diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1204 @@
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import PIL
6
+ import torch
7
+ from transformers import (
8
+ CLIPTextModel,
9
+ CLIPTokenizer,
10
+ T5EncoderModel,
11
+ T5TokenizerFast,
12
+ )
13
+
14
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
15
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
16
+ from ...models.autoencoders import AutoencoderKL
17
+ from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
18
+ from ...models.transformers import FluxTransformer2DModel
19
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
20
+ from ...utils import (
21
+ USE_PEFT_BACKEND,
22
+ is_torch_xla_available,
23
+ logging,
24
+ replace_example_docstring,
25
+ scale_lora_layers,
26
+ unscale_lora_layers,
27
+ )
28
+ from ...utils.torch_utils import randn_tensor
29
+ from ..pipeline_utils import DiffusionPipeline
30
+ from .pipeline_output import FluxPipelineOutput
31
+
32
+
33
+ if is_torch_xla_available():
34
+ import torch_xla.core.xla_model as xm
35
+
36
+ XLA_AVAILABLE = True
37
+ else:
38
+ XLA_AVAILABLE = False
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ EXAMPLE_DOC_STRING = """
43
+ Examples:
44
+ ```py
45
+ >>> import torch
46
+ >>> from diffusers import FluxControlNetInpaintPipeline
47
+ >>> from diffusers.models import FluxControlNetModel
48
+ >>> from diffusers.utils import load_image
49
+
50
+ >>> controlnet = FluxControlNetModel.from_pretrained(
51
+ ... "InstantX/FLUX.1-dev-controlnet-canny", torch_dtype=torch.float16
52
+ ... )
53
+ >>> pipe = FluxControlNetInpaintPipeline.from_pretrained(
54
+ ... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16
55
+ ... )
56
+ >>> pipe.to("cuda")
57
+
58
+ >>> control_image = load_image(
59
+ ... "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
60
+ ... )
61
+ >>> init_image = load_image(
62
+ ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
63
+ ... )
64
+ >>> mask_image = load_image(
65
+ ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
66
+ ... )
67
+
68
+ >>> prompt = "A girl holding a sign that says InstantX"
69
+ >>> image = pipe(
70
+ ... prompt,
71
+ ... image=init_image,
72
+ ... mask_image=mask_image,
73
+ ... control_image=control_image,
74
+ ... control_guidance_start=0.2,
75
+ ... control_guidance_end=0.8,
76
+ ... controlnet_conditioning_scale=0.7,
77
+ ... strength=0.7,
78
+ ... num_inference_steps=28,
79
+ ... guidance_scale=3.5,
80
+ ... ).images[0]
81
+ >>> image.save("flux_controlnet_inpaint.png")
82
+ ```
83
+ """
84
+
85
+
86
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
87
+ def calculate_shift(
88
+ image_seq_len,
89
+ base_seq_len: int = 256,
90
+ max_seq_len: int = 4096,
91
+ base_shift: float = 0.5,
92
+ max_shift: float = 1.16,
93
+ ):
94
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
95
+ b = base_shift - m * base_seq_len
96
+ mu = image_seq_len * m + b
97
+ return mu
98
+
99
+
100
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
101
+ def retrieve_latents(
102
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
103
+ ):
104
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
105
+ return encoder_output.latent_dist.sample(generator)
106
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
107
+ return encoder_output.latent_dist.mode()
108
+ elif hasattr(encoder_output, "latents"):
109
+ return encoder_output.latents
110
+ else:
111
+ raise AttributeError("Could not access latents of provided encoder_output")
112
+
113
+
114
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
115
+ def retrieve_timesteps(
116
+ scheduler,
117
+ num_inference_steps: Optional[int] = None,
118
+ device: Optional[Union[str, torch.device]] = None,
119
+ timesteps: Optional[List[int]] = None,
120
+ sigmas: Optional[List[float]] = None,
121
+ **kwargs,
122
+ ):
123
+ r"""
124
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
125
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
126
+
127
+ Args:
128
+ scheduler (`SchedulerMixin`):
129
+ The scheduler to get timesteps from.
130
+ num_inference_steps (`int`):
131
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
132
+ must be `None`.
133
+ device (`str` or `torch.device`, *optional*):
134
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
135
+ timesteps (`List[int]`, *optional*):
136
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
137
+ `num_inference_steps` and `sigmas` must be `None`.
138
+ sigmas (`List[float]`, *optional*):
139
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
140
+ `num_inference_steps` and `timesteps` must be `None`.
141
+
142
+ Returns:
143
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
144
+ second element is the number of inference steps.
145
+ """
146
+ if timesteps is not None and sigmas is not None:
147
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
148
+ if timesteps is not None:
149
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
150
+ if not accepts_timesteps:
151
+ raise ValueError(
152
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
153
+ f" timestep schedules. Please check whether you are using the correct scheduler."
