diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -15,15 +15,15 @@
|
|
15
15
|
import inspect
|
16
16
|
from typing import Any, Callable, Dict, List, Optional, Union
|
17
17
|
|
18
|
-
import numpy as np
|
19
18
|
import PIL.Image
|
20
19
|
import torch
|
21
20
|
from packaging import version
|
22
21
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23
22
|
|
23
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
24
24
|
from ...configuration_utils import FrozenDict
|
25
25
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
26
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
27
27
|
from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
|
28
28
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -37,128 +37,6 @@ from .safety_checker import StableDiffusionSafetyChecker
|
|
37
37
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38
38
|
|
39
39
|
|
40
|
-
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
41
|
-
"""
|
42
|
-
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
43
|
-
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
44
|
-
``image`` and ``1`` for the ``mask``.
|
45
|
-
|
46
|
-
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
47
|
-
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
48
|
-
|
49
|
-
Args:
|
50
|
-
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
51
|
-
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
52
|
-
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
53
|
-
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
54
|
-
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
55
|
-
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
56
|
-
|
57
|
-
|
58
|
-
Raises:
|
59
|
-
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
60
|
-
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
61
|
-
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
62
|
-
(ot the other way around).
|
63
|
-
|
64
|
-
Returns:
|
65
|
-
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
66
|
-
dimensions: ``batch x channels x height x width``.
|
67
|
-
"""
|
68
|
-
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
69
|
-
deprecate(
|
70
|
-
"prepare_mask_and_masked_image",
|
71
|
-
"0.30.0",
|
72
|
-
deprecation_message,
|
73
|
-
)
|
74
|
-
if image is None:
|
75
|
-
raise ValueError("`image` input cannot be undefined.")
|
76
|
-
|
77
|
-
if mask is None:
|
78
|
-
raise ValueError("`mask_image` input cannot be undefined.")
|
79
|
-
|
80
|
-
if isinstance(image, torch.Tensor):
|
81
|
-
if not isinstance(mask, torch.Tensor):
|
82
|
-
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
83
|
-
|
84
|
-
# Batch single image
|
85
|
-
if image.ndim == 3:
|
86
|
-
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
87
|
-
image = image.unsqueeze(0)
|
88
|
-
|
89
|
-
# Batch and add channel dim for single mask
|
90
|
-
if mask.ndim == 2:
|
91
|
-
mask = mask.unsqueeze(0).unsqueeze(0)
|
92
|
-
|
93
|
-
# Batch single mask or add channel dim
|
94
|
-
if mask.ndim == 3:
|
95
|
-
# Single batched mask, no channel dim or single mask not batched but channel dim
|
96
|
-
if mask.shape[0] == 1:
|
97
|
-
mask = mask.unsqueeze(0)
|
98
|
-
|
99
|
-
# Batched masks no channel dim
|
100
|
-
else:
|
101
|
-
mask = mask.unsqueeze(1)
|
102
|
-
|
103
|
-
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
104
|
-
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
105
|
-
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
106
|
-
|
107
|
-
# Check image is in [-1, 1]
|
108
|
-
if image.min() < -1 or image.max() > 1:
|
109
|
-
raise ValueError("Image should be in [-1, 1] range")
|
110
|
-
|
111
|
-
# Check mask is in [0, 1]
|
112
|
-
if mask.min() < 0 or mask.max() > 1:
|
113
|
-
raise ValueError("Mask should be in [0, 1] range")
|
114
|
-
|
115
|
-
# Binarize mask
|
116
|
-
mask[mask < 0.5] = 0
|
117
|
-
mask[mask >= 0.5] = 1
|
118
|
-
|
119
|
-
# Image as float32
|
120
|
-
image = image.to(dtype=torch.float32)
|
121
|
-
elif isinstance(mask, torch.Tensor):
|
122
|
-
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
123
|
-
else:
|
124
|
-
# preprocess image
|
125
|
-
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
126
|
-
image = [image]
|
127
|
-
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
128
|
-
# resize all images w.r.t passed height an width
|
129
|
-
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
