diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -33,16 +33,16 @@ class DDIMSchedulerOutput(BaseOutput):
33
33
  Output class for the scheduler's `step` function output.
34
34
 
35
35
  Args:
36
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
37
37
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
38
  denoising loop.
39
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
40
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
41
  `pred_original_sample` can be used to preview progress or for guidance.
42
42
  """
43
43
 
44
- prev_sample: torch.FloatTensor
45
- pred_original_sample: Optional[torch.FloatTensor] = None
44
+ prev_sample: torch.Tensor
45
+ pred_original_sample: Optional[torch.Tensor] = None
46
46
 
47
47
 
48
48
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
@@ -80,7 +80,7 @@ def betas_for_alpha_bar(
80
80
  return math.exp(t * -12.0)
81
81
 
82
82
  else:
83
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
83
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
84
84
 
85
85
  betas = []
86
86
  for i in range(num_diffusion_timesteps):
@@ -97,11 +97,11 @@ def rescale_zero_terminal_snr(betas):
97
97
 
98
98
 
99
99
  Args:
100
- betas (`torch.FloatTensor`):
100
+ betas (`torch.Tensor`):
101
101
  the betas that the scheduler is being initialized with.
102
102
 
103
103
  Returns:
104
- `torch.FloatTensor`: rescaled betas with zero terminal SNR
104
+ `torch.Tensor`: rescaled betas with zero terminal SNR
105
105
  """
106
106
  # Convert betas to alphas_bar_sqrt
107
107
  alphas = 1.0 - betas
@@ -207,7 +207,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
207
207
  # Glide cosine schedule
208
208
  self.betas = betas_for_alpha_bar(num_train_timesteps)
209
209
  else:
210
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
210
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
211
211
 
212
212
  # Rescale for zero SNR
213
213
  if rescale_betas_zero_snr:
@@ -231,19 +231,19 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
231
231
  self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64))
232
232
 
233
233
  # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input
234
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
234
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
235
235
  """
236
236
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
237
237
  current timestep.
238
238
 
239
239
  Args:
240
- sample (`torch.FloatTensor`):
240
+ sample (`torch.Tensor`):
241
241
  The input sample.
242
242
  timestep (`int`, *optional*):
243
243
  The current timestep in the diffusion chain.
244
244
 
245
245
  Returns:
246
- `torch.FloatTensor`:
246
+ `torch.Tensor`:
247
247
  A scaled input sample.
248
248
  """
249
249
  return sample
@@ -288,9 +288,9 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
288
288
 
289
289
  def step(
290
290
  self,
291
- model_output: torch.FloatTensor,
291
+ model_output: torch.Tensor,
292
292
  timestep: int,
293
- sample: torch.FloatTensor,
293
+ sample: torch.Tensor,
294
294
  return_dict: bool = True,
295
295
  ) -> Union[DDIMSchedulerOutput, Tuple]:
296
296
  """
@@ -298,11 +298,11 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
298
298
  process from the learned model outputs (most often the predicted noise).
299
299
 
300
300
  Args:
301
- model_output (`torch.FloatTensor`):
301
+ model_output (`torch.Tensor`):
302
302
  The direct output from learned diffusion model.
303
303
  timestep (`float`):
304
304
  The current discrete timestep in the diffusion chain.
305
- sample (`torch.FloatTensor`):
305
+ sample (`torch.Tensor`):
306
306
  A current instance of a sample created by the diffusion process.
307
307
  eta (`float`):
308
308
  The weight of noise for added noise in diffusion step.
@@ -311,7 +311,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
311
311
  because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
312
312
  clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
313
313
  `use_clipped_model_output` has no effect.
314
- variance_noise (`torch.FloatTensor`):
314
+ variance_noise (`torch.Tensor`):
315
315
  Alternative to generating noise with `generator` by directly providing the noise for the variance
316
316
  itself. Useful for methods such as [`CycleDiffusion`].
317
317
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -35,16 +35,16 @@ class DDIMParallelSchedulerOutput(BaseOutput):
35
35
  Output class for the scheduler's `step` function output.
36
36
 
37
37
  Args:
38
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
39
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
40
  denoising loop.
41
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
42
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
43
  `pred_original_sample` can be used to preview progress or for guidance.
44
44
  """
45
45
 
46
- prev_sample: torch.FloatTensor
47
- pred_original_sample: Optional[torch.FloatTensor] = None
46
+ prev_sample: torch.Tensor
47
+ pred_original_sample: Optional[torch.Tensor] = None
48
48
 
