diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,881 @@
1
+ # Copyright 2024 the Latte Team and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import html
17
+ import inspect
18
+ import re
19
+ import urllib.parse as ul
20
+ from dataclasses import dataclass
21
+ from typing import Callable, Dict, List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ from transformers import T5EncoderModel, T5Tokenizer
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...models import AutoencoderKL, LatteTransformer3DModel
28
+ from ...pipelines.pipeline_utils import DiffusionPipeline
29
+ from ...schedulers import KarrasDiffusionSchedulers
30
+ from ...utils import (
31
+ BACKENDS_MAPPING,
32
+ BaseOutput,
33
+ is_bs4_available,
34
+ is_ftfy_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
39
+ from ...video_processor import VideoProcessor
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ if is_bs4_available():
45
+ from bs4 import BeautifulSoup
46
+
47
+ if is_ftfy_available():
48
+ import ftfy
49
+
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import LattePipeline
56
+ >>> from diffusers.utils import export_to_gif
57
+
58
+ >>> # You can replace the checkpoint id with "maxin-cn/Latte-1" too.
59
+ >>> pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16)
60
+ >>> # Enable memory optimizations.
61
+ >>> pipe.enable_model_cpu_offload()
62
+
63
+ >>> prompt = "A small cactus with a happy face in the Sahara desert."
64
+ >>> videos = pipe(prompt).frames[0]
65
+ >>> export_to_gif(videos, "latte.gif")
66
+ ```
67
+ """
68
+
69
+
70
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
71
+ def retrieve_timesteps(
72
+ scheduler,
73
+ num_inference_steps: Optional[int] = None,
74
+ device: Optional[Union[str, torch.device]] = None,
75
+ timesteps: Optional[List[int]] = None,
76
+ sigmas: Optional[List[float]] = None,
77
+ **kwargs,
78
+ ):
79
+ r"""
80
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
81
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
82
+
83
+ Args:
84
+ scheduler (`SchedulerMixin`):
85
+ The scheduler to get timesteps from.
86
+ num_inference_steps (`int`):
87
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
88
+ must be `None`.
89
+ device (`str` or `torch.device`, *optional*):
90
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
91
+ timesteps (`List[int]`, *optional*):
92
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
93
+ `num_inference_steps` and `sigmas` must be `None`.
94
+ sigmas (`List[float]`, *optional*):
95
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
96
+ `num_inference_steps` and `timesteps` must be `None`.
97
+
98
+ Returns:
99
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
100
+ second element is the number of inference steps.
101
+ """
102
+ if timesteps is not None and sigmas is not None:
103
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
104
+ if timesteps is not None:
105
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
106
+ if not accepts_timesteps:
107
+ raise ValueError(
108
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
109
+ f" timestep schedules. Please check whether you are using the correct scheduler."
110
+ )
111
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
112
+ timesteps = scheduler.timesteps
113
+ num_inference_steps = len(timesteps)
114
+ elif sigmas is not None:
115
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
116
+ if not accept_sigmas:
117
+ raise ValueError(
118
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
119
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
120
+ )
121
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
122
+ timesteps = scheduler.timesteps
123
+ num_inference_steps = len(timesteps)
124
+ else:
125
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
126
+ timesteps = scheduler.timesteps
127
+ return timesteps, num_inference_steps
128
+
129
+
130
+ @dataclass
131
+ class LattePipelineOutput(BaseOutput):
132
+ frames: torch.Tensor
133
+
134
+
135
+ class LattePipeline(DiffusionPipeline):
136
+ r"""
137
+ Pipeline for text-to-video generation using Latte.
138
+
139
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
140
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
141
+
142
+ Args:
143
+ vae ([`AutoencoderKL`]):
144
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
145
+ text_encoder ([`T5EncoderModel`]):
146
+ Frozen text-encoder. Latte uses
147
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
148
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
149
+ tokenizer (`T5Tokenizer`):
150
+ Tokenizer of class
151
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
152
+ transformer ([`LatteTransformer3DModel`]):
153
+ A text conditioned `LatteTransformer3DModel` to denoise the encoded video latents.