130
|
-
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
131
|
-
image = np.concatenate(image, axis=0)
|
132
|
-
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
133
|
-
image = np.concatenate([i[None, :] for i in image], axis=0)
|
134
|
-
|
135
|
-
image = image.transpose(0, 3, 1, 2)
|
136
|
-
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
137
|
-
|
138
|
-
# preprocess mask
|
139
|
-
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
140
|
-
mask = [mask]
|
141
|
-
|
142
|
-
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
143
|
-
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
144
|
-
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
145
|
-
mask = mask.astype(np.float32) / 255.0
|
146
|
-
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
147
|
-
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
148
|
-
|
149
|
-
mask[mask < 0.5] = 0
|
150
|
-
mask[mask >= 0.5] = 1
|
151
|
-
mask = torch.from_numpy(mask)
|
152
|
-
|
153
|
-
masked_image = image * (mask < 0.5)
|
154
|
-
|
155
|
-
# n.b. ensure backwards compatibility as old function does not return image
|
156
|
-
if return_image:
|
157
|
-
return mask, masked_image, image
|
158
|
-
|
159
|
-
return mask, masked_image
|
160
|
-
|
161
|
-
|
162
40
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
163
41
|
def retrieve_latents(
|
164
42
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
@@ -179,9 +57,10 @@ def retrieve_timesteps(
|
|
179
57
|
num_inference_steps: Optional[int] = None,
|
180
58
|
device: Optional[Union[str, torch.device]] = None,
|
181
59
|
timesteps: Optional[List[int]] = None,
|
60
|
+
sigmas: Optional[List[float]] = None,
|
182
61
|
**kwargs,
|
183
62
|
):
|
184
|
-
"""
|
63
|
+
r"""
|
185
64
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
186
65
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
187
66
|
|
@@ -189,19 +68,23 @@ def retrieve_timesteps(
|
|
189
68
|
scheduler (`SchedulerMixin`):
|
190
69
|
The scheduler to get timesteps from.
|
191
70
|
num_inference_steps (`int`):
|
192
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
193
|
-
|
71
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
72
|
+
must be `None`.
|
194
73
|
device (`str` or `torch.device`, *optional*):
|
195
74
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
196
75
|
timesteps (`List[int]`, *optional*):
|
197
|
-
|
198
|
-
|
199
|
-
|
76
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
77
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
78
|
+
sigmas (`List[float]`, *optional*):
|
79
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
80
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
200
81
|
|
201
82
|
Returns:
|
202
83
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
203
84
|
second element is the number of inference steps.
|
204
85
|
"""
|
86
|
+
if timesteps is not None and sigmas is not None:
|
87
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
205
88
|
if timesteps is not None:
|
206
89
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
207
90
|
if not accepts_timesteps:
|
@@ -212,6 +95,16 @@ def retrieve_timesteps(
|
|
212
95
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
213
96
|
timesteps = scheduler.timesteps
|
214
97
|
num_inference_steps = len(timesteps)
|
98
|
+
elif sigmas is not None:
|
99
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
100
|
+
if not accept_sigmas:
|
101
|
+
raise ValueError(
|
102
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
103
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
104
|
+
)
|
105
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
106
|
+
timesteps = scheduler.timesteps
|
107
|
+
num_inference_steps = len(timesteps)
|
215
108
|
else:
|
216
109
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
217
110
|
timesteps = scheduler.timesteps
|
@@ -223,7 +116,7 @@ class StableDiffusionInpaintPipeline(
|
|
223
116
|
StableDiffusionMixin,
|
224
117
|
TextualInversionLoaderMixin,
|
225
118
|
IPAdapterMixin,
|
226
|
-
|
119
|
+
StableDiffusionLoraLoaderMixin,
|
227
120
|
FromSingleFileMixin,
|
228
121
|
):
|
229
122
|
r"""
|
@@ -234,8 +127,8 @@ class StableDiffusionInpaintPipeline(
|
|
234
127
|
|
235
128
|
The pipeline also inherits the following loading methods:
|
236
129
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
237
|
-
- [`~loaders.
