or single mask not batched but channel dim
96
- if mask.shape[0] == 1:
97
- mask = mask.unsqueeze(0)
98
-
99
- # Batched masks no channel dim
100
- else:
101
- mask = mask.unsqueeze(1)
102
-
103
- assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
104
- assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
105
- assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
106
-
107
- # Check image is in [-1, 1]
108
- if image.min() < -1 or image.max() > 1:
109
- raise ValueError("Image should be in [-1, 1] range")
110
-
111
- # Check mask is in [0, 1]
112
- if mask.min() < 0 or mask.max() > 1:
113
- raise ValueError("Mask should be in [0, 1] range")
114
-
115
- # Binarize mask
116
- mask[mask < 0.5] = 0
117
- mask[mask >= 0.5] = 1
118
-
119
- # Image as float32
120
- image = image.to(dtype=torch.float32)
121
- elif isinstance(mask, torch.Tensor):
122
- raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
123
- else:
124
- # preprocess image
125
- if isinstance(image, (PIL.Image.Image, np.ndarray)):
126
- image = [image]
127
- if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
128
- # resize all images w.r.t passed height an width
129
- image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
130
- image = [np.array(i.convert("RGB"))[None, :] for i in image]
131
- image = np.concatenate(image, axis=0)
132
- elif isinstance(image, list) and isinstance(image[0], np.ndarray):
133
- image = np.concatenate([i[None, :] for i in image], axis=0)
134
-
135
- image = image.transpose(0, 3, 1, 2)
136
- image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
137
-
138
- # preprocess mask
139
- if isinstance(mask, (PIL.Image.Image, np.ndarray)):
140
- mask = [mask]
141
-
142
- if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
143
- mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
144
- mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
145
- mask = mask.astype(np.float32) / 255.0
146
- elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
147
- mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
148
-
149
- mask[mask < 0.5] = 0
150
- mask[mask >= 0.5] = 1
151
- mask = torch.from_numpy(mask)
152
-
153
- masked_image = image * (mask < 0.5)
154
-
155
- # n.b. ensure backwards compatibility as old function does not return image
156
- if return_image:
157
- return mask, masked_image, image
158
-
159
- return mask, masked_image
160
-
161
-
162
40
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
163
41
  def retrieve_latents(
164
42
  encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
@@ -179,9 +57,10 @@ def retrieve_timesteps(
179
57
  num_inference_steps: Optional[int] = None,
180
58
  device: Optional[Union[str, torch.device]] = None,
181
59
  timesteps: Optional[List[int]] = None,
60
+ sigmas: Optional[List[float]] = None,
182
61
  **kwargs,
183
62
  ):
184
- """
63
+ r"""
185
64
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
186
65
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
187
66
 
@@ -189,19 +68,23 @@ def retrieve_timesteps(
189
68
  scheduler (`SchedulerMixin`):
190
69
  The scheduler to get timesteps from.
191
70
  num_inference_steps (`int`):
192
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
193
- `timesteps` must be `None`.
71
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
72
+ must be `None`.
194
73
  device (`str` or `torch.device`, *optional*):
195
74
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
196
75
  timesteps (`List[int]`, *optional*):
197
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
198
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
199
- must be `None`.
76
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
77
+ `num_inference_steps` and `sigmas` must be `None`.
78
+ sigmas (`List[float]`, *optional*):
79
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
80
+ `num_inference_steps` and `timesteps` must be `None`.
200
81
 
201
82
  Returns:
202
83
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
203
84
  second element is the number of inference steps.
204
85
  """
86
+ if timesteps is not None and sigmas is not None:
87
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
205
88
  if timesteps is not None:
206
89
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
207
90
  if not accepts_timesteps:
@@ -212,6 +95,16 @@ def retrieve_timesteps(
212
95
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
213
96
  timesteps = scheduler.timesteps
214
97
  num_inference_steps = len(timesteps)
98
+ elif sigmas is not None:
99
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
100
+ if not accept_sigmas:
101
+ raise ValueError(
102
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
103
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
104
+ )
105
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
106
+ timesteps = scheduler.timesteps
107
+ num_inference_steps = len(timesteps)
215
108
  else:
216
109
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
217
110
  timesteps = scheduler.timesteps
@@ -223,7 +116,7 @@ class StableDiffusionInpaintPipeline(
223
116
  StableDiffusionMixin,
224
117
  TextualInversionLoaderMixin,
225
118
  IPAdapterMixin,
226
- LoraLoaderMixin,
119
+ StableDiffusionLoraLoaderMixin,
227
120
  FromSingleFileMixin,
228
121
  ):
229
122
  r"""
@@ -234,8 +127,8 @@ class StableDiffusionInpaintPipeline(
234
127
 