49
49
 
50
50
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
@@ -82,7 +82,7 @@ def betas_for_alpha_bar(
82
82
  return math.exp(t * -12.0)
83
83
 
84
84
  else:
85
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
86
 
87
87
  betas = []
88
88
  for i in range(num_diffusion_timesteps):
@@ -99,11 +99,11 @@ def rescale_zero_terminal_snr(betas):
99
99
 
100
100
 
101
101
  Args:
102
- betas (`torch.FloatTensor`):
102
+ betas (`torch.Tensor`):
103
103
  the betas that the scheduler is being initialized with.
104
104
 
105
105
  Returns:
106
- `torch.FloatTensor`: rescaled betas with zero terminal SNR
106
+ `torch.Tensor`: rescaled betas with zero terminal SNR
107
107
  """
108
108
  # Convert betas to alphas_bar_sqrt
109
109
  alphas = 1.0 - betas
@@ -218,7 +218,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
218
218
  # Glide cosine schedule
219
219
  self.betas = betas_for_alpha_bar(num_train_timesteps)
220
220
  else:
221
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
221
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
222
222
 
223
223
  # Rescale for zero SNR
224
224
  if rescale_betas_zero_snr:
@@ -241,19 +241,19 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
241
241
  self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
242
242
 
243
243
  # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input
244
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
244
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
245
245
  """
246
246
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
247
247
  current timestep.
248
248
 
249
249
  Args:
250
- sample (`torch.FloatTensor`):
250
+ sample (`torch.Tensor`):
251
251
  The input sample.
252
252
  timestep (`int`, *optional*):
253
253
  The current timestep in the diffusion chain.
254
254
 
255
255
  Returns:
256
- `torch.FloatTensor`:
256
+ `torch.Tensor`:
257
257
  A scaled input sample.
258
258
  """
259
259
  return sample
@@ -283,7 +283,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
283
283
  return variance
284
284
 
285
285
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
286
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
286
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
287
287
  """
288
288
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
289
289
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -364,13 +364,13 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
364
364
 
365
365
  def step(
366
366
  self,
367
- model_output: torch.FloatTensor,
367
+ model_output: torch.Tensor,
368
368
  timestep: int,
369
- sample: torch.FloatTensor,
369
+ sample: torch.Tensor,
370
370
  eta: float = 0.0,
371
371
  use_clipped_model_output: bool = False,
372
372
  generator=None,
373
- variance_noise: Optional[torch.FloatTensor] = None,
373
+ variance_noise: Optional[torch.Tensor] = None,
374
374
  return_dict: bool = True,
375
375
  ) -> Union[DDIMParallelSchedulerOutput, Tuple]:
376
376
  """
@@ -378,9 +378,9 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
378
378
  process from the learned model outputs (most often the predicted noise).
379
379
 
380
380
  Args:
381
- model_output (`torch.FloatTensor`): direct output from learned diffusion model.
381
+ model_output (`torch.Tensor`): direct output from learned diffusion model.
382
382
  timestep (`int`): current discrete timestep in the diffusion chain.
383
- sample (`torch.FloatTensor`):
383
+ sample (`torch.Tensor`):
384
384
  current instance of sample being created by diffusion process.
385
385
  eta (`float`): weight of noise for added noise in diffusion step.
386
386
  use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
@@ -388,7 +388,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
388
388
  `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
389
389
  coincide with the one provided as input and `use_clipped_model_output` will have not effect.
390
390
  generator: random number generator.
391
- variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
391
+ variance_noise (`torch.Tensor`): instead of generating noise for the variance using `generator`, we
392
392
  can directly provide the noise for the variance itself. This is useful for methods such as
393
393
  CycleDiffusion. (https://arxiv.org/abs/2210.05559)
394
394
  return_dict (`bool`): option for returning tuple rather than DDIMParallelSchedulerOutput class
@@ -480,18 +480,21 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
480
480
  prev_sample = prev_sample + variance
481
481
 
482
482
  if not return_dict:
483
- return (prev_sample,)
483
+ return (
484
+ prev_sample,
485
+ pred_original_sample,
486
+ )
484
487
 
485
488
  return DDIMParallelSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
486
489
 