154
+ scheduler ([`SchedulerMixin`]):
155
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
156
+ """
157
+
158
+ bad_punct_regex = re.compile(r"[#®•©™&@·º½¾¿¡§~\)\(\]\[\}\{\|\\/\\*]{1,}")
159
+
160
+ _optional_components = ["tokenizer", "text_encoder"]
161
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
162
+
163
+ _callback_tensor_inputs = [
164
+ "latents",
165
+ "prompt_embeds",
166
+ "negative_prompt_embeds",
167
+ ]
168
+
169
+ def __init__(
170
+ self,
171
+ tokenizer: T5Tokenizer,
172
+ text_encoder: T5EncoderModel,
173
+ vae: AutoencoderKL,
174
+ transformer: LatteTransformer3DModel,
175
+ scheduler: KarrasDiffusionSchedulers,
176
+ ):
177
+ super().__init__()
178
+
179
+ self.register_modules(
180
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
181
+ )
182
+
183
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
184
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
185
+
186
+ # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
187
+ def mask_text_embeddings(self, emb, mask):
188
+ if emb.shape[0] == 1:
189
+ keep_index = mask.sum().item()
190
+ return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096
191
+ else:
192
+ masked_feature = emb * mask[:, None, :, None] # 1 120 4096
193
+ return masked_feature, emb.shape[2]
194
+
195
+ # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
196
+ def encode_prompt(
197
+ self,
198
+ prompt: Union[str, List[str]],
199
+ do_classifier_free_guidance: bool = True,
200
+ negative_prompt: str = "",
201
+ num_images_per_prompt: int = 1,
202
+ device: Optional[torch.device] = None,
203
+ prompt_embeds: Optional[torch.FloatTensor] = None,
204
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
205
+ clean_caption: bool = False,
206
+ mask_feature: bool = True,
207
+ dtype=None,
208
+ ):
209
+ r"""
210
+ Encodes the prompt into text encoder hidden states.
211
+
212
+ Args:
213
+ prompt (`str` or `List[str]`, *optional*):
214
+ prompt to be encoded
215
+ negative_prompt (`str` or `List[str]`, *optional*):
216
+ The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds`
217
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
218
+ Latte, this should be "".
219
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
220
+ whether to use classifier free guidance or not
221
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
222
+ number of video that should be generated per prompt
223
+ device: (`torch.device`, *optional*):
224
+ torch device to place the resulting embeddings on
225
+ prompt_embeds (`torch.FloatTensor`, *optional*):
226
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
227
+ provided, text embeddings will be generated from `prompt` input argument.
228
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
229
+ Pre-generated negative text embeddings. For Latte, it's should be the embeddings of the "" string.
230
+ clean_caption (bool, defaults to `False`):
231
+ If `True`, the function will preprocess and clean the provided caption before encoding.
232
+ mask_feature: (bool, defaults to `True`):
233
+ If `True`, the function will mask the text embeddings.
234
+ """
235
+ embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
236
+
237
+ if device is None:
238
+ device = self._execution_device
239
+
240
+ if prompt is not None and isinstance(prompt, str):
241
+ batch_size = 1
242
+ elif prompt is not None and isinstance(prompt, list):
243
+ batch_size = len(prompt)
244
+ else:
245
+ batch_size = prompt_embeds.shape[0]
246
+
247
+ max_length = 120
248
+ if prompt_embeds is None:
249
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
250
+ text_inputs = self.tokenizer(
251
+ prompt,
252
+ padding="max_length",
253
+ max_length=max_length,
254
+ truncation=True,
255
+ return_attention_mask=True,
256
+ add_special_tokens=True,
257
+ return_tensors="pt",
258
+ )
259
+ text_input_ids = text_inputs.input_ids
260
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
261
+
262
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
263
+ text_input_ids, untruncated_ids
264
+ ):
265
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
266
+ logger.warning(
267
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
268
+ f" {max_length} tokens: {removed_text}"
269
+ )
270
+
271
+ attention_mask = text_inputs.attention_mask.to(device)
272
+ prompt_embeds_attention_mask = attention_mask
273
+
274
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
275
+ prompt_embeds = prompt_embeds[0]
276
+ else:
277
+ prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)
278
+
279
+ if self.text_encoder is not None:
280
+ dtype = self.text_encoder.dtype
281
+ elif self.transformer is not None:
282
+ dtype = self.transformer.dtype
283
+ else:
284
+ dtype = None
285
+
286
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
287
+
288
+ bs_embed, seq_len, _ = prompt_embeds.shape
289
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
290
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
291
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
292
+ prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1)
293
+ prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1)
294
+
295
+ # get unconditional embeddings for classifier free guidance
296
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
297
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
298
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
299
+ max_length = prompt_embeds.shape[1]
300
+ uncond_input = self.tokenizer(
301
+ uncond_tokens,
302
+ padding="max_length",
303
+ max_length=max_length,
304
+ truncation=True,
305
+ return_attention_mask=True,
306
+ add_special_tokens=True,
307
+ return_tensors="pt",
308
+ )
309
+ attention_mask = uncond_input.attention_mask.to(device)
310
+
311
+ negative_prompt_embeds = self.text_encoder(
312
+ uncond_input.input_ids.to(device),
313
+ attention_mask=attention_mask,
314
+ )
315
+ negative_prompt_embeds = negative_prompt_embeds[0]
316
+
317
+ if do_classifier_free_guidance:
318
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
319
+ seq_len = negative_prompt_embeds.shape[1]
320
+
321
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
322
+
323
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
324
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
325
+
326
+ # For classifier free guidance, we need to do two forward passes.