235
128
  The pipeline also inherits the following loading methods:
236
129
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
237
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
238
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
130
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
131
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
239
132
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
240
133
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
241
134
 
@@ -372,8 +265,8 @@ class StableDiffusionInpaintPipeline(
372
265
  num_images_per_prompt,
373
266
  do_classifier_free_guidance,
374
267
  negative_prompt=None,
375
- prompt_embeds: Optional[torch.FloatTensor] = None,
376
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
268
+ prompt_embeds: Optional[torch.Tensor] = None,
269
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
377
270
  lora_scale: Optional[float] = None,
378
271
  **kwargs,
379
272
  ):
@@ -405,8 +298,8 @@ class StableDiffusionInpaintPipeline(
405
298
  num_images_per_prompt,
406
299
  do_classifier_free_guidance,
407
300
  negative_prompt=None,
408
- prompt_embeds: Optional[torch.FloatTensor] = None,
409
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
301
+ prompt_embeds: Optional[torch.Tensor] = None,
302
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
410
303
  lora_scale: Optional[float] = None,
411
304
  clip_skip: Optional[int] = None,
412
305
  ):
@@ -426,10 +319,10 @@ class StableDiffusionInpaintPipeline(
426
319
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
427
320
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
428
321
  less than `1`).
429
- prompt_embeds (`torch.FloatTensor`, *optional*):
322
+ prompt_embeds (`torch.Tensor`, *optional*):
430
323
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
431
324
  provided, text embeddings will be generated from `prompt` input argument.
432
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
325
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
433
326
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
434
327
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
435
328
  argument.
@@ -441,7 +334,7 @@ class StableDiffusionInpaintPipeline(
441
334
  """
442
335
  # set lora scale so that monkey patched LoRA
443
336
  # function of text encoder can correctly access it
444
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
337
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
445
338
  self._lora_scale = lora_scale
446
339
 
447
340
  # dynamically adjust the LoRA scale
@@ -573,9 +466,10 @@ class StableDiffusionInpaintPipeline(
573
466
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
574
467
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
575
468
 
576
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
577
- # Retrieve the original scale by scaling back the LoRA layers
578
- unscale_lora_layers(self.text_encoder, lora_scale)
469
+ if self.text_encoder is not None:
470
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
471
+ # Retrieve the original scale by scaling back the LoRA layers
472
+ unscale_lora_layers(self.text_encoder, lora_scale)
579
473
 
580
474
  return prompt_embeds, negative_prompt_embeds
581
475
 
@@ -608,6 +502,9 @@ class StableDiffusionInpaintPipeline(
608
502
  def prepare_ip_adapter_image_embeds(
609
503
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
610
504
  ):
505
+ image_embeds = []
506
+ if do_classifier_free_guidance:
507
+ negative_image_embeds = []
611
508
  if ip_adapter_image_embeds is None:
612
509
  if not isinstance(ip_adapter_image, list):
613
510
  ip_adapter_image = [ip_adapter_image]
@@ -617,7 +514,6 @@ class StableDiffusionInpaintPipeline(
617
514
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
618
515
  )
619
516
 
620
- image_embeds = []
621
517
  for single_ip_adapter_image, image_proj_layer in zip(
622
518
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
623
519
  ):
@@ -625,36 +521,28 @@ class StableDiffusionInpaintPipeline(
625
521
  single_image_embeds, single_negative_image_embeds = self.encode_image(
626
522
  single_ip_adapter_image, device, 1, output_hidden_state
627
523
  )
628
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
629
- single_negative_image_embeds = torch.stack(
630
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
631
- )
632
524
 