487
490
  def batch_step_no_noise(
488
491
  self,
489
- model_output: torch.FloatTensor,
492
+ model_output: torch.Tensor,
490
493
  timesteps: List[int],
491
- sample: torch.FloatTensor,
494
+ sample: torch.Tensor,
492
495
  eta: float = 0.0,
493
496
  use_clipped_model_output: bool = False,
494
- ) -> torch.FloatTensor:
497
+ ) -> torch.Tensor:
495
498
  """
496
499
  Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
497
500
  Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
@@ -501,10 +504,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
501
504
  process from the learned model outputs (most often the predicted noise).
502
505
 
503
506
  Args:
504
- model_output (`torch.FloatTensor`): direct output from learned diffusion model.
507
+ model_output (`torch.Tensor`): direct output from learned diffusion model.
505
508
  timesteps (`List[int]`):
506
509
  current discrete timesteps in the diffusion chain. This is now a list of integers.
507
- sample (`torch.FloatTensor`):
510
+ sample (`torch.Tensor`):
508
511
  current instance of sample being created by diffusion process.
509
512
  eta (`float`): weight of noise for added noise in diffusion step.
510
513
  use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
@@ -513,7 +516,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
513
516
  coincide with the one provided as input and `use_clipped_model_output` will have not effect.
514
517
 
515
518
  Returns:
516
- `torch.FloatTensor`: sample tensor at previous timestep.
519
+ `torch.Tensor`: sample tensor at previous timestep.
517
520
 
518
521
  """
519
522
  if self.num_inference_steps is None:
@@ -595,10 +598,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
595
598
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
596
599
  def add_noise(
597
600
  self,
598
- original_samples: torch.FloatTensor,
599
- noise: torch.FloatTensor,
601
+ original_samples: torch.Tensor,
602
+ noise: torch.Tensor,
600
603
  timesteps: torch.IntTensor,
601
- ) -> torch.FloatTensor:
604
+ ) -> torch.Tensor:
602
605
  # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
603
606
  # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
604
607
  # for the subsequent add_noise calls
@@ -620,9 +623,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
620
623
  return noisy_samples
621
624
 
622
625
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
623
- def get_velocity(
624
- self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
625
- ) -> torch.FloatTensor:
626
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
626
627
  # Make sure alphas_cumprod and timestep have same device and dtype as sample
627
628
  self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
628
629
  alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
@@ -33,16 +33,16 @@ class DDPMSchedulerOutput(BaseOutput):
33
33
  Output class for the scheduler's `step` function output.
34
34
 
35
35
  Args:
36
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
37
37
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
38
  denoising loop.
39
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
40
  The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
41
  `pred_original_sample` can be used to preview progress or for guidance.
42
42
  """
43
43
 
44
- prev_sample: torch.FloatTensor
45
- pred_original_sample: Optional[torch.FloatTensor] = None
44
+ prev_sample: torch.Tensor
45
+ pred_original_sample: Optional[torch.Tensor] = None
46
46
 
47
47
 
48
48
  def betas_for_alpha_bar(
@@ -79,7 +79,7 @@ def betas_for_alpha_bar(
79
79
  return math.exp(t * -12.0)
80
80
 
81
81
  else:
82
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
82
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
83
83
 
84
84
  betas = []
85
85
  for i in range(num_diffusion_timesteps):
@@ -96,11 +96,11 @@ def rescale_zero_terminal_snr(betas):
96
96
 
97
97
 
98
98
  Args:
99
- betas (`torch.FloatTensor`):
99
+ betas (`torch.Tensor`):
100
100
  the betas that the scheduler is being initialized with.
101
101
 
102
102
  Returns:
103
- `torch.FloatTensor`: rescaled betas with zero terminal SNR
103
+ `torch.Tensor`: rescaled betas with zero terminal SNR
104
104
  """
105
105
  # Convert betas to alphas_bar_sqrt
106
106
  alphas = 1.0 - betas
@@ -194,7 +194,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
194
194
  sample_max_value: float = 1.0,
195
195
  timestep_spacing: str = "leading",
196
196
  steps_offset: int = 0,
197
- rescale_betas_zero_snr: int = False,
197
+ rescale_betas_zero_snr: bool = False,
198
198
  ):
199
199
  if trained_betas is not None:
200
200
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -211,7 +211,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
211
211
  betas = torch.linspace(-6, 6, num_train_timesteps)
212
212
  self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
213
213
  else:
214
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
214
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
215
215
 
216
216
  # Rescale for zero SNR
217
217
  if rescale_betas_zero_snr:
@@ -231,19 +231,19 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
231
231
 