154
+ )
155
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
156
+ timesteps = scheduler.timesteps
157
+ num_inference_steps = len(timesteps)
158
+ elif sigmas is not None:
159
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
160
+ if not accept_sigmas:
161
+ raise ValueError(
162
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
163
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
164
+ )
165
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
166
+ timesteps = scheduler.timesteps
167
+ num_inference_steps = len(timesteps)
168
+ else:
169
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
170
+ timesteps = scheduler.timesteps
171
+ return timesteps, num_inference_steps
172
+
173
+
174
+ class FluxControlNetInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
175
+ r"""
176
+ The Flux controlnet pipeline for inpainting.
177
+
178
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
179
+
180
+ Args:
181
+ transformer ([`FluxTransformer2DModel`]):
182
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
183
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
184
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
185
+ vae ([`AutoencoderKL`]):
186
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
187
+ text_encoder ([`CLIPTextModel`]):
188
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
189
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
190
+ text_encoder_2 ([`T5EncoderModel`]):
191
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
192
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
193
+ tokenizer (`CLIPTokenizer`):
194
+ Tokenizer of class
195
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
196
+ tokenizer_2 (`T5TokenizerFast`):
197
+ Second Tokenizer of class
198
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
199
+ """
200
+
201
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
202
+ _optional_components = []
203
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
204
+
205
+ def __init__(
206
+ self,
207
+ scheduler: FlowMatchEulerDiscreteScheduler,
208
+ vae: AutoencoderKL,
209
+ text_encoder: CLIPTextModel,
210
+ tokenizer: CLIPTokenizer,
211
+ text_encoder_2: T5EncoderModel,
212
+ tokenizer_2: T5TokenizerFast,
213
+ transformer: FluxTransformer2DModel,
214
+ controlnet: Union[
215
+ FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
216
+ ],
217
+ ):
218
+ super().__init__()
219
+ if isinstance(controlnet, (list, tuple)):
220
+ controlnet = FluxMultiControlNetModel(controlnet)
221
+
222
+ self.register_modules(
223
+ scheduler=scheduler,
224
+ vae=vae,
225
+ text_encoder=text_encoder,
226
+ tokenizer=tokenizer,
227
+ text_encoder_2=text_encoder_2,
228
+ tokenizer_2=tokenizer_2,
229
+ transformer=transformer,
230
+ controlnet=controlnet,
231
+ )
232
+
233
+ self.vae_scale_factor = (
234
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
235
+ )
236
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
237
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
238
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
239
+ self.mask_processor = VaeImageProcessor(
240
+ vae_scale_factor=self.vae_scale_factor * 2,
241
+ vae_latent_channels=self.vae.config.latent_channels,
242
+ do_normalize=False,
243
+ do_binarize=True,
244
+ do_convert_grayscale=True,
245
+ )
246
+ self.tokenizer_max_length = (
247
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
248
+ )
249
+ self.default_sample_size = 128
250
+
251
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
252
+ def _get_t5_prompt_embeds(
253
+ self,
254
+ prompt: Union[str, List[str]] = None,
255
+ num_images_per_prompt: int = 1,
256
+ max_sequence_length: int = 512,
257
+ device: Optional[torch.device] = None,
258
+ dtype: Optional[torch.dtype] = None,
259
+ ):
260
+ device = device or self._execution_device
261
+ dtype = dtype or self.text_encoder.dtype
262
+
263
+ prompt = [prompt] if isinstance(prompt, str) else prompt
264
+ batch_size = len(prompt)
265
+
266
+ if isinstance(self, TextualInversionLoaderMixin):
267
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
268
+
269
+ text_inputs = self.tokenizer_2(
270
+ prompt,
271
+ padding="max_length",
272
+ max_length=max_sequence_length,
273
+ truncation=True,
274
+ return_length=False,
275
+ return_overflowing_tokens=False,
276
+ return_tensors="pt",
277
+ )
278
+ text_input_ids = text_inputs.input_ids
279
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
280
+
281
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
282
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
283
+ logger.warning(
284
+ "The following part of your input was truncated because `max_sequence_length` is set to "
285
+ f" {max_sequence_length} tokens: {removed_text}"
286
+ )
287
+
288
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
289
+
290
+ dtype = self.text_encoder_2.dtype
291
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
292
+
293
+ _, seq_len, _ = prompt_embeds.shape
294
+
295
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
296
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
297
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
298
+
299
+ return prompt_embeds
300
+
301
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
302
+ def _get_clip_prompt_embeds(
303
+ self,
304
+ prompt: Union[str, List[str]],
305
+ num_images_per_prompt: int = 1,
306
+ device: Optional[torch.device] = None,
307
+ ):
308
+ device = device or self._execution_device
309
+
310
+ prompt = [prompt] if isinstance(prompt, str) else prompt
311
+ batch_size = len(prompt)
312
+
313
+ if isinstance(self, TextualInversionLoaderMixin):
314
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
315
+
316
+ text_inputs = self.tokenizer(
317
+ prompt,
318
+ padding="max_length",
319
+ max_length=self.tokenizer_max_length,
320
+ truncation=True,
321
+ return_overflowing_tokens=False,
322
+ return_length=False,
323
+ return_tensors="pt",
324
+ )
325
+
326
+ text_input_ids = text_inputs.input_ids