327
+ # Here we concatenate the unconditional and text embeddings into a single batch
328
+ # to avoid doing two forward passes
329
+ else:
330
+ negative_prompt_embeds = None
331
+
332
+ # Perform additional masking.
333
+ if mask_feature and not embeds_initially_provided:
334
+ prompt_embeds = prompt_embeds.unsqueeze(1)
335
+ masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
336
+ masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
337
+ masked_negative_prompt_embeds = (
338
+ negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
339
+ )
340
+
341
+ return masked_prompt_embeds, masked_negative_prompt_embeds
342
+
343
+ return prompt_embeds, negative_prompt_embeds
344
+
345
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
346
+ def prepare_extra_step_kwargs(self, generator, eta):
347
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
348
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
349
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
350
+ # and should be between [0, 1]
351
+
352
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
353
+ extra_step_kwargs = {}
354
+ if accepts_eta:
355
+ extra_step_kwargs["eta"] = eta
356
+
357
+ # check if the scheduler accepts generator
358
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
359
+ if accepts_generator:
360
+ extra_step_kwargs["generator"] = generator
361
+ return extra_step_kwargs
362
+
363
+ def check_inputs(
364
+ self,
365
+ prompt,
366
+ height,
367
+ width,
368
+ negative_prompt,
369
+ callback_on_step_end_tensor_inputs,
370
+ prompt_embeds=None,
371
+ negative_prompt_embeds=None,
372
+ ):
373
+ if height % 8 != 0 or width % 8 != 0:
374
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
375
+
376
+ if callback_on_step_end_tensor_inputs is not None and not all(
377
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
378
+ ):
379
+ raise ValueError(
380
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
381
+ )
382
+ if prompt is not None and prompt_embeds is not None:
383
+ raise ValueError(
384
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
385
+ " only forward one of the two."
386
+ )
387
+ elif prompt is None and prompt_embeds is None:
388
+ raise ValueError(
389
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
390
+ )
391
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
392
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
393
+
394
+ if prompt is not None and negative_prompt_embeds is not None:
395
+ raise ValueError(
396
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
397
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
398
+ )
399
+
400
+ if negative_prompt is not None and negative_prompt_embeds is not None:
401
+ raise ValueError(
402
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
403
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
404
+ )
405
+
406
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
407
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
408
+ raise ValueError(
409
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
410
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
411
+ f" {negative_prompt_embeds.shape}."
412
+ )
413
+
414
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
415
+ def _text_preprocessing(self, text, clean_caption=False):
416
+ if clean_caption and not is_bs4_available():
417
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
418
+ logger.warning("Setting `clean_caption` to False...")
419
+ clean_caption = False
420
+
421
+ if clean_caption and not is_ftfy_available():
422
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
423
+ logger.warning("Setting `clean_caption` to False...")
