diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,866 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
20
+
21
+ from ...image_processor import PipelineImageInput
22
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
23
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
24
+ from ...models.lora import adjust_lora_scale_text_encoder
25
+ from ...models.unets.unet_motion_model import MotionAdapter
26
+ from ...schedulers import KarrasDiffusionSchedulers
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ logging,
30
+ replace_example_docstring,
31
+ scale_lora_layers,
32
+ unscale_lora_layers,
33
+ )
34
+ from ...utils.torch_utils import randn_tensor
35
+ from ...video_processor import VideoProcessor
36
+ from ..animatediff.pipeline_output import AnimateDiffPipelineOutput
37
+ from ..free_init_utils import FreeInitMixin
38
+ from ..free_noise_utils import AnimateDiffFreeNoiseMixin
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
+ from .pag_utils import PAGMixin
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers import AnimateDiffPAGPipeline, MotionAdapter, DDIMScheduler
50
+ >>> from diffusers.utils import export_to_gif
51
+
52
+ >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
53
+ >>> motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-2"
54
+ >>> motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id)
55
+ >>> scheduler = DDIMScheduler.from_pretrained(
56
+ ... model_id, subfolder="scheduler", beta_schedule="linear", steps_offset=1, clip_sample=False
57
+ ... )
58
+ >>> pipe = AnimateDiffPAGPipeline.from_pretrained(
59
+ ... model_id,
60
+ ... motion_adapter=motion_adapter,
61
+ ... scheduler=scheduler,
62
+ ... pag_applied_layers=["mid"],
63
+ ... torch_dtype=torch.float16,
64
+ ... ).to("cuda")
65
+
66
+ >>> video = pipe(
67
+ ... prompt="car, futuristic cityscape with neon lights, street, no human",
68
+ ... negative_prompt="low quality, bad quality",
69
+ ... num_inference_steps=25,
70
+ ... guidance_scale=6.0,
71
+ ... pag_scale=3.0,
72
+ ... generator=torch.Generator().manual_seed(42),
73
+ ... ).frames[0]
74
+
75
+ >>> export_to_gif(video, "animatediff_pag.gif")
76
+ ```
77
+ """
78
+
79
+
80
+ class AnimateDiffPAGPipeline(
81
+ DiffusionPipeline,
82
+ StableDiffusionMixin,
83
+ TextualInversionLoaderMixin,
84
+ IPAdapterMixin,
85
+ StableDiffusionLoraLoaderMixin,
86
+ FreeInitMixin,
87
+ AnimateDiffFreeNoiseMixin,
88
+ PAGMixin,
89
+ ):
90
+ r"""
91
+ Pipeline for text-to-video generation using
92
+ [AnimateDiff](https://huggingface.co/docs/diffusers/en/api/pipelines/animatediff) and [Perturbed Attention
93
+ Guidance](https://huggingface.co/docs/diffusers/en/using-diffusers/pag).
94
+
95
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
96
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
97
+
98
+ The pipeline also inherits the following loading methods:
99
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
100
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
101
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
102
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
103
+
104
+ Args:
105
+ vae ([`AutoencoderKL`]):
106
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
107
+ text_encoder ([`CLIPTextModel`]):
108
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
109
+ tokenizer (`CLIPTokenizer`):
110
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
111
+ unet ([`UNet2DConditionModel`]):
112
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
113
+ motion_adapter ([`MotionAdapter`]):
114
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
115
+ scheduler ([`SchedulerMixin`]):
116
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
117
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
118
+ """
119
+
120
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
121
+ _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
122
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
123
+
124
+ def __init__(
125
+ self,
126
+ vae: AutoencoderKL,
127
+ text_encoder: CLIPTextModel,
128
+ tokenizer: CLIPTokenizer,
129
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
130
+ motion_adapter: MotionAdapter,
131
+ scheduler: KarrasDiffusionSchedulers,
132
+ feature_extractor: CLIPImageProcessor = None,
133
+ image_encoder: CLIPVisionModelWithProjection = None,
134
+ pag_applied_layers: Union[str, List[str]] = "mid_block.*attn1", # ["mid"], ["down_blocks.1"]
135
+ ):
136
+ super().__init__()
137
+ if isinstance(unet, UNet2DConditionModel):
138
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
139
+
140
+ self.register_modules(
141
+ vae=vae,
142
+ text_encoder=text_encoder,
143
+ tokenizer=tokenizer,
144
+ unet=unet,
145
+ motion_adapter=motion_adapter,
146
+ scheduler=scheduler,
147
+ feature_extractor=feature_extractor,
148
+ image_encoder=image_encoder,
149
+ )
150
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
151
+ self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
152
+
153
+ self.set_pag_applied_layers(pag_applied_layers)
154
+
155
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
156
+ def encode_prompt(
157
+ self,
158
+ prompt,
159
+ device,
160
+ num_images_per_prompt,
161
+ do_classifier_free_guidance,
162
+ negative_prompt=None,
163
+ prompt_embeds: Optional[torch.Tensor] = None,
164
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
165
+ lora_scale: Optional[float] = None,
166
+ clip_skip: Optional[int] = None,
167
+ ):
168
+ r"""
169
+ Encodes the prompt into text encoder hidden states.