327
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
328
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
329
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
330
+ logger.warning(
331
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
332
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
333
+ )
334
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
335
+
336
+ # Use pooled output of CLIPTextModel
337
+ prompt_embeds = prompt_embeds.pooler_output
338
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
339
+
340
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
341
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
342
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
343
+
344
+ return prompt_embeds
345
+
346
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
347
+ def encode_prompt(
348
+ self,
349
+ prompt: Union[str, List[str]],
350
+ prompt_2: Union[str, List[str]],
351
+ device: Optional[torch.device] = None,
352
+ num_images_per_prompt: int = 1,
353
+ prompt_embeds: Optional[torch.FloatTensor] = None,
354
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
355
+ max_sequence_length: int = 512,
356
+ lora_scale: Optional[float] = None,
357
+ ):
358
+ r"""
359
+
360
+ Args:
361
+ prompt (`str` or `List[str]`, *optional*):
362
+ prompt to be encoded
363
+ prompt_2 (`str` or `List[str]`, *optional*):
364
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
365
+ used in all text-encoders
366
+ device: (`torch.device`):
367
+ torch device
368
+ num_images_per_prompt (`int`):
369
+ number of images that should be generated per prompt
370
+ prompt_embeds (`torch.FloatTensor`, *optional*):
371
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
372
+ provided, text embeddings will be generated from `prompt` input argument.
373
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
374
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
375
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
376
+ lora_scale (`float`, *optional*):
377
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
378
+ """
379
+ device = device or self._execution_device
380
+
381
+ # set lora scale so that monkey patched LoRA
382
+ # function of text encoder can correctly access it
383
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
384
+ self._lora_scale = lora_scale
385
+
386
+ # dynamically adjust the LoRA scale
387
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
388
+ scale_lora_layers(self.text_encoder, lora_scale)
389
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
390
+ scale_lora_layers(self.text_encoder_2, lora_scale)
391
+
392
+ prompt = [prompt] if isinstance(prompt, str) else prompt
393
+
394
+ if prompt_embeds is None:
395
+ prompt_2 = prompt_2 or prompt
396
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
397
+
398
+ # We only use the pooled prompt output from the CLIPTextModel
399
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
400
+ prompt=prompt,
401
+ device=device,
402
+ num_images_per_prompt=num_images_per_prompt,
403
+ )
404
+ prompt_embeds = self._get_t5_prompt_embeds(
405
+ prompt=prompt_2,
406
+ num_images_per_prompt=num_images_per_prompt,
407
+ max_sequence_length=max_sequence_length,
408
+ device=device,
409
+ )
410
+
411
+ if self.text_encoder is not None:
412
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
413
+ # Retrieve the original scale by scaling back the LoRA layers
414
+ unscale_lora_layers(self.text_encoder, lora_scale)
415
+
416
+ if self.text_encoder_2 is not None:
417
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
418
+ # Retrieve the original scale by scaling back the LoRA layers
419
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
420
+
421
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
422
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
423
+
424
+ return prompt_embeds, pooled_prompt_embeds, text_ids
425
+
426
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
427
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
428
+ if isinstance(generator, list):
429
+ image_latents = [
430
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
431
+ for i in range(image.shape[0])
432
+ ]
433
+ image_latents = torch.cat(image_latents, dim=0)
434
+ else:
435
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
436
+
437
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
438
+
439
+ return image_latents
440
+
441
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
442
+ def get_timesteps(self, num_inference_steps, strength, device):
443
+ # get the original timestep using init_timestep
444
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
445
+
446
+ t_start = int(max(num_inference_steps - init_timestep, 0))
447
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
448
+ if hasattr(self.scheduler, "set_begin_index"):
449
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
450
+
451
+ return timesteps, num_inference_steps - t_start
452
+
453
+ def check_inputs(
454
+ self,
455
+ prompt,
456
+ prompt_2,
457
+ image,
458
+ mask_image,
459
+ strength,
460
+ height,
461
+ width,
462
+ output_type,
463
+ prompt_embeds=None,
464
+ pooled_prompt_embeds=None,
465
+ callback_on_step_end_tensor_inputs=None,
466
+ padding_mask_crop=None,
467
+ max_sequence_length=None,
468
+ ):
469
+ if strength < 0 or strength > 1:
470
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
471
+
472
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
473
+ logger.warning(
474
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
475
+ )
476
+
477
+ if callback_on_step_end_tensor_inputs is not None and not all(
478
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
479
+ ):
480
+ raise ValueError(
481
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
482
+ )
483
+
484
+ if prompt is not None and prompt_embeds is not None:
485
+ raise ValueError(
486
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
487
+ " only forward one of the two."