232
232
  self.variance_type = variance_type
233
233
 
234
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
234
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
235
235
  """
236
236
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
237
237
  current timestep.
238
238
 
239
239
  Args:
240
- sample (`torch.FloatTensor`):
240
+ sample (`torch.Tensor`):
241
241
  The input sample.
242
242
  timestep (`int`, *optional*):
243
243
  The current timestep in the diffusion chain.
244
244
 
245
245
  Returns:
246
- `torch.FloatTensor`:
246
+ `torch.Tensor`:
247
247
  A scaled input sample.
248
248
  """
249
249
  return sample
@@ -363,7 +363,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
363
363
 
364
364
  return variance
365
365
 
366
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
366
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
367
367
  """
368
368
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
369
369
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -398,9 +398,9 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
398
398
 
399
399
  def step(
400
400
  self,
401
- model_output: torch.FloatTensor,
401
+ model_output: torch.Tensor,
402
402
  timestep: int,
403
- sample: torch.FloatTensor,
403
+ sample: torch.Tensor,
404
404
  generator=None,
405
405
  return_dict: bool = True,
406
406
  ) -> Union[DDPMSchedulerOutput, Tuple]:
@@ -409,11 +409,11 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
409
409
  process from the learned model outputs (most often the predicted noise).
410
410
 
411
411
  Args:
412
- model_output (`torch.FloatTensor`):
412
+ model_output (`torch.Tensor`):
413
413
  The direct output from learned diffusion model.
414
414
  timestep (`float`):
415
415
  The current discrete timestep in the diffusion chain.
416
- sample (`torch.FloatTensor`):
416
+ sample (`torch.Tensor`):
417
417
  A current instance of a sample created by the diffusion process.
418
418
  generator (`torch.Generator`, *optional*):
419
419
  A random number generator.
@@ -492,16 +492,19 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
492
492
  pred_prev_sample = pred_prev_sample + variance
493
493
 
494
494
  if not return_dict:
495
- return (pred_prev_sample,)
495
+ return (
496
+ pred_prev_sample,
497
+ pred_original_sample,
498
+ )
496
499
 
497
500
  return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
498
501
 
499
502
  def add_noise(
500
503
  self,
501
- original_samples: torch.FloatTensor,
502
- noise: torch.FloatTensor,
504
+ original_samples: torch.Tensor,
505
+ noise: torch.Tensor,
503
506
  timesteps: torch.IntTensor,
504
- ) -> torch.FloatTensor:
507
+ ) -> torch.Tensor:
505
508
  # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
506
509
  # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
507
510
  # for the subsequent add_noise calls
@@ -522,9 +525,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
522
525
  noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
523
526
  return noisy_samples
524
527
 
525
- def get_velocity(
526
- self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
527
- ) -> torch.FloatTensor:
528
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
528
529
  # Make sure alphas_cumprod and timestep have same device and dtype as sample
529
530
  self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
530
531
  alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
@@ -547,16 +548,12 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
547
548
  return self.config.num_train_timesteps
548
549
 
549
550
  def previous_timestep(self, timestep):
550
- if self.custom_timesteps:
551
+ if self.custom_timesteps or self.num_inference_steps:
551
552
  index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
552
553
  if index == self.timesteps.shape[0] - 1:
553
554
  prev_t = torch.tensor(-1)
554
555
  else:
555
556
  prev_t = self.timesteps[index + 1]
556
557
  else:
557
- num_inference_steps = (
558
- self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
559
- )
560
- prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
561
-
558
+ prev_t = timestep - 1
562
559
  return prev_t
@@ -222,9 +222,13 @@ class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
222
222
  t = timestep
223
223
 
224
224
  if key is None:
225
- key = jax.random.PRNGKey(0)
225
+ key = jax.random.key(0)
226
226
 
227
- if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
227
+ if (
228
+ len(model_output.shape) > 1
229
+ and model_output.shape[1] == sample.shape[1] * 2
230
+ and self.config.variance_type in ["learned", "learned_range"]
231
+ ):
228
232
  model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
229
233
  else:
230
234
  predicted_variance = None
@@ -264,7 +268,7 @@ class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
264
268
 
265
269
  # 6. Add noise
266
270
  def random_variance():
267
- split_key = jax.random.split(key, num=1)
271
+ split_key = jax.random.split(key, num=1)[0]
268
272
  noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype)
269
273
  return (self._get_variance(state, t, predicted_variance=predicted_variance) ** 0.5) * noise
270
274