|
238
|
-
- [`~loaders.
|
130
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
131
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
239
132
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
240
133
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
241
134
|
|
@@ -372,8 +265,8 @@ class StableDiffusionInpaintPipeline(
|
|
372
265
|
num_images_per_prompt,
|
373
266
|
do_classifier_free_guidance,
|
374
267
|
negative_prompt=None,
|
375
|
-
prompt_embeds: Optional[torch.
|
376
|
-
negative_prompt_embeds: Optional[torch.
|
268
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
269
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
377
270
|
lora_scale: Optional[float] = None,
|
378
271
|
**kwargs,
|
379
272
|
):
|
@@ -405,8 +298,8 @@ class StableDiffusionInpaintPipeline(
|
|
405
298
|
num_images_per_prompt,
|
406
299
|
do_classifier_free_guidance,
|
407
300
|
negative_prompt=None,
|
408
|
-
prompt_embeds: Optional[torch.
|
409
|
-
negative_prompt_embeds: Optional[torch.
|
301
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
302
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
410
303
|
lora_scale: Optional[float] = None,
|
411
304
|
clip_skip: Optional[int] = None,
|
412
305
|
):
|
@@ -426,10 +319,10 @@ class StableDiffusionInpaintPipeline(
|
|
426
319
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
427
320
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
428
321
|
less than `1`).
|
429
|
-
prompt_embeds (`torch.
|
322
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
430
323
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
431
324
|
provided, text embeddings will be generated from `prompt` input argument.
|
432
|
-
negative_prompt_embeds (`torch.
|
325
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
433
326
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
434
327
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
435
328
|
argument.
|
@@ -441,7 +334,7 @@ class StableDiffusionInpaintPipeline(
|
|
441
334
|
"""
|
442
335
|
# set lora scale so that monkey patched LoRA
|
443
336
|
# function of text encoder can correctly access it
|
444
|
-
if lora_scale is not None and isinstance(self,
|
337
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
445
338
|
self._lora_scale = lora_scale
|
446
339
|
|
447
340
|
# dynamically adjust the LoRA scale
|
@@ -573,9 +466,10 @@ class StableDiffusionInpaintPipeline(
|
|
573
466
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
574
467
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
575
468
|
|
576
|
-
if
|
577
|
-
|
578
|
-
|
469
|
+
if self.text_encoder is not None:
|
470
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
471
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
472
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
579
473
|
|
580
474
|
return prompt_embeds, negative_prompt_embeds
|
581
475
|
|
@@ -608,6 +502,9 @@ class StableDiffusionInpaintPipeline(
|
|
608
502
|
def prepare_ip_adapter_image_embeds(
|
609
503
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
610
504
|
):
|
505
|
+
image_embeds = []
|
506
|
+
if do_classifier_free_guidance:
|
507
|
+
negative_image_embeds = []
|
611
508
|
if ip_adapter_image_embeds is None:
|
612
509
|
if not isinstance(ip_adapter_image, list):
|
613
510
|
ip_adapter_image = [ip_adapter_image]
|
@@ -617,7 +514,6 @@ class StableDiffusionInpaintPipeline(
|
|
617
514
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
618
515
|
)
|
619
516
|
|
620
|
-
image_embeds = []
|
621
517
|
for single_ip_adapter_image, image_proj_layer in zip(
|
622
518
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
623
519
|
):
|
@@ -625,36 +521,28 @@ class StableDiffusionInpaintPipeline(
|
|
625
521
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
626
522
|
single_ip_adapter_image, device, 1, output_hidden_state
|
627
523
|
)
|
628
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
629
|
-
single_negative_image_embeds = torch.stack(
|
630
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
631
|
-
)
|
632
524
|
|
525
|
+
image_embeds.append(single_image_embeds[None, :])
|
633
526
|
if do_classifier_free_guidance:
|
634
|
-
|
635
|
-
single_image_embeds = single_image_embeds.to(device)
|
636
|
-
|
637
|
-
image_embeds.append(single_image_embeds)
|
527
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
638
528
|
else:
|
639
|
-
repeat_dims = [1]
|
640
|
-
image_embeds = []
|
641
529
|
for single_image_embeds in ip_adapter_image_embeds:
|
642
530
|
if do_classifier_free_guidance:
|
643
531
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
644
|
-
|
645
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
646
|
-
)
|
647
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
648
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
649
|
-
)
|
650
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
651
|
-
else:
|
652
|
-
single_image_embeds = single_image_embeds.repeat(
|
653
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
654
|
-
)
|
532
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
655
533
|
image_embeds.append(single_image_embeds)
|
656
534
|
|
657
|
-
|
535
|
+
ip_adapter_image_embeds = []
|
536
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
537
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
538
|
+
if do_classifier_free_guidance:
|
539
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
540
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
541
|
+
|
542
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
543
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
544
|
+
|
545
|
+
return ip_adapter_image_embeds
|
658
546
|
|
659
547
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
660
548
|
def run_safety_checker(self, image, device, dtype):
|
@@ -795,7 +683,12 @@ class StableDiffusionInpaintPipeline(
|
|
795
683
|
return_noise=False,
|
796
684
|
return_image_latents=False,
|
797
685
|
):
|
798
|
-
shape = (
|
686
|
+
shape = (
|
687
|
+
batch_size,
|
688
|
+
num_channels_latents,
|
689
|
+
int(height) // self.vae_scale_factor,
|
690
|
+
int(width) // self.vae_scale_factor,
|
691
|
+
)
|
799
692
|
if isinstance(generator, list) and len(generator) != batch_size:
|
800
693
|
raise ValueError(
|
801
694
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -909,20 +802,22 @@ class StableDiffusionInpaintPipeline(
|
|
909
802
|
return timesteps, num_inference_steps - t_start
|
910
803
|
|
911
804
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
912
|
-
def get_guidance_scale_embedding(
|
805
|
+
def get_guidance_scale_embedding(
|
806
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
807
|
+
) -> torch.Tensor:
|
913
808
|
"""
|
914
809
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
915
810
|
|
916
811
|
Args:
|
917
|
-
|
918
|
-
|
812
|
+
w (`torch.Tensor`):
|
813
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
919
814
|
embedding_dim (`int`, *optional*, defaults to 512):
|
920
|
-
|
921
|
-
dtype:
|
922
|
-
|
815
|
+
Dimension of the embeddings to generate.
|
816
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
817
|
+
Data type of the generated embeddings.
|
923
818
|
|
924
819
|
Returns:
|
925
|
-
`torch.
|
820
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
926
821
|
"""
|
927
822
|
assert len(w.shape) == 1
|
928
823
|
w = w * 1000.0
|
@@ -970,28 +865,31 @@ class StableDiffusionInpaintPipeline(
|
|
970
865
|
prompt: Union[str, List[str]] = None,
|
971
866
|
image: PipelineImageInput = None,
|
972
867
|
mask_image: PipelineImageInput = None,
|
973
|
-
masked_image_latents: torch.
|
868
|
+
masked_image_latents: torch.Tensor = None,
|
974
869
|
height: Optional[int] = None,
|
975
870
|
width: Optional[int] = None,
|
976
871
|
padding_mask_crop: Optional[int] = None,
|
977
872
|
strength: float = 1.0,
|
978
873
|
num_inference_steps: int = 50,
|
979
874
|
timesteps: List[int] = None,
|
875
|
+
sigmas: List[float] = None,
|
980
876
|
guidance_scale: float = 7.5,
|
981
877
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
982
878
|
num_images_per_prompt: Optional[int] = 1,
|
983
879
|
eta: float = 0.0,
|
984
880
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
985
|
-
latents: Optional[torch.
|
986
|
-
prompt_embeds: Optional[torch.
|
987
|
-
negative_prompt_embeds: Optional[torch.