170
+
171
+ Args:
172
+ prompt (`str` or `List[str]`, *optional*):
173
+ prompt to be encoded
174
+ device: (`torch.device`):
175
+ torch device
176
+ num_images_per_prompt (`int`):
177
+ number of images that should be generated per prompt
178
+ do_classifier_free_guidance (`bool`):
179
+ whether to use classifier free guidance or not
180
+ negative_prompt (`str` or `List[str]`, *optional*):
181
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
182
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
183
+ less than `1`).
184
+ prompt_embeds (`torch.Tensor`, *optional*):
185
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
186
+ provided, text embeddings will be generated from `prompt` input argument.
187
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
188
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
189
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
190
+ argument.
191
+ lora_scale (`float`, *optional*):
192
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
193
+ clip_skip (`int`, *optional*):
194
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
195
+ the output of the pre-final layer will be used for computing the prompt embeddings.
196
+ """
197
+ # set lora scale so that monkey patched LoRA
198
+ # function of text encoder can correctly access it
199
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
200
+ self._lora_scale = lora_scale
201
+
202
+ # dynamically adjust the LoRA scale
203
+ if not USE_PEFT_BACKEND:
204
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
205
+ else:
206
+ scale_lora_layers(self.text_encoder, lora_scale)
207
+
208
+ if prompt is not None and isinstance(prompt, str):
209
+ batch_size = 1
210
+ elif prompt is not None and isinstance(prompt, list):
211
+ batch_size = len(prompt)
212
+ else:
213
+ batch_size = prompt_embeds.shape[0]
214
+
215
+ if prompt_embeds is None:
216
+ # textual inversion: process multi-vector tokens if necessary
217
+ if isinstance(self, TextualInversionLoaderMixin):
218
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
219
+
220
+ text_inputs = self.tokenizer(
221
+ prompt,
222
+ padding="max_length",
223
+ max_length=self.tokenizer.model_max_length,
224
+ truncation=True,
225
+ return_tensors="pt",
226
+ )
227
+ text_input_ids = text_inputs.input_ids
228
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
229
+
230
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
231
+ text_input_ids, untruncated_ids
232
+ ):
233
+ removed_text = self.tokenizer.batch_decode(
234
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
235
+ )
236
+ logger.warning(
237
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
238
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
239
+ )
240
+
241
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
242
+ attention_mask = text_inputs.attention_mask.to(device)
243
+ else:
244
+ attention_mask = None
245
+
246
+ if clip_skip is None:
247
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
248
+ prompt_embeds = prompt_embeds[0]
249
+ else:
250
+ prompt_embeds = self.text_encoder(
251
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
252
+ )
253
+ # Access the `hidden_states` first, that contains a tuple of
254
+ # all the hidden states from the encoder layers. Then index into
255
+ # the tuple to access the hidden states from the desired layer.
256
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
257
+ # We also need to apply the final LayerNorm here to not mess with the
258
+ # representations. The `last_hidden_states` that we typically use for
259
+ # obtaining the final prompt representations passes through the LayerNorm
260
+ # layer.
261
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
262
+
263
+ if self.text_encoder is not None:
264
+ prompt_embeds_dtype = self.text_encoder.dtype
265
+ elif self.unet is not None:
266
+ prompt_embeds_dtype = self.unet.dtype
267
+ else:
268
+ prompt_embeds_dtype = prompt_embeds.dtype
269
+
270
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
271
+
272
+ bs_embed, seq_len, _ = prompt_embeds.shape
273
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
274
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
275
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
276
+
277
+ # get unconditional embeddings for classifier free guidance
278
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
279
+ uncond_tokens: List[str]
280
+ if negative_prompt is None:
281
+ uncond_tokens = [""] * batch_size
282
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
283
+ raise TypeError(
284
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
285
+ f" {type(prompt)}."
