diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -33,16 +33,16 @@ class DDIMSchedulerOutput(BaseOutput):
|
|
33
33
|
Output class for the scheduler's `step` function output.
|
34
34
|
|
35
35
|
Args:
|
36
|
-
prev_sample (`torch.
|
36
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37
37
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
38
38
|
denoising loop.
|
39
|
-
pred_original_sample (`torch.
|
39
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40
40
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
41
41
|
`pred_original_sample` can be used to preview progress or for guidance.
|
42
42
|
"""
|
43
43
|
|
44
|
-
prev_sample: torch.
|
45
|
-
pred_original_sample: Optional[torch.
|
44
|
+
prev_sample: torch.Tensor
|
45
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
46
46
|
|
47
47
|
|
48
48
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -80,7 +80,7 @@ def betas_for_alpha_bar(
|
|
80
80
|
return math.exp(t * -12.0)
|
81
81
|
|
82
82
|
else:
|
83
|
-
raise ValueError(f"Unsupported
|
83
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
84
84
|
|
85
85
|
betas = []
|
86
86
|
for i in range(num_diffusion_timesteps):
|
@@ -97,11 +97,11 @@ def rescale_zero_terminal_snr(betas):
|
|
97
97
|
|
98
98
|
|
99
99
|
Args:
|
100
|
-
betas (`torch.
|
100
|
+
betas (`torch.Tensor`):
|
101
101
|
the betas that the scheduler is being initialized with.
|
102
102
|
|
103
103
|
Returns:
|
104
|
-
`torch.
|
104
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
105
105
|
"""
|
106
106
|
# Convert betas to alphas_bar_sqrt
|
107
107
|
alphas = 1.0 - betas
|
@@ -207,7 +207,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|
207
207
|
# Glide cosine schedule
|
208
208
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
209
209
|
else:
|
210
|
-
raise NotImplementedError(f"{beta_schedule}
|
210
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
211
211
|
|
212
212
|
# Rescale for zero SNR
|
213
213
|
if rescale_betas_zero_snr:
|
@@ -231,19 +231,19 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|
231
231
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64))
|
232
232
|
|
233
233
|
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input
|
234
|
-
def scale_model_input(self, sample: torch.
|
234
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
235
235
|
"""
|
236
236
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
237
237
|
current timestep.
|
238
238
|
|
239
239
|
Args:
|
240
|
-
sample (`torch.
|
240
|
+
sample (`torch.Tensor`):
|
241
241
|
The input sample.
|
242
242
|
timestep (`int`, *optional*):
|
243
243
|
The current timestep in the diffusion chain.
|
244
244
|
|
245
245
|
Returns:
|
246
|
-
`torch.
|
246
|
+
`torch.Tensor`:
|
247
247
|
A scaled input sample.
|
248
248
|
"""
|
249
249
|
return sample
|
@@ -288,9 +288,9 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|
288
288
|
|
289
289
|
def step(
|
290
290
|
self,
|
291
|
-
model_output: torch.
|
291
|
+
model_output: torch.Tensor,
|
292
292
|
timestep: int,
|
293
|
-
sample: torch.
|
293
|
+
sample: torch.Tensor,
|
294
294
|
return_dict: bool = True,
|
295
295
|
) -> Union[DDIMSchedulerOutput, Tuple]:
|
296
296
|
"""
|
@@ -298,11 +298,11 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|
298
298
|
process from the learned model outputs (most often the predicted noise).
|
299
299
|
|
300
300
|
Args:
|
301
|
-
model_output (`torch.
|
301
|
+
model_output (`torch.Tensor`):
|
302
302
|
The direct output from learned diffusion model.
|
303
303
|
timestep (`float`):
|
304
304
|
The current discrete timestep in the diffusion chain.
|
305
|
-
sample (`torch.
|
305
|
+
sample (`torch.Tensor`):
|
306
306
|
A current instance of a sample created by the diffusion process.
|
307
307
|
eta (`float`):
|
308
308
|
The weight of noise for added noise in diffusion step.