488
+ )
489
+ elif prompt_2 is not None and prompt_embeds is not None:
490
+ raise ValueError(
491
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
492
+ " only forward one of the two."
493
+ )
494
+ elif prompt is None and prompt_embeds is None:
495
+ raise ValueError(
496
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
497
+ )
498
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
499
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
500
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
501
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
502
+
503
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
504
+ raise ValueError(
505
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
506
+ )
507
+
508
+ if padding_mask_crop is not None:
509
+ if not isinstance(image, PIL.Image.Image):
510
+ raise ValueError(
511
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
512
+ )
513
+ if not isinstance(mask_image, PIL.Image.Image):
514
+ raise ValueError(
515
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
516
+ f" {type(mask_image)}."
517
+ )
518
+ if output_type != "pil":
519
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
520
+
521
+ if max_sequence_length is not None and max_sequence_length > 512:
522
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
523
+
524
+ @staticmethod
525
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
526
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
527
+ latent_image_ids = torch.zeros(height, width, 3)
528
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
529
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
530
+
531
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
532
+
533
+ latent_image_ids = latent_image_ids.reshape(
534
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
535
+ )
536
+
537
+ return latent_image_ids.to(device=device, dtype=dtype)
538
+
539
+ @staticmethod
540
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
541
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
542
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
543
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
544
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
545
+
546
+ return latents
547
+
548
+ @staticmethod
549
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
550
+ def _unpack_latents(latents, height, width, vae_scale_factor):
551
+ batch_size, num_patches, channels = latents.shape
552
+
553
+ # VAE applies 8x compression on images but we must also account for packing which requires
554
+ # latent height and width to be divisible by 2.
555
+ height = 2 * (int(height) // (vae_scale_factor * 2))
556
+ width = 2 * (int(width) // (vae_scale_factor * 2))
557
+
558
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
559
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
560
+
561
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
562
+
563
+ return latents
564
+
565
+ # Copied from diffusers.pipelines.flux.pipeline_flux_inpaint.FluxInpaintPipeline.prepare_latents
566
+ def prepare_latents(
567
+ self,
568
+ image,
569
+ timestep,
570
+ batch_size,
571
+ num_channels_latents,
572
+ height,
573
+ width,
574
+ dtype,
575
+ device,
576
+ generator,
577
+ latents=None,
578
+ ):
579
+ if isinstance(generator, list) and len(generator) != batch_size:
580
+ raise ValueError(
581
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
582
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
583
+ )
584
+
585
+ # VAE applies 8x compression on images but we must also account for packing which requires
586
+ # latent height and width to be divisible by 2.
587
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
588
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
589
+ shape = (batch_size, num_channels_latents, height, width)
590
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
591
+
592
+ image = image.to(device=device, dtype=dtype)
593
+ image_latents = self._encode_vae_image(image=image, generator=generator)
594
+
595
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
596
+ # expand init_latents for batch_size
597
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
598
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
599
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
600
+ raise ValueError(
601
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
602
+ )
603
+ else:
604
+ image_latents = torch.cat([image_latents], dim=0)
605
+
606
+ if latents is None:
607
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
608
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
609
+ else:
610
+ noise = latents.to(device)
611
+ latents = noise
612
+
613
+ noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
614
+ image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
615
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
616
+ return latents, noise, image_latents, latent_image_ids
617
+
618
+ # Copied from diffusers.pipelines.flux.pipeline_flux_inpaint.FluxInpaintPipeline.prepare_mask_latents
619
+ def prepare_mask_latents(
620
+ self,
621
+ mask,
622
+ masked_image,
623
+ batch_size,
624
+ num_channels_latents,
625
+ num_images_per_prompt,
626
+ height,
627
+ width,
628
+ dtype,
629
+ device,
630
+ generator,
631
+ ):
632
+ # VAE applies 8x compression on images but we must also account for packing which requires
633
+ # latent height and width to be divisible by 2.
634
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
635
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
636
+ # resize the mask to latents shape as we concatenate the mask to the latents
637
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
638
+ # and half precision
639
+ mask = torch.nn.functional.interpolate(mask, size=(height, width))
640
+ mask = mask.to(device=device, dtype=dtype)
641
+
642
+ batch_size = batch_size * num_images_per_prompt
643
+
644
+ masked_image = masked_image.to(device=device, dtype=dtype)
645
+
646
+ if masked_image.shape[1] == 16:
647
+ masked_image_latents = masked_image
648
+ else:
649
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
650
+
651
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
652
+
653
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
654
+ if mask.shape[0] < batch_size:
655
+ if not batch_size % mask.shape[0] == 0:
656
+ raise ValueError(
657
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
658
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
659
+ " of masks that you pass is divisible by the total requested batch size."