286
+ )
287
+ elif isinstance(negative_prompt, str):
288
+ uncond_tokens = [negative_prompt]
289
+ elif batch_size != len(negative_prompt):
290
+ raise ValueError(
291
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
292
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
293
+ " the batch size of `prompt`."
294
+ )
295
+ else:
296
+ uncond_tokens = negative_prompt
297
+
298
+ # textual inversion: process multi-vector tokens if necessary
299
+ if isinstance(self, TextualInversionLoaderMixin):
300
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
301
+
302
+ max_length = prompt_embeds.shape[1]
303
+ uncond_input = self.tokenizer(
304
+ uncond_tokens,
305
+ padding="max_length",
306
+ max_length=max_length,
307
+ truncation=True,
308
+ return_tensors="pt",
309
+ )
310
+
311
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
312
+ attention_mask = uncond_input.attention_mask.to(device)
313
+ else:
314
+ attention_mask = None
315
+
316
+ negative_prompt_embeds = self.text_encoder(
317
+ uncond_input.input_ids.to(device),
318
+ attention_mask=attention_mask,
319
+ )
320
+ negative_prompt_embeds = negative_prompt_embeds[0]
321
+
322
+ if do_classifier_free_guidance:
323
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
324
+ seq_len = negative_prompt_embeds.shape[1]
325
+
326
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
327
+
328
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
329
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
330
+
331
+ if self.text_encoder is not None:
332
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
333
+ # Retrieve the original scale by scaling back the LoRA layers
334
+ unscale_lora_layers(self.text_encoder, lora_scale)
335
+
336
+ return prompt_embeds, negative_prompt_embeds
337
+
338
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
339
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
340
+ dtype = next(self.image_encoder.parameters()).dtype
341
+
342
+ if not isinstance(image, torch.Tensor):
343
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
344
+
345
+ image = image.to(device=device, dtype=dtype)
346
+ if output_hidden_states:
347
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
348
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
349
+ uncond_image_enc_hidden_states = self.image_encoder(
350
+ torch.zeros_like(image), output_hidden_states=True
351
+ ).hidden_states[-2]
352
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
353
+ num_images_per_prompt, dim=0
354
+ )
355
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
356
+ else:
357
+ image_embeds = self.image_encoder(image).image_embeds
358
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
359
+ uncond_image_embeds = torch.zeros_like(image_embeds)
360
+
361
+ return image_embeds, uncond_image_embeds
362
+
363
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
364
+ def prepare_ip_adapter_image_embeds(
365
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
366
+ ):
367
+ image_embeds = []
368
+ if do_classifier_free_guidance:
369
+ negative_image_embeds = []
370
+ if ip_adapter_image_embeds is None:
371
+ if not isinstance(ip_adapter_image, list):
372
+ ip_adapter_image = [ip_adapter_image]
373
+
374
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
375
+ raise ValueError(
376
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
377
+ )
378
+
379
+ for single_ip_adapter_image, image_proj_layer in zip(
380
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
381
+ ):
382
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
383
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
384
+ single_ip_adapter_image, device, 1, output_hidden_state
385
+ )
386
+
387
+ image_embeds.append(single_image_embeds[None, :])
388
+ if do_classifier_free_guidance:
389
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
390
+ else:
391
+ for single_image_embeds in ip_adapter_image_embeds:
392
+ if do_classifier_free_guidance:
393
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
394
+ negative_image_embeds.append(single_negative_image_embeds)
395
+ image_embeds.append(single_image_embeds)
396
+
397
+ ip_adapter_image_embeds = []
398
+ for i, single_image_embeds in enumerate(image_embeds):
399
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
400
+ if do_classifier_free_guidance:
401
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
402
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
403
+
404
+ single_image_embeds = single_image_embeds.to(device=device)
405
+ ip_adapter_image_embeds.append(single_image_embeds)
406
+
407
+ return ip_adapter_image_embeds
408
+
409
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
410
+ def decode_latents(self, latents, decode_chunk_size: int = 16):
411
+ latents = 1 / self.vae.config.scaling_factor * latents
412
+
413
+ batch_size, channels, num_frames, height, width = latents.shape
414
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
415
+
416
+ video = []
417
+ for i in range(0, latents.shape[0], decode_chunk_size):
418
+ batch_latents = latents[i : i + decode_chunk_size]
419
+ batch_latents = self.vae.decode(batch_latents).sample
420
+ video.append(batch_latents)
421
+
422
+ video = torch.cat(video)
423
+ video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
424
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
425
+ video = video.float()
426
+ return video
427
+
428
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
429
+ def prepare_extra_step_kwargs(self, generator, eta):
430
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
431
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
432
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
433