|
@@ -311,7 +311,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|
311
311
|
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
312
312
|
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
313
313
|
`use_clipped_model_output` has no effect.
|
314
|
-
variance_noise (`torch.
|
314
|
+
variance_noise (`torch.Tensor`):
|
315
315
|
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
316
316
|
itself. Useful for methods such as [`CycleDiffusion`].
|
317
317
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -35,16 +35,16 @@ class DDIMParallelSchedulerOutput(BaseOutput):
|
|
35
35
|
Output class for the scheduler's `step` function output.
|
36
36
|
|
37
37
|
Args:
|
38
|
-
prev_sample (`torch.
|
38
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
39
39
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
40
40
|
denoising loop.
|
41
|
-
pred_original_sample (`torch.
|
41
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
42
42
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
43
43
|
`pred_original_sample` can be used to preview progress or for guidance.
|
44
44
|
"""
|
45
45
|
|
46
|
-
prev_sample: torch.
|
47
|
-
pred_original_sample: Optional[torch.
|
46
|
+
prev_sample: torch.Tensor
|
47
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
48
48
|
|
49
49
|
|
50
50
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -82,7 +82,7 @@ def betas_for_alpha_bar(
|
|
82
82
|
return math.exp(t * -12.0)
|
83
83
|
|
84
84
|
else:
|
85
|
-
raise ValueError(f"Unsupported
|
85
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
86
86
|
|
87
87
|
betas = []
|
88
88
|
for i in range(num_diffusion_timesteps):
|
@@ -99,11 +99,11 @@ def rescale_zero_terminal_snr(betas):
|
|
99
99
|
|
100
100
|
|
101
101
|
Args:
|
102
|
-
betas (`torch.
|
102
|
+
betas (`torch.Tensor`):
|
103
103
|
the betas that the scheduler is being initialized with.
|
104
104
|
|
105
105
|
Returns:
|
106
|
-
`torch.
|
106
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
107
107
|
"""
|
108
108
|
# Convert betas to alphas_bar_sqrt
|
109
109
|
alphas = 1.0 - betas
|
@@ -218,7 +218,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
218
218
|
# Glide cosine schedule
|
219
219
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
220
220
|
else:
|
221
|
-
raise NotImplementedError(f"{beta_schedule}
|
221
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
222
222
|
|
223
223
|
# Rescale for zero SNR
|
224
224
|
if rescale_betas_zero_snr:
|
@@ -241,19 +241,19 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
241
241
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
242
242
|
|
243
243
|
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input
|
244
|
-
def scale_model_input(self, sample: torch.
|
244
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
245
245
|
"""
|
246
246
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
247
247
|
current timestep.
|
248
248
|
|
249
249
|
Args:
|
250
|
-
sample (`torch.
|
250
|
+
sample (`torch.Tensor`):
|
251
251
|
The input sample.
|
252
252
|
timestep (`int`, *optional*):
|
253
253
|
The current timestep in the diffusion chain.
|
254
254
|
|
255
255
|
Returns:
|
256
|
-
`torch.
|
256
|
+
`torch.Tensor`:
|
257
257
|
A scaled input sample.
|
258
258
|
"""
|
259
259
|
return sample
|
@@ -283,7 +283,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
283
283
|
return variance
|
284
284
|
|
285
285
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
286
|
-
def _threshold_sample(self, sample: torch.
|
286
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
287
287
|
"""
|
288
288
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
289
289
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -364,13 +364,13 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
364
364
|
|
365
365
|
def step(
|
366
366
|
self,
|
367
|
-
model_output: torch.
|
367
|
+
model_output: torch.Tensor,
|
368
368
|
timestep: int,
|
369
|
-
sample: torch.
|
369
|
+
sample: torch.Tensor,
|
370
370
|
eta: float = 0.0,
|
371
371
|
use_clipped_model_output: bool = False,
|
372
372
|
generator=None,
|
373
|
-
variance_noise: Optional[torch.
