diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -13,13 +13,13 @@
|
|
13
13
|
|
14
14
|
import copy
|
15
15
|
import inspect
|
16
|
-
from typing import Any, Callable, Dict, List, Optional, Union
|
16
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17
17
|
|
18
18
|
import torch
|
19
19
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
20
20
|
|
21
21
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
22
|
-
from ...loaders import IPAdapterMixin,
|
22
|
+
from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
23
23
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
24
24
|
from ...models.lora import adjust_lora_scale_text_encoder
|
25
25
|
from ...schedulers import DDIMScheduler
|
@@ -59,8 +59,99 @@ EXAMPLE_DOC_STRING = """
|
|
59
59
|
"""
|
60
60
|
|
61
61
|
|
62
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
63
|
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
64
|
+
r"""
|
65
|
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
66
|
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
67
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
68
|
+
|
69
|
+
Args:
|
70
|
+
noise_cfg (`torch.Tensor`):
|
71
|
+
The predicted noise tensor for the guided diffusion process.
|
72
|
+
noise_pred_text (`torch.Tensor`):
|
73
|
+
The predicted noise tensor for the text-guided diffusion process.
|
74
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
75
|
+
A rescale factor applied to the noise predictions.
|
76
|
+
|
77
|
+
Returns:
|
78
|
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
79
|
+
"""
|
80
|
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
81
|
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
82
|
+
# rescale the results from guidance (fixes overexposure)
|
83
|
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
84
|
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
85
|
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
86
|
+
return noise_cfg
|
87
|
+
|
88
|
+
|
89
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
90
|
+
def retrieve_timesteps(
|
91
|
+
scheduler,
|
92
|
+
num_inference_steps: Optional[int] = None,
|
93
|
+
device: Optional[Union[str, torch.device]] = None,
|
94
|
+
timesteps: Optional[List[int]] = None,
|
95
|
+
sigmas: Optional[List[float]] = None,
|
96
|
+
**kwargs,
|
97
|
+
):
|
98
|
+
r"""
|
99
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
100
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
scheduler (`SchedulerMixin`):
|
104
|
+
The scheduler to get timesteps from.
|
105
|
+
num_inference_steps (`int`):
|
106
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
107
|
+
must be `None`.
|
108
|
+
device (`str` or `torch.device`, *optional*):
|
109
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
110
|
+
timesteps (`List[int]`, *optional*):
|
111
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
112
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
113
|
+
sigmas (`List[float]`, *optional*):
|
114
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
115
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
116
|
+
|
117
|
+
Returns:
|
118
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
119
|
+
second element is the number of inference steps.
|
120
|
+
"""
|
121
|
+
if timesteps is not None and sigmas is not None:
|
122
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
123
|
+
if timesteps is not None:
|
124
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
125
|
+
if not accepts_timesteps:
|
126
|
+
raise ValueError(
|
127
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
128
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
129
|
+
)
|
130
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
131
|
+
timesteps = scheduler.timesteps
|
132
|
+
num_inference_steps = len(timesteps)
|
133
|
+
elif sigmas is not None:
|
134
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
135
|
+
if not accept_sigmas:
|
136
|
+
raise ValueError(
|
137
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
138
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
139
|
+
)
|
140
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
141
|
+
timesteps = scheduler.timesteps
|
142
|
+
num_inference_steps = len(timesteps)
|
143
|
+
else:
|
144
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
145
|
+
timesteps = scheduler.timesteps
|
146
|
+
return timesteps, num_inference_steps
|
147
|
+
|
148
|
+
|
62
149
|
class StableDiffusionPanoramaPipeline(
|
63
|
-
DiffusionPipeline,
|
150
|
+
DiffusionPipeline,
|
151
|
+
StableDiffusionMixin,
|
152
|
+
TextualInversionLoaderMixin,
|
153
|
+
StableDiffusionLoraLoaderMixin,
|
154
|
+
IPAdapterMixin,
|
64
155
|
):
|
65
156
|
r"""
|
66
157
|
Pipeline for text-to-image generation using MultiDiffusion.
|
@@ -70,8 +161,8 @@ class StableDiffusionPanoramaPipeline(
|
|
70
161
|
|
71
162
|
The pipeline also inherits the following loading methods:
|
72
163
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
73
|
-
- [`~loaders.
|
74
|
-
- [`~loaders.