+ # and should be between [0, 1]
434
+
435
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
436
+ extra_step_kwargs = {}
437
+ if accepts_eta:
438
+ extra_step_kwargs["eta"] = eta
439
+
440
+ # check if the scheduler accepts generator
441
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
442
+ if accepts_generator:
443
+ extra_step_kwargs["generator"] = generator
444
+ return extra_step_kwargs
445
+
446
+ # Copied from diffusers.pipelines.pia.pipeline_pia.PIAPipeline.check_inputs
447
+ def check_inputs(
448
+ self,
449
+ prompt,
450
+ height,
451
+ width,
452
+ negative_prompt=None,
453
+ prompt_embeds=None,
454
+ negative_prompt_embeds=None,
455
+ ip_adapter_image=None,
456
+ ip_adapter_image_embeds=None,
457
+ callback_on_step_end_tensor_inputs=None,
458
+ ):
459
+ if height % 8 != 0 or width % 8 != 0:
460
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
461
+
462
+ if callback_on_step_end_tensor_inputs is not None and not all(
463
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
464
+ ):
465
+ raise ValueError(
466
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
467
+ )
468
+
469
+ if prompt is not None and prompt_embeds is not None:
470
+ raise ValueError(
471
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
472
+ " only forward one of the two."
473
+ )
474
+ elif prompt is None and prompt_embeds is None:
475
+ raise ValueError(
476
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
477
+ )
478
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
479
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
480
+
481
+ if negative_prompt is not None and negative_prompt_embeds is not None:
482
+ raise ValueError(
483
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
484
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
485
+ )
486
+
487
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
488
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
489
+ raise ValueError(
490
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
491
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
492
+ f" {negative_prompt_embeds.shape}."
493
+ )
494
+
495
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
496
+ raise ValueError(
497
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
498
+ )
499
+
500
+ if ip_adapter_image_embeds is not None:
501
+ if not isinstance(ip_adapter_image_embeds, list):
502
+ raise ValueError(
503
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
504
+ )
505
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
506
+ raise ValueError(
507
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
508
+ )
509
+
510
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.prepare_latents
511
+ def prepare_latents(
512
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
513
+ ):
514
+ # If FreeNoise is enabled, generate latents as described in Equation (7) of [FreeNoise](https://arxiv.org/abs/2310.15169)
515
+ if self.free_noise_enabled:
516
+ latents = self._prepare_latents_free_noise(
517
+ batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents
518
+ )
519
+
520
+ if isinstance(generator, list) and len(generator) != batch_size:
521
+ raise ValueError(
522
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
523
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
524
+ )
525
+
526
+ shape = (
527
+ batch_size,
528
+ num_channels_latents,
529
+ num_frames,
530
+ height // self.vae_scale_factor,
531
+ width // self.vae_scale_factor,
532
+ )
533
+
534
+ if latents is None:
535
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
536
+ else:
537
+ latents = latents.to(device)
538
+
539
+ # scale the initial noise by the standard deviation required by the scheduler
540
+ latents = latents * self.scheduler.init_noise_sigma
541
+ return latents
542
+
543
+ @property
544
+ def guidance_scale(self):
545
+ return self._guidance_scale
546
+
547
+ @property
548
+ def clip_skip(self):
549
+ return self._clip_skip
550
+
551
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
552
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
553
+ # corresponds to doing no classifier free guidance.
554
+ @property
555
+ def do_classifier_free_guidance(self):
556
+ return self._guidance_scale > 1
557
+
558
+ @property
559
+ def cross_attention_kwargs(self):
560
+ return self._cross_attention_kwargs
561
+
562
+ @property
563
+ def num_timesteps(self):
564
+ return self._num_timesteps
565
+
566
+ @torch.no_grad()
567
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
568
+ def __call__(
569
+ self,
570
+ prompt: Optional[Union[str, List[str]]] = None,
571
+ num_frames: Optional[int] = 16,
572
+ height: Optional[int] = None,
573
+ width: Optional[int] = None,
574
+ num_inference_steps: int = 50,
575
+ guidance_scale: float = 7.5,
576
+ negative_prompt: Optional[Union[str, List[str]]] = None,
577
+ num_videos_per_prompt: Optional[int] = 1,
578
+ eta: float = 0.0,
579
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
580
+ latents: Optional[torch.Tensor] = None,
581
+ prompt_embeds: Optional[torch.Tensor] = None,
582
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
583
+ ip_adapter_image: Optional[PipelineImageInput] = None,
584
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
585
+ output_type: Optional[str] = "pil",
586
+ return_dict: bool = True,
587
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
588
+ clip_skip: Optional[int] = None,
589
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
590
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
591
+ decode_chunk_size: int = 16,
592
+ pag_scale: float = 3.0,
593
+ pag_adaptive_scale: float = 0.0,
594
+ ):
595
+ r"""
596
+ The call function to the pipeline for generation.