|
373
|
+
variance_noise: Optional[torch.Tensor] = None,
|
374
374
|
return_dict: bool = True,
|
375
375
|
) -> Union[DDIMParallelSchedulerOutput, Tuple]:
|
376
376
|
"""
|
@@ -378,9 +378,9 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
378
378
|
process from the learned model outputs (most often the predicted noise).
|
379
379
|
|
380
380
|
Args:
|
381
|
-
model_output (`torch.
|
381
|
+
model_output (`torch.Tensor`): direct output from learned diffusion model.
|
382
382
|
timestep (`int`): current discrete timestep in the diffusion chain.
|
383
|
-
sample (`torch.
|
383
|
+
sample (`torch.Tensor`):
|
384
384
|
current instance of sample being created by diffusion process.
|
385
385
|
eta (`float`): weight of noise for added noise in diffusion step.
|
386
386
|
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
|
@@ -388,7 +388,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
388
388
|
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
|
389
389
|
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
|
390
390
|
generator: random number generator.
|
391
|
-
variance_noise (`torch.
|
391
|
+
variance_noise (`torch.Tensor`): instead of generating noise for the variance using `generator`, we
|
392
392
|
can directly provide the noise for the variance itself. This is useful for methods such as
|
393
393
|
CycleDiffusion. (https://arxiv.org/abs/2210.05559)
|
394
394
|
return_dict (`bool`): option for returning tuple rather than DDIMParallelSchedulerOutput class
|
@@ -480,18 +480,21 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
480
480
|
prev_sample = prev_sample + variance
|
481
481
|
|
482
482
|
if not return_dict:
|
483
|
-
return (
|
483
|
+
return (
|
484
|
+
prev_sample,
|
485
|
+
pred_original_sample,
|
486
|
+
)
|
484
487
|
|
485
488
|
return DDIMParallelSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
486
489
|
|
487
490
|
def batch_step_no_noise(
|
488
491
|
self,
|
489
|
-
model_output: torch.
|
492
|
+
model_output: torch.Tensor,
|
490
493
|
timesteps: List[int],
|
491
|
-
sample: torch.
|
494
|
+
sample: torch.Tensor,
|
492
495
|
eta: float = 0.0,
|
493
496
|
use_clipped_model_output: bool = False,
|
494
|
-
) -> torch.
|
497
|
+
) -> torch.Tensor:
|
495
498
|
"""
|
496
499
|
Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
|
497
500
|
Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
|
@@ -501,10 +504,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
501
504
|
process from the learned model outputs (most often the predicted noise).
|
502
505
|
|
503
506
|
Args:
|
504
|
-
model_output (`torch.
|
507
|
+
model_output (`torch.Tensor`): direct output from learned diffusion model.
|
505
508
|
timesteps (`List[int]`):
|
506
509
|
current discrete timesteps in the diffusion chain. This is now a list of integers.
|
507
|
-
sample (`torch.
|
510
|
+
sample (`torch.Tensor`):
|
508
511
|
current instance of sample being created by diffusion process.
|
509
512
|
eta (`float`): weight of noise for added noise in diffusion step.
|
510
513
|
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
|
@@ -513,7 +516,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
513
516
|
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
|
514
517
|
|
515
518
|
Returns:
|
516
|
-
`torch.
|
519
|
+
`torch.Tensor`: sample tensor at previous timestep.
|
517
520
|
|
518
521
|
"""
|
519
522
|
if self.num_inference_steps is None:
|
@@ -595,10 +598,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
595
598
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
596
599
|
def add_noise(
|
597
600
|
self,
|
598
|
-
original_samples: torch.
|
599
|
-
noise: torch.
|
601
|
+
original_samples: torch.Tensor,
|
602
|
+
noise: torch.Tensor,
|
600
603
|
timesteps: torch.IntTensor,
|
601
|
-
) -> torch.