|
881
|
+
latents: Optional[torch.Tensor] = None,
|
882
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
883
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
988
884
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
989
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
885
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
990
886
|
output_type: Optional[str] = "pil",
|
991
887
|
return_dict: bool = True,
|
992
888
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
993
889
|
clip_skip: int = None,
|
994
|
-
callback_on_step_end: Optional[
|
890
|
+
callback_on_step_end: Optional[
|
891
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
892
|
+
] = None,
|
995
893
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
996
894
|
**kwargs,
|
997
895
|
):
|
@@ -1001,14 +899,14 @@ class StableDiffusionInpaintPipeline(
|
|
1001
899
|
Args:
|
1002
900
|
prompt (`str` or `List[str]`, *optional*):
|
1003
901
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1004
|
-
image (`torch.
|
902
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1005
903
|
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
|
1006
904
|
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch
|
1007
905
|
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
|
1008
906
|
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the
|
1009
907
|
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but
|
1010
908
|
if passing latents directly it is not encoded again.
|
1011
|
-
mask_image (`torch.
|
909
|
+
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1012
910
|
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
1013
911
|
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
1014
912
|
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
@@ -1020,11 +918,12 @@ class StableDiffusionInpaintPipeline(
|
|
1020
918
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1021
919
|
The width in pixels of the generated image.
|
1022
920
|
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1023
|
-
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1024
|
-
`padding_mask_crop` is not `None`, it will first find a rectangular region
|
1025
|
-
contains all masked area, and then expand that area based
|
1026
|
-
|
1027
|
-
|
921
|
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
922
|
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
923
|
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
924
|
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
925
|
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
926
|
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1028
927
|
strength (`float`, *optional*, defaults to 1.0):
|
1029
928
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1030
929
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
@@ -1038,6 +937,10 @@ class StableDiffusionInpaintPipeline(
|
|
1038
937
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1039
938
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1040
939
|
passed will be used. Must be in descending order.
|
940
|
+
sigmas (`List[float]`, *optional*):
|
941
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
942
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
943
|
+
will be used.
|
1041
944
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1042
945
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1043
946
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -1052,22 +955,22 @@ class StableDiffusionInpaintPipeline(
|
|
1052
955
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1053
956
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1054
957
|
generation deterministic.
|
1055
|
-
latents (`torch.
|
958
|
+
latents (`torch.Tensor`, *optional*):
|
1056
959
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1057
960
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1058
961
|
tensor is generated by sampling using the supplied random `generator`.
|
1059
|
-
prompt_embeds (`torch.
|
962
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1060
963
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1061
964
|
provided, text embeddings are generated from the `prompt` input argument.
|
1062
|
-
negative_prompt_embeds (`torch.
|
965
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1063
966
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1064
967
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1065
968
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1066
|
-
ip_adapter_image_embeds (`List[torch.
|
1067
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1068
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1069
|
-
if `do_classifier_free_guidance` is set to `True`.
|
1070
|
-
|
969
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
970
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
971
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
972
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
973
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1071
974
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
1072
975
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1073
976
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -1079,11 +982,11 @@ class StableDiffusionInpaintPipeline(
|
|
1079
982
|
clip_skip (`int`, *optional*):
|
1080
983
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1081
984
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1082
|
-
callback_on_step_end (`Callable`, *optional*):
|
1083
|
-
A function
|
1084
|
-
with the following arguments: `callback_on_step_end(self:
|
1085
|
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1086
|
-
`callback_on_step_end_tensor_inputs`.
|
985
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
986
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
987
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
988
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
989
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1087
990
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1088
991
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1089
992
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
@@ -1143,6 +1046,9 @@ class StableDiffusionInpaintPipeline(
|
|
1143
1046
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1144
1047
|
)
|
1145
1048
|
|
1049
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1050
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1051
|
+
|
1146
1052
|
# 0. Default height and width to unet
|
1147
1053
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1148
1054
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
@@ -1212,7 +1118,9 @@ class StableDiffusionInpaintPipeline(
|
|
1212
1118
|
)
|
1213
1119
|
|
1214
1120
|
# 4. set timesteps
|
1215
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1121
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1122
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1123
|
+
)
|
1216
1124
|
timesteps, num_inference_steps = self.get_timesteps(
|
1217
1125
|
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1218
1126
|
)
|