|
164
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
165
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
75
166
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
76
167
|
|
77
168
|
Args:
|
@@ -97,6 +188,7 @@ class StableDiffusionPanoramaPipeline(
|
|
97
188
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
98
189
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
99
190
|
_exclude_from_cpu_offload = ["safety_checker"]
|
191
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
100
192
|
|
101
193
|
def __init__(
|
102
194
|
self,
|
@@ -150,8 +242,8 @@ class StableDiffusionPanoramaPipeline(
|
|
150
242
|
num_images_per_prompt,
|
151
243
|
do_classifier_free_guidance,
|
152
244
|
negative_prompt=None,
|
153
|
-
prompt_embeds: Optional[torch.
|
154
|
-
negative_prompt_embeds: Optional[torch.
|
245
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
246
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
155
247
|
lora_scale: Optional[float] = None,
|
156
248
|
**kwargs,
|
157
249
|
):
|
@@ -183,8 +275,8 @@ class StableDiffusionPanoramaPipeline(
|
|
183
275
|
num_images_per_prompt,
|
184
276
|
do_classifier_free_guidance,
|
185
277
|
negative_prompt=None,
|
186
|
-
prompt_embeds: Optional[torch.
|
187
|
-
negative_prompt_embeds: Optional[torch.
|
278
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
279
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
188
280
|
lora_scale: Optional[float] = None,
|
189
281
|
clip_skip: Optional[int] = None,
|
190
282
|
):
|
@@ -204,10 +296,10 @@ class StableDiffusionPanoramaPipeline(
|
|
204
296
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
205
297
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
206
298
|
less than `1`).
|
207
|
-
prompt_embeds (`torch.
|
299
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
208
300
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
209
301
|
provided, text embeddings will be generated from `prompt` input argument.
|
210
|
-
negative_prompt_embeds (`torch.
|
302
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
211
303
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
212
304
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
213
305
|
argument.
|
@@ -219,7 +311,7 @@ class StableDiffusionPanoramaPipeline(
|
|
219
311
|
"""
|
220
312
|
# set lora scale so that monkey patched LoRA
|
221
313
|
# function of text encoder can correctly access it
|
222
|
-
if lora_scale is not None and isinstance(self,
|
314
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
223
315
|
self._lora_scale = lora_scale
|
224
316
|
|
225
317
|
# dynamically adjust the LoRA scale
|
@@ -351,9 +443,10 @@ class StableDiffusionPanoramaPipeline(
|
|
351
443
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
352
444
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
353
445
|
|
354
|
-
if
|
355
|
-
|
356
|
-
|
446
|
+
if self.text_encoder is not None:
|
447
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
448
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
449
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
357
450
|
|
358
451
|
return prompt_embeds, negative_prompt_embeds
|
359
452
|
|
@@ -386,6 +479,9 @@ class StableDiffusionPanoramaPipeline(
|
|
386
479
|
def prepare_ip_adapter_image_embeds(
|
387
480
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
388
481
|
):
|
482
|
+
image_embeds = []
|
483
|
+
if do_classifier_free_guidance:
|
484
|
+
negative_image_embeds = []
|
389
485
|
if ip_adapter_image_embeds is None:
|
390
486
|
if not isinstance(ip_adapter_image, list):
|
391
487
|
ip_adapter_image = [ip_adapter_image]
|
@@ -395,7 +491,6 @@ class StableDiffusionPanoramaPipeline(
|
|
395
491
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
396
492
|
)
|
397
493
|
|
398
|
-
image_embeds = []
|
399
494
|
for single_ip_adapter_image, image_proj_layer in zip(
|
400
495
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
401
496
|
):
|
@@ -403,36 +498,28 @@ class StableDiffusionPanoramaPipeline(
|
|
403
498
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
404
499
|
single_ip_adapter_image, device, 1, output_hidden_state
|
405
500
|
)
|
406
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
407
|
-
single_negative_image_embeds = torch.stack(
|
408
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
409
|
-
)
|
410
501
|
|
502
|
+
image_embeds.append(single_image_embeds[None, :])
|
411
503
|
if do_classifier_free_guidance:
|
412
|
-
|
413
|
-
single_image_embeds = single_image_embeds.to(device)
|
414
|
-
|
415
|
-
image_embeds.append(single_image_embeds)
|
504
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
416
505
|
else:
|
417
|
-
repeat_dims = [1]
|
418
|
-
image_embeds = []
|
419
506
|
for single_image_embeds in ip_adapter_image_embeds:
|
420
507
|
if do_classifier_free_guidance:
|
421
508
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
422
|
-
|
423
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
424
|
-
)
|
425
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
426
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
427
|
-
)
|
428
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
429
|
-
else:
|
430
|
-
single_image_embeds = single_image_embeds.repeat(
|
431
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
432
|
-
)
|
509
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
433
510
|
image_embeds.append(single_image_embeds)
|
434
511
|
|
435
|
-
|
512
|
+
ip_adapter_image_embeds = []
|
513
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
514
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
515
|
+
if do_classifier_free_guidance:
|
516
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
517
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
518
|
+
|
519
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
520
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
521
|
+
|
522
|
+
return ip_adapter_image_embeds
|
436
523
|
|
437
524
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
438
525
|
def run_safety_checker(self, image, device, dtype):
|
@@ -461,10 +548,23 @@ class StableDiffusionPanoramaPipeline(
|
|
461
548
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
462
549
|
return image
|
463
550
|
|
464
|
-
def decode_latents_with_padding(self, latents, padding=8):
|
465
|
-
|
466
|
-
|
467
|
-
|
551
|
+
def decode_latents_with_padding(self, latents: torch.Tensor, padding: int = 8) -> torch.Tensor:
|
552
|
+
"""
|
553
|
+
Decode the given latents with padding for circular inference.