|
604
|
+
) -> torch.Tensor:
|
602
605
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
603
606
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
604
607
|
# for the subsequent add_noise calls
|
@@ -620,9 +623,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
620
623
|
return noisy_samples
|
621
624
|
|
622
625
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
623
|
-
def get_velocity(
|
624
|
-
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
625
|
-
) -> torch.FloatTensor:
|
626
|
+
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
|
626
627
|
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
627
628
|
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
628
629
|
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
@@ -33,16 +33,16 @@ class DDPMSchedulerOutput(BaseOutput):
|
|
33
33
|
Output class for the scheduler's `step` function output.
|
34
34
|
|
35
35
|
Args:
|
36
|
-
prev_sample (`torch.
|
36
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37
37
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
38
38
|
denoising loop.
|
39
|
-
pred_original_sample (`torch.
|
39
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40
40
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
41
41
|
`pred_original_sample` can be used to preview progress or for guidance.
|
42
42
|
"""
|
43
43
|
|
44
|
-
prev_sample: torch.
|
45
|
-
pred_original_sample: Optional[torch.
|
44
|
+
prev_sample: torch.Tensor
|
45
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
46
46
|
|
47
47
|
|
48
48
|
def betas_for_alpha_bar(
|
@@ -79,7 +79,7 @@ def betas_for_alpha_bar(
|
|
79
79
|
return math.exp(t * -12.0)
|
80
80
|
|
81
81
|
else:
|
82
|
-
raise ValueError(f"Unsupported
|
82
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
83
83
|
|
84
84
|
betas = []
|
85
85
|
for i in range(num_diffusion_timesteps):
|
@@ -96,11 +96,11 @@ def rescale_zero_terminal_snr(betas):
|
|
96
96
|
|
97
97
|
|
98
98
|
Args:
|
99
|
-
betas (`torch.
|
99
|
+
betas (`torch.Tensor`):
|
100
100
|
the betas that the scheduler is being initialized with.
|
101
101
|
|
102
102
|
Returns:
|
103
|
-
`torch.
|
103
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
104
104
|
"""
|
105
105
|
# Convert betas to alphas_bar_sqrt
|
106
106
|
alphas = 1.0 - betas
|
@@ -194,7 +194,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
194
194
|
sample_max_value: float = 1.0,
|
195
195
|
timestep_spacing: str = "leading",
|
196
196
|
steps_offset: int = 0,
|
197
|
-
rescale_betas_zero_snr:
|
197
|
+
rescale_betas_zero_snr: bool = False,
|
198
198
|
):
|
199
199
|
if trained_betas is not None:
|
200
200
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
@@ -211,7 +211,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
211
211
|
betas = torch.linspace(-6, 6, num_train_timesteps)
|
212
212
|
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
213
213
|
else:
|
214
|
-
raise NotImplementedError(f"{beta_schedule}
|
214
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
215
215
|
|
216
216
|
# Rescale for zero SNR
|
217
217
|
if rescale_betas_zero_snr:
|
@@ -231,19 +231,19 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
231
231
|
|
232
232
|
self.variance_type = variance_type
|
233
233
|
|
234
|
-
def scale_model_input(self, sample: torch.
|
234
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
235
235
|
"""
|
236
236
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
237
237
|
current timestep.
|
238
238
|
|
239
239
|
Args:
|
240
|
-
sample (`torch.
|
240
|
+
sample (`torch.Tensor`):
|
241
241
|
The input sample.
|
242
242
|
timestep (`int`, *optional*):
|
243
243
|
The current timestep in the diffusion chain.
|
244
244
|
|
245
245
|
Returns:
|
246
|
-
`torch.
|
246
|
+
`torch.Tensor`:
|
247
247
|
A scaled input sample.
|
248
248
|
"""
|
249
249
|
return sample
|
@@ -363,7 +363,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
363
363
|
|
364
364
|
return variance
|
365
365
|
|
366
|
-
def _threshold_sample(self, sample: torch.
|
366
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
367
367
|
"""
|
368
368
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
369
369
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -398,9 +398,9 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
398
398
|
|
399
399
|
def step(
|
400
400
|
self,
|
401
|
-
model_output: torch.
|
401
|
+
model_output: torch.Tensor,
|
402
402
|
timestep: int,
|
403
|
-
sample: torch.