424
+ clean_caption = False
425
+
426
+ if not isinstance(text, (tuple, list)):
427
+ text = [text]
428
+
429
+ def process(text: str):
430
+ if clean_caption:
431
+ text = self._clean_caption(text)
432
+ text = self._clean_caption(text)
433
+ else:
434
+ text = text.lower().strip()
435
+ return text
436
+
437
+ return [process(t) for t in text]
438
+
439
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
440
+ def _clean_caption(self, caption):
441
+ caption = str(caption)
442
+ caption = ul.unquote_plus(caption)
443
+ caption = caption.strip().lower()
444
+ caption = re.sub("<person>", "person", caption)
445
+ # urls:
446
+ caption = re.sub(
447
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
448
+ "",
449
+ caption,
450
+ ) # regex for urls
451
+ caption = re.sub(
452
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
453
+ "",
454
+ caption,
455
+ ) # regex for urls
456
+ # html:
457
+ caption = BeautifulSoup(caption, features="html.parser").text
458
+
459
+ # @<nickname>
460
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
461
+
462
+ # 31C0—31EF CJK Strokes
463
+ # 31F0—31FF Katakana Phonetic Extensions
464
+ # 3200—32FF Enclosed CJK Letters and Months
465
+ # 3300—33FF CJK Compatibility
466
+ # 3400—4DBF CJK Unified Ideographs Extension A
467
+ # 4DC0—4DFF Yijing Hexagram Symbols
468
+ # 4E00—9FFF CJK Unified Ideographs
469
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
470
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
471
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
472
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
473
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
474
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
475
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
476
+ #######################################################
477
+
478
+ # все виды тире / all types of dash --> "-"
479
+ caption = re.sub(
480
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
481
+ "-",
482
+ caption,
483
+ )
484
+
485
+ # кавычки к одному стандарту
486
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
487
+ caption = re.sub(r"[‘’]", "'", caption)
488
+
489
+ # &quot;
490
+ caption = re.sub(r"&quot;?", "", caption)
491
+ # &amp
492
+ caption = re.sub(r"&amp", "", caption)
493
+
494
+ # ip adresses:
495
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
496
+
497
+ # article ids:
498
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
499
+
500
+ # \n
501
+ caption = re.sub(r"\\n", " ", caption)
502
+
503
+ # "#123"
504
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
505
+ # "#12345.."
506
+ caption = re.sub(r"#\d{5,}\b", "", caption)
507
+ # "123456.."
508
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
509
+ # filenames:
510
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
511
+
512
+ #
513
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
514
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
515
+
516
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
517
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
518
+
519
+ # this-is-my-cute-cat / this_is_my_cute_cat
520
+ regex2 = re.compile(r"(?:\-|\_)")
521
+ if len(re.findall(regex2, caption)) > 3:
522
+ caption = re.sub(regex2, " ", caption)
523
+
524
+ caption = ftfy.fix_text(caption)
525
+ caption = html.unescape(html.unescape(caption))
526
+
527
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
528
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
529
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
530
+
531
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
532
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
533
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
534
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
535
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
536
+
537
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
538
+
539
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
540
+
541
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
542
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
543
+ caption = re.sub(r"\s+", " ", caption)
544
+
545
+ caption.strip()
546
+
547
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
548
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
549
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
550
+ caption = re.sub(r"^\.\S+$", "", caption)
551
+
552
+ return caption.strip()
553
+
554
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
555
+ def prepare_latents(
556
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
557
+ ):
558
+ shape = (
559
+ batch_size,
560
+ num_channels_latents,
561
+ num_frames,
562
+ height // self.vae_scale_factor,
563
+ width // self.vae_scale_factor,
564
+ )
565
+ if isinstance(generator, list) and len(generator) != batch_size:
566
+ raise ValueError(
567
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
568
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
569
+ )
570
+
571
+ if latents is None:
572
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
573
+ else:
574
+ latents = latents.to(device)
575
+
576
+ # scale the initial noise by the standard deviation required by the scheduler
577
+ latents = latents * self.scheduler.init_noise_sigma
578
+ return latents
579
+
580
+ @property
581
+ def guidance_scale(self):
582
+ return self._guidance_scale
583
+
584
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
585
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
586
+ # corresponds to doing no classifier free guidance.
587
+ @property
588
+ def do_classifier_free_guidance(self):
589
+ return self._guidance_scale > 1
590
+
591
+ @property
592
+ def num_timesteps(self):
593
+ return self._num_timesteps
594
+
595
+ @property
596
+ def interrupt(self):
597
+ return self._interrupt
598
+
599
+ @torch.no_grad()
600
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
601
+ def __call__(
602
+ self,
603
+ prompt: Union[str, List[str]] = None,
604
+ negative_prompt: str = "",
605
+ num_inference_steps: int = 50,
606
+ timesteps: Optional[List[int]] = None,
607
+ guidance_scale: float = 7.5,
608
+ num_images_per_prompt: int = 1,
609
+ video_length: int = 16,
610
+ height: int = 512,
611
+ width: int = 512,
612
+ eta: float = 0.0,
613
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
614
+ latents: Optional[torch.FloatTensor] = None,
615
+ prompt_embeds: Optional[torch.FloatTensor] = None,
616
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
617
+ output_type: str = "pil",
618
+ return_dict: bool = True,
619
+ callback_on_step_end: Optional[
620
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
621
+ ] = None,
622
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
623
+ clean_caption: bool = True,
624
+ mask_feature: bool = True,
625
+ enable_temporal_attentions: bool = True,
626
+ decode_chunk_size: Optional[int] = None,
627
+ ) -> Union[LattePipelineOutput, Tuple]:
628
+ """
629
+ Function invoked when calling the pipeline for generation.