525
+ image_embeds.append(single_image_embeds[None, :])
633
526
  if do_classifier_free_guidance:
634
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
635
- single_image_embeds = single_image_embeds.to(device)
636
-
637
- image_embeds.append(single_image_embeds)
527
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
638
528
  else:
639
- repeat_dims = [1]
640
- image_embeds = []
641
529
  for single_image_embeds in ip_adapter_image_embeds:
642
530
  if do_classifier_free_guidance:
643
531
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
644
- single_image_embeds = single_image_embeds.repeat(
645
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
646
- )
647
- single_negative_image_embeds = single_negative_image_embeds.repeat(
648
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
649
- )
650
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
651
- else:
652
- single_image_embeds = single_image_embeds.repeat(
653
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
654
- )
532
+ negative_image_embeds.append(single_negative_image_embeds)
655
533
  image_embeds.append(single_image_embeds)
656
534
 
657
- return image_embeds
535
+ ip_adapter_image_embeds = []
536
+ for i, single_image_embeds in enumerate(image_embeds):
537
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
538
+ if do_classifier_free_guidance:
539
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
540
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
541
+
542
+ single_image_embeds = single_image_embeds.to(device=device)
543
+ ip_adapter_image_embeds.append(single_image_embeds)
544
+
545
+ return ip_adapter_image_embeds
658
546
 
659
547
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
660
548
  def run_safety_checker(self, image, device, dtype):
@@ -795,7 +683,12 @@ class StableDiffusionInpaintPipeline(
795
683
  return_noise=False,
796
684
  return_image_latents=False,
797
685
  ):
798
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
686
+ shape = (
687
+ batch_size,
688
+ num_channels_latents,
689
+ int(height) // self.vae_scale_factor,
690
+ int(width) // self.vae_scale_factor,
691
+ )
799
692
  if isinstance(generator, list) and len(generator) != batch_size:
800
693
  raise ValueError(
801
694
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -909,20 +802,22 @@ class StableDiffusionInpaintPipeline(
909
802
  return timesteps, num_inference_steps - t_start
910
803
 
911
804
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
912
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
805
+ def get_guidance_scale_embedding(
806
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
807
+ ) -> torch.Tensor:
913
808
  """
914
809
  See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
915
810
 
916
811
  Args:
917
- timesteps (`torch.Tensor`):
918
- generate embedding vectors at these timesteps
812
+ w (`torch.Tensor`):
813
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
919
814
  embedding_dim (`int`, *optional*, defaults to 512):
920
- dimension of the embeddings to generate
921
- dtype:
922
- data type of the generated embeddings
815
+ Dimension of the embeddings to generate.
816
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
817
+ Data type of the generated embeddings.
923
818
 