660
+ )
661
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
662
+ if masked_image_latents.shape[0] < batch_size:
663
+ if not batch_size % masked_image_latents.shape[0] == 0:
664
+ raise ValueError(
665
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
666
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
667
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
668
+ )
669
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
670
+
671
+ # aligning device to prevent device errors when concating it with the latent model input
672
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
673
+ masked_image_latents = self._pack_latents(
674
+ masked_image_latents,
675
+ batch_size,
676
+ num_channels_latents,
677
+ height,
678
+ width,
679
+ )
680
+ mask = self._pack_latents(
681
+ mask.repeat(1, num_channels_latents, 1, 1),
682
+ batch_size,
683
+ num_channels_latents,
684
+ height,
685
+ width,
686
+ )
687
+
688
+ return mask, masked_image_latents
689
+
690
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
691
+ def prepare_image(
692
+ self,
693
+ image,
694
+ width,
695
+ height,
696
+ batch_size,
697
+ num_images_per_prompt,
698
+ device,
699
+ dtype,
700
+ do_classifier_free_guidance=False,
701
+ guess_mode=False,
702
+ ):
703
+ if isinstance(image, torch.Tensor):
704
+ pass
705
+ else:
706
+ image = self.image_processor.preprocess(image, height=height, width=width)
707
+
708
+ image_batch_size = image.shape[0]
709
+
710
+ if image_batch_size == 1:
711
+ repeat_by = batch_size
712
+ else:
713
+ # image batch size is the same as prompt batch size
714
+ repeat_by = num_images_per_prompt
715
+
716
+ image = image.repeat_interleave(repeat_by, dim=0)
717
+
718
+ image = image.to(device=device, dtype=dtype)
719
+
720
+ if do_classifier_free_guidance and not guess_mode:
721
+ image = torch.cat([image] * 2)
722
+
723
+ return image
724
+
725
+ @property
726
+ def guidance_scale(self):
727
+ return self._guidance_scale
728
+
729
+ @property
730
+ def joint_attention_kwargs(self):
731
+ return self._joint_attention_kwargs
732
+
733
+ @property
734
+ def num_timesteps(self):
735
+ return self._num_timesteps
736
+
737
+ @property
738
+ def interrupt(self):
739
+ return self._interrupt
740
+
741
+ @torch.no_grad()
742
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
743
+ def __call__(
744
+ self,
745
+ prompt: Union[str, List[str]] = None,
746
+ prompt_2: Optional[Union[str, List[str]]] = None,
747
+ image: PipelineImageInput = None,
748
+ mask_image: PipelineImageInput = None,
749
+ masked_image_latents: PipelineImageInput = None,
750
+ control_image: PipelineImageInput = None,
751
+ height: Optional[int] = None,
752
+ width: Optional[int] = None,
753
+ strength: float = 0.6,
754
+ padding_mask_crop: Optional[int] = None,
755
+ sigmas: Optional[List[float]] = None,
756
+ num_inference_steps: int = 28,
757
+ guidance_scale: float = 7.0,
758
+ control_guidance_start: Union[float, List[float]] = 0.0,
759
+ control_guidance_end: Union[float, List[float]] = 1.0,
760
+ control_mode: Optional[Union[int, List[int]]] = None,
761
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
762
+ num_images_per_prompt: Optional[int] = 1,
763
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
764
+ latents: Optional[torch.FloatTensor] = None,
765
+ prompt_embeds: Optional[torch.FloatTensor] = None,
766
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
767
+ output_type: Optional[str] = "pil",
768
+ return_dict: bool = True,
769
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
770
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
771
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
772
+ max_sequence_length: int = 512,
773
+ ):
774
+ """
775
+ Function invoked when calling the pipeline for generation.
776
+
777
+ Args:
778
+ prompt (`str` or `List[str]`, *optional*):
779
+ The prompt or prompts to guide the image generation.
780
+ prompt_2 (`str` or `List[str]`, *optional*):
781
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
782
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
783
+ The image(s) to inpaint.
784
+ mask_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
785
+ The mask image(s) to use for inpainting. White pixels in the mask will be repainted, while black pixels
786
+ will be preserved.
787
+ masked_image_latents (`torch.FloatTensor`, *optional*):
788
+ Pre-generated masked image latents.
789
+ control_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
790
+ The ControlNet input condition. Image to control the generation.
791
+ height (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor):
792
+ The height in pixels of the generated image.
793
+ width (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor):
794
+ The width in pixels of the generated image.
795
+ strength (`float`, *optional*, defaults to 0.6):
796
+ Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1.
797
+ padding_mask_crop (`int`, *optional*):
798
+ The size of the padding to use when cropping the mask.