|
403
|
+
sample: torch.Tensor,
|
404
404
|
generator=None,
|
405
405
|
return_dict: bool = True,
|
406
406
|
) -> Union[DDPMSchedulerOutput, Tuple]:
|
@@ -409,11 +409,11 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
409
409
|
process from the learned model outputs (most often the predicted noise).
|
410
410
|
|
411
411
|
Args:
|
412
|
-
model_output (`torch.
|
412
|
+
model_output (`torch.Tensor`):
|
413
413
|
The direct output from learned diffusion model.
|
414
414
|
timestep (`float`):
|
415
415
|
The current discrete timestep in the diffusion chain.
|
416
|
-
sample (`torch.
|
416
|
+
sample (`torch.Tensor`):
|
417
417
|
A current instance of a sample created by the diffusion process.
|
418
418
|
generator (`torch.Generator`, *optional*):
|
419
419
|
A random number generator.
|
@@ -492,16 +492,19 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
492
492
|
pred_prev_sample = pred_prev_sample + variance
|
493
493
|
|
494
494
|
if not return_dict:
|
495
|
-
return (
|
495
|
+
return (
|
496
|
+
pred_prev_sample,
|
497
|
+
pred_original_sample,
|
498
|
+
)
|
496
499
|
|
497
500
|
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
498
501
|
|
499
502
|
def add_noise(
|
500
503
|
self,
|
501
|
-
original_samples: torch.
|
502
|
-
noise: torch.
|
504
|
+
original_samples: torch.Tensor,
|
505
|
+
noise: torch.Tensor,
|
503
506
|
timesteps: torch.IntTensor,
|
504
|
-
) -> torch.
|
507
|
+
) -> torch.Tensor:
|
505
508
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
506
509
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
507
510
|
# for the subsequent add_noise calls
|
@@ -522,9 +525,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
522
525
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
523
526
|
return noisy_samples
|
524
527
|
|
525
|
-
def get_velocity(
|
526
|
-
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
527
|
-
) -> torch.FloatTensor:
|
528
|
+
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
|
528
529
|
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
529
530
|
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
530
531
|
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
@@ -547,16 +548,12 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
547
548
|
return self.config.num_train_timesteps
|
548
549
|
|
549
550
|
def previous_timestep(self, timestep):
|
550
|
-
if self.custom_timesteps:
|
551
|
+
if self.custom_timesteps or self.num_inference_steps:
|
551
552
|
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
|
552
553
|
if index == self.timesteps.shape[0] - 1:
|
553
554
|
prev_t = torch.tensor(-1)
|
554
555
|
else:
|
555
556
|
prev_t = self.timesteps[index + 1]
|
556
557
|
else:
|
557
|
-
|
558
|
-
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
559
|
-
)
|
560
|
-
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
|
561
|
-
|
558
|
+
prev_t = timestep - 1
|
562
559
|
return prev_t
|
@@ -222,9 +222,13 @@ class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
|
|
222
222
|
t = timestep
|
223
223
|
|
224
224
|
if key is None:
|
225
|
-
key = jax.random.
|
225
|
+
key = jax.random.key(0)
|
226
226
|
|
227
|
-
if
|
227
|
+
if (
|
228
|
+
len(model_output.shape) > 1
|
229
|
+
and model_output.shape[1] == sample.shape[1] * 2
|
230
|
+
and self.config.variance_type in ["learned", "learned_range"]
|
231
|
+
):
|
228
232
|
model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
|
229
233
|
else:
|
230
234
|
predicted_variance = None
|
@@ -264,7 +268,7 @@ class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
|
|
264
268
|
|
265
269
|
# 6. Add noise
|
266
270
|
def random_variance():
|
267
|
-
split_key = jax.random.split(key, num=1)
|
271
|
+
split_key = jax.random.split(key, num=1)[0]
|
268
272
|
noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype)
|
269
273
|
return (self._get_variance(state, t, predicted_variance=predicted_variance) ** 0.5) * noise
|
270
274
|
|