597
+
598
+ Args:
599
+ prompt (`str` or `List[str]`, *optional*):
600
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
601
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
602
+ The height in pixels of the generated video.
603
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
604
+ The width in pixels of the generated video.
605
+ num_frames (`int`, *optional*, defaults to 16):
606
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
607
+ amounts to 2 seconds of video.
608
+ num_inference_steps (`int`, *optional*, defaults to 50):
609
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
610
+ expense of slower inference.
611
+ guidance_scale (`float`, *optional*, defaults to 7.5):
612
+ A higher guidance scale value encourages the model to generate images closely linked to the text
613
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
614
+ negative_prompt (`str` or `List[str]`, *optional*):
615
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
616
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
617
+ eta (`float`, *optional*, defaults to 0.0):
618
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
619
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
620
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
621
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
622
+ generation deterministic.
623
+ latents (`torch.Tensor`, *optional*):
624
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
625
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
626
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
627
+ `(batch_size, num_channel, num_frames, height, width)`.
628
+ prompt_embeds (`torch.Tensor`, *optional*):
629
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
630
+ provided, text embeddings are generated from the `prompt` input argument.
631
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
632
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
633
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
634
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
635
+ Optional image input to work with IP Adapters.
636
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
637
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
638
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
639
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
640
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
641
+ output_type (`str`, *optional*, defaults to `"pil"`):
642
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
643
+ return_dict (`bool`, *optional*, defaults to `True`):
644
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
645
+ of a plain tuple.
646
+ cross_attention_kwargs (`dict`, *optional*):
647
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
648
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
649
+ clip_skip (`int`, *optional*):
650
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
651
+ the output of the pre-final layer will be used for computing the prompt embeddings.
652
+ callback_on_step_end (`Callable`, *optional*):
653
+ A function that calls at the end of each denoising steps during the inference. The function is called
654
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
655
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
656
+ `callback_on_step_end_tensor_inputs`.
657
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
658
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
659
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
660
+ `._callback_tensor_inputs` attribute of your pipeline class.
661
+ pag_scale (`float`, *optional*, defaults to 3.0):
662
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
663
+ guidance will not be used.
664
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
665
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
666
+ used.
667
+
668
+ Examples:
669
+
670
+ Returns:
671
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
672
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
673
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
674
+ """
675
+
676
+ # 0. Default height and width to unet
677
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
678
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
679
+
680
+ num_videos_per_prompt = 1
681
+
682
+ # 1. Check inputs. Raise error if not correct
683
+ self.check_inputs(
684
+ prompt,
685
+ height,
686
+ width,
687
+ negative_prompt,
688
+ prompt_embeds,
689
+ negative_prompt_embeds,
690
+ ip_adapter_image,
691
+ ip_adapter_image_embeds,
692
+ callback_on_step_end_tensor_inputs,
693
+ )
694
+
695
+ self._guidance_scale = guidance_scale
696
+ self._clip_skip = clip_skip
697
+ self._cross_attention_kwargs = cross_attention_kwargs
698
+ self._pag_scale = pag_scale
699
+ self._pag_adaptive_scale = pag_adaptive_scale
700
+
701
+ # 2. Define call parameters
702
+ if prompt is not None and isinstance(prompt, str):
703
+ batch_size = 1
704
+ elif prompt is not None and isinstance(prompt, list):
705
+ batch_size = len(prompt)
706
+ else:
707
+ batch_size = prompt_embeds.shape[0]
708
+
709
+ device = self._execution_device
710
+
711
+ # 3. Encode input prompt
712
+ text_encoder_lora_scale = (
713
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
714
+ )
715
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
716
+ prompt,
717
+ device,
718
+ num_videos_per_prompt,
719
+ self.do_classifier_free_guidance,
720
+ negative_prompt,
721
+ prompt_embeds=prompt_embeds,
722
+ negative_prompt_embeds=negative_prompt_embeds,
723
+ lora_scale=text_encoder_lora_scale,
724
+ clip_skip=self.clip_skip,
725
+ )
726
+
727
+ # For classifier free guidance, we need to do two forward passes.