924
819
  Returns:
925
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
820
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
926
821
  """
927
822
  assert len(w.shape) == 1
928
823
  w = w * 1000.0
@@ -970,28 +865,31 @@ class StableDiffusionInpaintPipeline(
970
865
  prompt: Union[str, List[str]] = None,
971
866
  image: PipelineImageInput = None,
972
867
  mask_image: PipelineImageInput = None,
973
- masked_image_latents: torch.FloatTensor = None,
868
+ masked_image_latents: torch.Tensor = None,
974
869
  height: Optional[int] = None,
975
870
  width: Optional[int] = None,
976
871
  padding_mask_crop: Optional[int] = None,
977
872
  strength: float = 1.0,
978
873
  num_inference_steps: int = 50,
979
874
  timesteps: List[int] = None,
875
+ sigmas: List[float] = None,
980
876
  guidance_scale: float = 7.5,
981
877
  negative_prompt: Optional[Union[str, List[str]]] = None,
982
878
  num_images_per_prompt: Optional[int] = 1,
983
879
  eta: float = 0.0,
984
880
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
985
- latents: Optional[torch.FloatTensor] = None,
986
- prompt_embeds: Optional[torch.FloatTensor] = None,
987
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
881
+ latents: Optional[torch.Tensor] = None,
882
+ prompt_embeds: Optional[torch.Tensor] = None,
883
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
988
884
  ip_adapter_image: Optional[PipelineImageInput] = None,
989
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
885
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
990
886
  output_type: Optional[str] = "pil",
991
887
  return_dict: bool = True,
992
888
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
993
889
  clip_skip: int = None,
994
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
890
+ callback_on_step_end: Optional[
891
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
892
+ ] = None,
995
893
  callback_on_step_end_tensor_inputs: List[str] = ["latents"],
996
894
  **kwargs,
997
895
  ):
@@ -1001,14 +899,14 @@ class StableDiffusionInpaintPipeline(
1001
899
  Args:
1002
900
  prompt (`str` or `List[str]`, *optional*):
1003
901
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1004
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
902
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1005
903
  `Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
1006
904
  be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch
1007
905
  tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
1008
906
  expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the
1009
907
  expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but
1010
908
  if passing latents directly it is not encoded again.
1011
- mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
909
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1012
910
  `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
1013
911
  are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
1014
912
  single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
@@ -1020,11 +918,12 @@ class StableDiffusionInpaintPipeline(
1020
918
  width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1021
919
  The width in pixels of the generated image.
1022
920
  padding_mask_crop (`int`, *optional*, defaults to `None`):
1023
- The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
1024
- `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
1025
- contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
1026
- the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
1027
- and contain information inreleant for inpainging, such as background.
921
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
922
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
923
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
924
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
925
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
926
+ the image is large and contain information irrelevant for inpainting, such as background.
1028
927
  strength (`float`, *optional*, defaults to 1.0):
1029
928
  Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
1030
929
  starting point and more noise is added the higher the `strength`. The number of denoising steps depends
@@ -1038,6 +937,10 @@ class StableDiffusionInpaintPipeline(
1038
937
  Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
1039
938
  in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
1040
939
  passed will be used. Must be in descending order.
940
+ sigmas (`List[float]`, *optional*):
941
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
942
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
943
+ will be used.
1041
944
  guidance_scale (`float`, *optional*, defaults to 7.5):
1042
945
  A higher guidance scale value encourages the model to generate images closely linked to the text
1043
946
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -1052,22 +955,22 @@ class StableDiffusionInpaintPipeline(
1052
955
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1053
956
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1054
957
  generation deterministic.
1055
- latents (`torch.FloatTensor`, *optional*):
958
+ latents (`torch.Tensor`, *optional*):
1056
959
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1057
960
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1058
961
  tensor is generated by sampling using the supplied random `generator`.
1059
- prompt_embeds (`torch.FloatTensor`, *optional*):
962
+ prompt_embeds (`torch.Tensor`, *optional*):
1060
963
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1061
964
  provided, text embeddings are generated from the `prompt` input argument.
1062
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
965
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1063
966
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1064
967
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1065
968
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1066
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
1067
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
1068
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
1069
- if `do_classifier_free_guidance` is set to `True`.
1070
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
969
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
970
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
971
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
972
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
973
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1071
974
  output_type (`str`, *optional*, defaults to `"pil"`):
1072
975
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1073
976
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -1079,11 +982,11 @@ class StableDiffusionInpaintPipeline(
1079
982
  clip_skip (`int`, *optional*):
1080
983
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1081
984
  the output of the pre-final layer will be used for computing the prompt embeddings.
1082
- callback_on_step_end (`Callable`, *optional*):
1083
- A function that calls at the end of each denoising steps during the inference. The function is called
1084
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
1085
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
1086
- `callback_on_step_end_tensor_inputs`.
985
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
986
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
987
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
988
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
989
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1087
990
  callback_on_step_end_tensor_inputs (`List`, *optional*):
1088
991
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1089
992
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
@@ -1143,6 +1046,9 @@ class StableDiffusionInpaintPipeline(
1143
1046
  "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
1144
1047
  )
1145
1048
 
1049
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1050
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1051
+
1146
1052
  # 0. Default height and width to unet
1147
1053
  height = height or self.unet.config.sample_size * self.vae_scale_factor
1148
1054
  width = width or self.unet.config.sample_size * self.vae_scale_factor
@@ -1212,7 +1118,9 @@ class StableDiffusionInpaintPipeline(
1212
1118
  )
1213
1119
 
1214
1120
  # 4. set timesteps
1215
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1121
+ timesteps, num_inference_steps = retrieve_timesteps(
1122
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1123
+ )
1216
1124
  timesteps, num_inference_steps = self.get_timesteps(
1217
1125
  num_inference_steps=num_inference_steps, strength=strength, device=device
1218
1126
  )