799
+ num_inference_steps (`int`, *optional*, defaults to 28):
800
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
801
+ expense of slower inference.
802
+ sigmas (`List[float]`, *optional*):
803
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
804
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
805
+ will be used.
806
+ guidance_scale (`float`, *optional*, defaults to 7.0):
807
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
808
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
809
+ The percentage of total steps at which the ControlNet starts applying.
810
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
811
+ The percentage of total steps at which the ControlNet stops applying.
812
+ control_mode (`int` or `List[int]`, *optional*):
813
+ The mode for the ControlNet. If multiple ControlNets are used, this should be a list.
814
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
815
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
816
+ to the residual in the original transformer.
817
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
818
+ The number of images to generate per prompt.
819
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
820
+ One or more [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to
821
+ make generation deterministic.
822
+ latents (`torch.FloatTensor`, *optional*):
823
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
824
+ generation. Can be used to tweak the same generation with different prompts.
825
+ prompt_embeds (`torch.FloatTensor`, *optional*):
826
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
827
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
828
+ Pre-generated pooled text embeddings.
829
+ output_type (`str`, *optional*, defaults to `"pil"`):
830
+ The output format of the generate image. Choose between `PIL.Image` or `np.array`.
831
+ return_dict (`bool`, *optional*, defaults to `True`):
832
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
833
+ joint_attention_kwargs (`dict`, *optional*):
834
+ Additional keyword arguments to be passed to the joint attention mechanism.
835
+ callback_on_step_end (`Callable`, *optional*):
836
+ A function that calls at the end of each denoising step during the inference.
837
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
838
+ The list of tensor inputs for the `callback_on_step_end` function.
839
+ max_sequence_length (`int`, *optional*, defaults to 512):
840
+ The maximum length of the sequence to be generated.
841
+
842
+ Examples:
843
+
844
+ Returns:
845
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
846
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
847
+ images.
848
+ """
849
+ height = height or self.default_sample_size * self.vae_scale_factor
850
+ width = width or self.default_sample_size * self.vae_scale_factor
851
+
852
+ global_height = height
853
+ global_width = width
854
+
855
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
856
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
857
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
858
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
859
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
860
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
861
+ control_guidance_start, control_guidance_end = (
862
+ mult * [control_guidance_start],
863
+ mult * [control_guidance_end],
864
+ )
865
+
866
+ # 1. Check inputs
867
+ self.check_inputs(
868
+ prompt,
869
+ prompt_2,
870
+ image,
871
+ mask_image,
872
+ strength,
873
+ height,
874
+ width,
875
+ output_type=output_type,
876
+ prompt_embeds=prompt_embeds,
877
+ pooled_prompt_embeds=pooled_prompt_embeds,
878
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
879
+ padding_mask_crop=padding_mask_crop,
880
+ max_sequence_length=max_sequence_length,
881
+ )
882
+
883
+ self._guidance_scale = guidance_scale
884
+ self._joint_attention_kwargs = joint_attention_kwargs
885
+ self._interrupt = False
886
+
887
+ # 2. Define call parameters
888
+ if prompt is not None and isinstance(prompt, str):
889
+ batch_size = 1
890
+ elif prompt is not None and isinstance(prompt, list):
891
+ batch_size = len(prompt)
892
+ else:
893
+ batch_size = prompt_embeds.shape[0]
894
+
895
+ device = self._execution_device
896
+ dtype = self.transformer.dtype
897
+
898
+ # 3. Encode input prompt
899
+ lora_scale = (
900
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
901
+ )
902
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
903
+ prompt=prompt,
904
+ prompt_2=prompt_2,
905
+ prompt_embeds=prompt_embeds,
906
+ pooled_prompt_embeds=pooled_prompt_embeds,
907
+ device=device,
908
+ num_images_per_prompt=num_images_per_prompt,
909
+ max_sequence_length=max_sequence_length,
910
+ lora_scale=lora_scale,
911
+ )
912
+
913
+ # 4. Preprocess mask and image
914
+ if padding_mask_crop is not None:
915
+ crops_coords = self.mask_processor.get_crop_region(
916
+ mask_image, global_width, global_height, pad=padding_mask_crop