630
+
631
+ Args:
632
+ prompt (`str` or `List[str]`, *optional*):
633
+ The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
634
+ instead.
635
+ negative_prompt (`str` or `List[str]`, *optional*):
636
+ The prompt or prompts not to guide the video generation. If not defined, one has to pass
637
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
638
+ less than `1`).
639
+ num_inference_steps (`int`, *optional*, defaults to 100):
640
+ The number of denoising steps. More denoising steps usually lead to a higher quality video at the
641
+ expense of slower inference.
642
+ timesteps (`List[int]`, *optional*):
643
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
644
+ timesteps are used. Must be in descending order.
645
+ guidance_scale (`float`, *optional*, defaults to 7.0):
646
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
647
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
648
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
649
+ 1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
650
+ usually at the expense of lower video quality.
651
+ video_length (`int`, *optional*, defaults to 16):
652
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
653
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
654
+ The number of videos to generate per prompt.
655
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
656
+ The height in pixels of the generated video.
657
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
658
+ The width in pixels of the generated video.
659
+ eta (`float`, *optional*, defaults to 0.0):
660
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
661
+ [`schedulers.DDIMScheduler`], will be ignored for others.
662
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
663
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
664
+ to make generation deterministic.
665
+ latents (`torch.FloatTensor`, *optional*):
666
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
667
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
668
+ tensor will ge generated by sampling using the supplied random `generator`.
669
+ prompt_embeds (`torch.FloatTensor`, *optional*):
670
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
671
+ provided, text embeddings will be generated from `prompt` input argument.
672
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
673
+ Pre-generated negative text embeddings. For Latte this negative prompt should be "". If not provided,
674
+ negative_prompt_embeds will be generated from `negative_prompt` input argument.
675
+ output_type (`str`, *optional*, defaults to `"pil"`):
676
+ The output format of the generate video. Choose between
677
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
678
+ return_dict (`bool`, *optional*, defaults to `True`):
679
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
680
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
681
+ A callback function or a list of callback functions to be called at the end of each denoising step.
682
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
683
+ A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
684
+ inputs will be passed.
685
+ clean_caption (`bool`, *optional*, defaults to `True`):
686
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
687
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
688
+ prompt.
689
+ mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
690
+ enable_temporal_attentions (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions
691
+ decode_chunk_size (`int`, *optional*):
692
+ The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
693
+ expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
694
+ For lower memory usage, reduce `decode_chunk_size`.
695
+
696
+ Examples:
697
+
698
+ Returns:
699
+ [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] or `tuple`:
700
+ If `return_dict` is `True`, [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] is returned,
701
+ otherwise a `tuple` is returned where the first element is a list with the generated images
702
+ """
703
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
704
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
705
+
706
+ # 0. Default
707
+ decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length
708
+
709
+ # 1. Check inputs. Raise error if not correct
710
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
711
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
712
+ self.check_inputs(
713
+ prompt,
714
+ height,
715
+ width,
716
+ negative_prompt,
717
+ callback_on_step_end_tensor_inputs,
718
+ prompt_embeds,
719
+ negative_prompt_embeds,
720
+ )
721
+ self._guidance_scale = guidance_scale
722
+ self._interrupt = False
723
+
724
+ # 2. Default height and width to transformer
725
+ if prompt is not None and isinstance(prompt, str):
726
+ batch_size = 1
727
+ elif prompt is not None and isinstance(prompt, list):
728
+ batch_size = len(prompt)
729
+ else:
730
+ batch_size = prompt_embeds.shape[0]
731
+
732
+ device = self._execution_device
733
+
734
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
735
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
736
+ # corresponds to doing no classifier free guidance.