|
554
|
+
|
555
|
+
Args:
|
556
|
+
latents (torch.Tensor): The input latents to decode.
|
557
|
+
padding (int, optional): The number of latents to add on each side for padding. Defaults to 8.
|
558
|
+
|
559
|
+
Returns:
|
560
|
+
torch.Tensor: The decoded image with padding removed.
|
561
|
+
|
562
|
+
Notes:
|
563
|
+
- The padding is added to remove boundary artifacts and improve the output quality.
|
564
|
+
- This would slightly increase the memory usage.
|
565
|
+
- The padding pixels are then removed from the decoded image.
|
566
|
+
|
567
|
+
"""
|
468
568
|
latents = 1 / self.vae.config.scaling_factor * latents
|
469
569
|
latents_left = latents[..., :padding]
|
470
570
|
latents_right = latents[..., -padding:]
|
@@ -564,7 +664,12 @@ class StableDiffusionPanoramaPipeline(
|
|
564
664
|
|
565
665
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
566
666
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
567
|
-
shape = (
|
667
|
+
shape = (
|
668
|
+
batch_size,
|
669
|
+
num_channels_latents,
|
670
|
+
int(height) // self.vae_scale_factor,
|
671
|
+
int(width) // self.vae_scale_factor,
|
672
|
+
)
|
568
673
|
if isinstance(generator, list) and len(generator) != batch_size:
|
569
674
|
raise ValueError(
|
570
675
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -580,9 +685,62 @@ class StableDiffusionPanoramaPipeline(
|
|
580
685
|
latents = latents * self.scheduler.init_noise_sigma
|
581
686
|
return latents
|
582
687
|
|
583
|
-
|
584
|
-
|
585
|
-
|
688
|
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
689
|
+
def get_guidance_scale_embedding(
|
690
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
691
|
+
) -> torch.Tensor:
|
692
|
+
"""
|
693
|
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
694
|
+
|
695
|
+
Args:
|
696
|
+
w (`torch.Tensor`):
|
697
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
698
|
+
embedding_dim (`int`, *optional*, defaults to 512):
|
699
|
+
Dimension of the embeddings to generate.
|
700
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
701
|
+
Data type of the generated embeddings.
|
702
|
+
|
703
|
+
Returns:
|
704
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
705
|
+
"""
|
706
|
+
assert len(w.shape) == 1
|
707
|
+
w = w * 1000.0
|
708
|
+
|
709
|
+
half_dim = embedding_dim // 2
|
710
|
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
711
|
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
712
|
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
713
|
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
714
|
+
if embedding_dim % 2 == 1: # zero pad
|
715
|
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
716
|
+
assert emb.shape == (w.shape[0], embedding_dim)
|
717
|
+
return emb
|
718
|
+
|
719
|
+
def get_views(
|
720
|
+
self,
|
721
|
+
panorama_height: int,
|
722
|
+
panorama_width: int,
|
723
|
+
window_size: int = 64,
|
724
|
+
stride: int = 8,
|
725
|
+
circular_padding: bool = False,
|
726
|
+
) -> List[Tuple[int, int, int, int]]:
|
727
|
+
"""
|
728
|
+
Generates a list of views based on the given parameters. Here, we define the mappings F_i (see Eq. 7 in the
|
729
|
+
MultiDiffusion paper https://arxiv.org/abs/2302.08113). If panorama's height/width < window_size, num_blocks of
|
730
|
+
height/width should return 1.