728
+ # Here we concatenate the unconditional and text embeddings into a single batch
729
+ # to avoid doing two forward passes
730
+ if self.do_perturbed_attention_guidance:
731
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
732
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
733
+ )
734
+ elif self.do_classifier_free_guidance:
735
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
736
+
737
+ prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
738
+
739
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
740
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
741
+ ip_adapter_image,
742
+ ip_adapter_image_embeds,
743
+ device,
744
+ batch_size * num_videos_per_prompt,
745
+ self.do_classifier_free_guidance,
746
+ )
747
+
748
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
749
+ negative_image_embeds = None
750
+ if self.do_classifier_free_guidance:
751
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
752
+ if self.do_perturbed_attention_guidance:
753
+ image_embeds = self._prepare_perturbed_attention_guidance(
754
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
755
+ )
756
+ elif self.do_classifier_free_guidance:
757
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
758
+ image_embeds = image_embeds.to(device)
759
+ ip_adapter_image_embeds[i] = image_embeds
760
+
761
+ # 4. Prepare timesteps
762
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
763
+ timesteps = self.scheduler.timesteps
764
+
765
+ # 5. Prepare latent variables
766
+ num_channels_latents = self.unet.config.in_channels
767
+ latents = self.prepare_latents(
768
+ batch_size * num_videos_per_prompt,
769
+ num_channels_latents,
770
+ num_frames,
771
+ height,
772
+ width,
773
+ prompt_embeds.dtype,
774
+ device,
775
+ generator,
776
+ latents,
777
+ )
778
+
779
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
780
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
781
+
782
+ # 7. Add image embeds for IP-Adapter
783
+ added_cond_kwargs = (
784
+ {"image_embeds": ip_adapter_image_embeds}
785
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
786
+ else None
787
+ )
788
+
789
+ if self.do_perturbed_attention_guidance:
790
+ original_attn_proc = self.unet.attn_processors
791
+ self._set_pag_attn_processor(
792
+ pag_applied_layers=self.pag_applied_layers,
793
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
794
+ )
795
+
796
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
797
+ for free_init_iter in range(num_free_init_iters):
798
+ if self.free_init_enabled:
799
+ latents, timesteps = self._apply_free_init(
800
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
801
+ )
802
+
803
+ self._num_timesteps = len(timesteps)
804
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
805
+
806
+ # 8. Denoising loop
807
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
808
+ for i, t in enumerate(timesteps):
809
+ # expand the latents if we are doing classifier free guidance
810
+ latent_model_input = torch.cat(
811
+ [latents] * (prompt_embeds.shape[0] // num_frames // latents.shape[0])
812
+ )
813
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
814
+
815
+ # predict the noise residual
816
+ noise_pred = self.unet(
817
+ latent_model_input,
818
+ t,
819
+ encoder_hidden_states=prompt_embeds,
820
+ cross_attention_kwargs=cross_attention_kwargs,
821
+ added_cond_kwargs=added_cond_kwargs,
822
+ ).sample
823
+
824
+ # perform guidance
825
+ if self.do_perturbed_attention_guidance:
826
+ noise_pred = self._apply_perturbed_attention_guidance(
827
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
828
+ )
829
+ elif self.do_classifier_free_guidance:
830
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
831
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
832
+
833
+ # compute the previous noisy sample x_t -> x_t-1
834
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
835
+
836
+ if callback_on_step_end is not None:
837
+ callback_kwargs = {}
838
+ for k in callback_on_step_end_tensor_inputs:
839
+ callback_kwargs[k] = locals()[k]
840
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
841
+
842
+ latents = callback_outputs.pop("latents", latents)
843
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
844
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
845
+
846
+ # call the callback, if provided
847
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
848
+ progress_bar.update()
849
+
850
+ # 9. Post processing
851
+ if output_type == "latent":
852
+ video = latents
853
+ else:
854
+ video_tensor = self.decode_latents(latents, decode_chunk_size)
855
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
856
+
857
+ # 10. Offload all models
858
+ self.maybe_free_model_hooks()
859
+
860
+ if self.do_perturbed_attention_guidance:
861
+ self.unet.set_attn_processor(original_attn_proc)
862
+
863
+ if not return_dict:
864
+ return (video,)
865
+
866
+ return AnimateDiffPipelineOutput(frames=video)