737
+ do_classifier_free_guidance = guidance_scale > 1.0
738
+
739
+ # 3. Encode input prompt
740
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
741
+ prompt,
742
+ do_classifier_free_guidance,
743
+ negative_prompt=negative_prompt,
744
+ num_images_per_prompt=num_images_per_prompt,
745
+ device=device,
746
+ prompt_embeds=prompt_embeds,
747
+ negative_prompt_embeds=negative_prompt_embeds,
748
+ clean_caption=clean_caption,
749
+ mask_feature=mask_feature,
750
+ )
751
+ if do_classifier_free_guidance:
752
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
753
+
754
+ # 4. Prepare timesteps
755
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
756
+ self._num_timesteps = len(timesteps)
757
+
758
+ # 5. Prepare latents.
759
+ latent_channels = self.transformer.config.in_channels
760
+ latents = self.prepare_latents(
761
+ batch_size * num_images_per_prompt,
762
+ latent_channels,
763
+ video_length,
764
+ height,
765
+ width,
766
+ prompt_embeds.dtype,
767
+ device,
768
+ generator,
769
+ latents,
770
+ )
771
+
772
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
773
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
774
+
775
+ # 7. Denoising loop
776
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
777
+
778
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
779
+ for i, t in enumerate(timesteps):
780
+ if self.interrupt:
781
+ continue
782
+
783
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
784
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
785
+
786
+ current_timestep = t
787
+ if not torch.is_tensor(current_timestep):
788
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
789
+ # This would be a good case for the `match` statement (Python 3.10+)
790
+ is_mps = latent_model_input.device.type == "mps"
791
+ if isinstance(current_timestep, float):
792
+ dtype = torch.float32 if is_mps else torch.float64
793
+ else:
794
+ dtype = torch.int32 if is_mps else torch.int64
795
+ current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
796
+ elif len(current_timestep.shape) == 0:
797
+ current_timestep = current_timestep[None].to(latent_model_input.device)
798
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
799
+ current_timestep = current_timestep.expand(latent_model_input.shape[0])
800
+
801
+ # predict noise model_output
802
+ noise_pred = self.transformer(
803
+ latent_model_input,
804
+ encoder_hidden_states=prompt_embeds,
805
+ timestep=current_timestep,
806
+ enable_temporal_attentions=enable_temporal_attentions,
807
+ return_dict=False,
808
+ )[0]
809
+
810
+ # perform guidance
811
+ if do_classifier_free_guidance:
812
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
813
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
814
+
815
+ # use learned sigma?
816
+ if not (
817
+ hasattr(self.scheduler.config, "variance_type")
818
+ and self.scheduler.config.variance_type in ["learned", "learned_range"]
819
+ ):
820
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
821
+
822
+ # compute previous video: x_t -> x_t-1
823
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
824
+
825
+ # call the callback, if provided
826
+ if callback_on_step_end is not None:
827
+ callback_kwargs = {}
828
+ for k in callback_on_step_end_tensor_inputs:
829
+ callback_kwargs[k] = locals()[k]
830
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
831
+
832
+ latents = callback_outputs.pop("latents", latents)
833
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
834
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
835
+
836
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
837
+ progress_bar.update()
838
+
839
+ if not output_type == "latents":
840
+ video = self.decode_latents(latents, video_length, decode_chunk_size=14)
841
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
842
+ else:
843
+ video = latents
844
+
845
+ # Offload all models
846
+ self.maybe_free_model_hooks()
847
+
848
+ if not return_dict:
849
+ return (video,)
850
+
851
+ return LattePipelineOutput(frames=video)
852
+
853
+ # Similar to diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion.decode_latents
854
+ def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int = 14):
855
+ # [batch, channels, frames, height, width] -> [batch*frames, channels, height, width]
856
+ latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1)
857
+
858
+ latents = 1 / self.vae.config.scaling_factor * latents
859
+
860
+ forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
861
+ accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
862
+
863
+ # decode decode_chunk_size frames at a time to avoid OOM
864
+ frames = []
865
+ for i in range(0, latents.shape[0], decode_chunk_size):
866
+ num_frames_in = latents[i : i + decode_chunk_size].shape[0]
867
+ decode_kwargs = {}
868
+ if accepts_num_frames:
869
+ # we only pass num_frames_in if it's expected
870
+ decode_kwargs["num_frames"] = num_frames_in
871
+
872
+ frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
873
+ frames.append(frame)
874
+ frames = torch.cat(frames, dim=0)
875
+
876
+ # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
877
+ frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
878
+
879
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
880
+ frames = frames.float()
881
+ return frames