917
+ )
918
+ resize_mode = "fill"
919
+ else:
920
+ crops_coords = None
921
+ resize_mode = "default"
922
+
923
+ original_image = image
924
+ init_image = self.image_processor.preprocess(
925
+ image, height=global_height, width=global_width, crops_coords=crops_coords, resize_mode=resize_mode
926
+ )
927
+ init_image = init_image.to(dtype=torch.float32)
928
+
929
+ # 5. Prepare control image
930
+ num_channels_latents = self.transformer.config.in_channels // 4
931
+ if isinstance(self.controlnet, FluxControlNetModel):
932
+ control_image = self.prepare_image(
933
+ image=control_image,
934
+ width=height,
935
+ height=width,
936
+ batch_size=batch_size * num_images_per_prompt,
937
+ num_images_per_prompt=num_images_per_prompt,
938
+ device=device,
939
+ dtype=self.vae.dtype,
940
+ )
941
+ height, width = control_image.shape[-2:]
942
+
943
+ # xlab controlnet has a input_hint_block and instantx controlnet does not
944
+ controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
945
+ if self.controlnet.input_hint_block is None:
946
+ # vae encode
947
+ control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
948
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
949
+
950
+ # pack
951
+ height_control_image, width_control_image = control_image.shape[2:]
952
+ control_image = self._pack_latents(
953
+ control_image,
954
+ batch_size * num_images_per_prompt,
955
+ num_channels_latents,
956
+ height_control_image,
957
+ width_control_image,
958
+ )
959
+
960
+ # set control mode
961
+ if control_mode is not None:
962
+ control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
963
+ control_mode = control_mode.reshape([-1, 1])
964
+
965
+ elif isinstance(self.controlnet, FluxMultiControlNetModel):
966
+ control_images = []
967
+
968
+ # xlab controlnet has a input_hint_block and instantx controlnet does not
969
+ controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True
970
+ for i, control_image_ in enumerate(control_image):
971
+ control_image_ = self.prepare_image(
972
+ image=control_image_,
973
+ width=width,
974
+ height=height,
975
+ batch_size=batch_size * num_images_per_prompt,
976
+ num_images_per_prompt=num_images_per_prompt,
977
+ device=device,
978
+ dtype=self.vae.dtype,
979
+ )
980
+ height, width = control_image_.shape[-2:]
981
+
982
+ if self.controlnet.nets[0].input_hint_block is None:
983
+ # vae encode
984
+ control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
985
+ control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
986
+
987
+ # pack
988
+ height_control_image, width_control_image = control_image_.shape[2:]
989
+ control_image_ = self._pack_latents(
990
+ control_image_,
991
+ batch_size * num_images_per_prompt,
992
+ num_channels_latents,
993
+ height_control_image,
994
+ width_control_image,
995
+ )
996
+
997
+ control_images.append(control_image_)
998
+
999
+ control_image = control_images
1000
+
1001
+ # set control mode
1002
+ control_mode_ = []
1003
+ if isinstance(control_mode, list):
1004
+ for cmode in control_mode:
1005
+ if cmode is None:
1006
+ control_mode_.append(-1)
1007
+ else:
1008
+ control_mode_.append(cmode)
1009
+ control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
1010
+ control_mode = control_mode.reshape([-1, 1])
1011
+
1012
+ # 6. Prepare timesteps
1013
+
1014
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
1015
+ image_seq_len = (int(global_height) // self.vae_scale_factor // 2) * (
1016
+ int(global_width) // self.vae_scale_factor // 2
1017
+ )
1018
+ mu = calculate_shift(
1019
+ image_seq_len,
1020
+ self.scheduler.config.base_image_seq_len,
1021
+ self.scheduler.config.max_image_seq_len,
1022
+ self.scheduler.config.base_shift,
1023
+ self.scheduler.config.max_shift,
1024
+ )
1025
+ timesteps, num_inference_steps = retrieve_timesteps(
1026
+ self.scheduler,
1027
+ num_inference_steps,
1028
+ device,
1029
+ sigmas=sigmas,
1030
+ mu=mu,
1031
+ )
1032
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1033
+
1034
+ if num_inference_steps < 1:
1035
+ raise ValueError(
1036
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1037
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1038
+ )
1039
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1040
+
1041
+ # 7. Prepare latent variables
1042
+
1043
+ latents, noise, image_latents, latent_image_ids = self.prepare_latents(
1044
+ init_image,
1045
+ latent_timestep,
1046
+ batch_size * num_images_per_prompt,
1047
+ num_channels_latents,
1048
+ global_height,
1049
+ global_width,
1050
+ prompt_embeds.dtype,
1051
+ device,
1052
+ generator,
1053
+ latents,
1054
+ )
1055
+
1056
+ # 8. Prepare mask latents
1057
+ mask_condition = self.mask_processor.preprocess(
1058
+ mask_image, height=global_height, width=global_width, resize_mode=resize_mode, crops_coords=crops_coords
1059
+ )
1060
+ if masked_image_latents is None:
1061
+ masked_image = init_image * (mask_condition < 0.5)
1062
+ else:
1063
+ masked_image = masked_image_latents
1064
+
1065
+ mask, masked_image_latents = self.prepare_mask_latents(
1066
+ mask_condition,
1067
+ masked_image,
1068
+ batch_size,
1069
+ num_channels_latents,
1070
+ num_images_per_prompt,
1071
+ global_height,
1072
+ global_width,
1073
+ prompt_embeds.dtype,
1074
+ device,
1075
+ generator,
1076
+ )
1077
+
1078
+ controlnet_keep = []
1079
+ for i in range(len(timesteps)):
1080
+ keeps = [
1081
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1082
+ for s, e in zip(control_guidance_start, control_guidance_end)
1083
+ ]
1084
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
1085
+
1086
+ # 9. Denoising loop
1087
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1088
+ self._num_timesteps = len(timesteps)
1089
+
1090
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1091
+ for i, t in enumerate(timesteps):
1092
+ if self.interrupt:
1093
+ continue
1094
+
1095
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
1096
+
1097
+ # predict the noise residual
1098
+ if isinstance(self.controlnet, FluxMultiControlNetModel):
1099
+ use_guidance = self.controlnet.nets[0].config.guidance_embeds
1100
+ else:
1101
+ use_guidance = self.controlnet.config.guidance_embeds
1102
+ if use_guidance:
1103
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
1104
+ guidance = guidance.expand(latents.shape[0])
1105
+ else:
1106
+ guidance = None
1107
+
1108
+ if isinstance(controlnet_keep[i], list):
1109
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1110
+ else:
1111
+ controlnet_cond_scale = controlnet_conditioning_scale
1112
+ if isinstance(controlnet_cond_scale, list):
1113
+ controlnet_cond_scale = controlnet_cond_scale[0]
1114
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1115
+
1116
+ controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
1117
+ hidden_states=latents,
1118
+ controlnet_cond=control_image,
1119
+ controlnet_mode=control_mode,
1120
+ conditioning_scale=cond_scale,
1121
+ timestep=timestep / 1000,
1122
+ guidance=guidance,
1123
+ pooled_projections=pooled_prompt_embeds,
1124
+ encoder_hidden_states=prompt_embeds,
1125
+ txt_ids=text_ids,
1126
+ img_ids=latent_image_ids,
1127
+ joint_attention_kwargs=self.joint_attention_kwargs,
1128
+ return_dict=False,
1129
+ )
1130
+
1131
+ if self.transformer.config.guidance_embeds:
1132
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
1133
+ guidance = guidance.expand(latents.shape[0])
1134
+ else:
1135
+ guidance = None
1136
+
1137
+ noise_pred = self.transformer(
1138
+ hidden_states=latents,
1139
+ timestep=timestep / 1000,
1140
+ guidance=guidance,
1141
+ pooled_projections=pooled_prompt_embeds,
1142
+ encoder_hidden_states=prompt_embeds,
1143
+ controlnet_block_samples=controlnet_block_samples,
1144
+ controlnet_single_block_samples=controlnet_single_block_samples,
1145
+ txt_ids=text_ids,
1146
+ img_ids=latent_image_ids,
1147
+ joint_attention_kwargs=self.joint_attention_kwargs,
1148
+ return_dict=False,
1149
+ controlnet_blocks_repeat=controlnet_blocks_repeat,
1150
+ )[0]
1151
+
1152
+ # compute the previous noisy sample x_t -> x_t-1
1153
+ latents_dtype = latents.dtype
1154
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1155
+
1156
+ # For inpainting, we need to apply the mask and add the masked image latents
1157
+ init_latents_proper = image_latents
1158
+ init_mask = mask
1159
+
1160
+ if i < len(timesteps) - 1:
1161
+ noise_timestep = timesteps[i + 1]
1162
+ init_latents_proper = self.scheduler.scale_noise(
1163
+ init_latents_proper, torch.tensor([noise_timestep]), noise
1164
+ )
1165
+
1166
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1167
+
1168
+ if latents.dtype != latents_dtype:
1169
+ if torch.backends.mps.is_available():
1170
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1171
+ latents = latents.to(latents_dtype)
1172
+
1173
+ # call the callback, if provided
1174
+ if callback_on_step_end is not None:
1175
+ callback_kwargs = {}
1176
+ for k in callback_on_step_end_tensor_inputs:
1177
+ callback_kwargs[k] = locals()[k]
1178
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1179
+
1180
+ latents = callback_outputs.pop("latents", latents)
1181
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1182
+
1183
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1184
+ progress_bar.update()
1185
+
1186
+ if XLA_AVAILABLE:
1187
+ xm.mark_step()
1188
+
1189
+ # Post-processing
1190
+ if output_type == "latent":
1191
+ image = latents
1192
+ else:
1193
+ latents = self._unpack_latents(latents, global_height, global_width, self.vae_scale_factor)
1194
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1195
+ image = self.vae.decode(latents, return_dict=False)[0]
1196
+ image = self.image_processor.postprocess(image, output_type=output_type)
1197
+
1198
+ # Offload all models
1199
+ self.maybe_free_model_hooks()
1200
+
1201
+ if not return_dict:
1202
+ return (image,)
1203
+
1204
+ return FluxPipelineOutput(images=image)