|
731
|
+
|
732
|
+
Args:
|
733
|
+
panorama_height (int): The height of the panorama.
|
734
|
+
panorama_width (int): The width of the panorama.
|
735
|
+
window_size (int, optional): The size of the window. Defaults to 64.
|
736
|
+
stride (int, optional): The stride value. Defaults to 8.
|
737
|
+
circular_padding (bool, optional): Whether to apply circular padding. Defaults to False.
|
738
|
+
|
739
|
+
Returns:
|
740
|
+
List[Tuple[int, int, int, int]]: A list of tuples representing the views. Each tuple contains four integers
|
741
|
+
representing the start and end coordinates of the window in the panorama.
|
742
|
+
|
743
|
+
"""
|
586
744
|
panorama_height /= 8
|
587
745
|
panorama_width /= 8
|
588
746
|
num_blocks_height = (panorama_height - window_size) // stride + 1 if panorama_height > window_size else 1
|
@@ -600,6 +758,34 @@ class StableDiffusionPanoramaPipeline(
|
|
600
758
|
views.append((h_start, h_end, w_start, w_end))
|
601
759
|
return views
|
602
760
|
|
761
|
+
@property
|
762
|
+
def guidance_scale(self):
|
763
|
+
return self._guidance_scale
|
764
|
+
|
765
|
+
@property
|
766
|
+
def guidance_rescale(self):
|
767
|
+
return self._guidance_rescale
|
768
|
+
|
769
|
+
@property
|
770
|
+
def cross_attention_kwargs(self):
|
771
|
+
return self._cross_attention_kwargs
|
772
|
+
|
773
|
+
@property
|
774
|
+
def clip_skip(self):
|
775
|
+
return self._clip_skip
|
776
|
+
|
777
|
+
@property
|
778
|
+
def do_classifier_free_guidance(self):
|
779
|
+
return False
|
780
|
+
|
781
|
+
@property
|
782
|
+
def num_timesteps(self):
|
783
|
+
return self._num_timesteps
|
784
|
+
|
785
|
+
@property
|
786
|
+
def interrupt(self):
|
787
|
+
return self._interrupt
|
788
|
+
|
603
789
|
@torch.no_grad()
|
604
790
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
605
791
|
def __call__(
|
@@ -608,24 +794,27 @@ class StableDiffusionPanoramaPipeline(
|
|
608
794
|
height: Optional[int] = 512,
|
609
795
|
width: Optional[int] = 2048,
|
610
796
|
num_inference_steps: int = 50,
|
797
|
+
timesteps: List[int] = None,
|
611
798
|
guidance_scale: float = 7.5,
|
612
799
|
view_batch_size: int = 1,
|
613
800
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
614
801
|
num_images_per_prompt: Optional[int] = 1,
|
615
802
|
eta: float = 0.0,
|
616
803
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
617
|
-
latents: Optional[torch.
|
618
|
-
prompt_embeds: Optional[torch.
|
619
|
-
negative_prompt_embeds: Optional[torch.
|
804
|
+
latents: Optional[torch.Tensor] = None,
|
805
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
806
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
620
807
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
621
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
808
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
622
809
|
output_type: Optional[str] = "pil",
|
623
810
|
return_dict: bool = True,
|
624
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
625
|
-
callback_steps: Optional[int] = 1,
|
626
811
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
812
|
+
guidance_rescale: float = 0.0,
|
627
813
|
circular_padding: bool = False,
|
628
814
|
clip_skip: Optional[int] = None,
|
815
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
816
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
817
|
+
**kwargs: Any,
|
629
818
|
):
|
630
819
|
r"""
|
631
820
|
The call function to the pipeline for generation.
|
@@ -641,6 +830,9 @@ class StableDiffusionPanoramaPipeline(
|
|
641
830
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
642
831
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
643
832
|
expense of slower inference.
|
833
|
+
timesteps (`List[int]`, *optional*):
|
834
|
+
The timesteps at which to generate the images. If not specified, then the default timestep spacing
|
835
|
+
strategy of the scheduler is used.
|
644
836
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
645
837
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
646
838
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -658,38 +850,34 @@ class StableDiffusionPanoramaPipeline(
|
|
658
850
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
659
851
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
660
852
|
generation deterministic.
|
661
|
-
latents (`torch.
|
853
|
+
latents (`torch.Tensor`, *optional*):
|
662
854
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
663
855
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
664
856
|
tensor is generated by sampling using the supplied random `generator`.
|
665
|
-
prompt_embeds (`torch.
|
857
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
666
858
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
667
859
|
provided, text embeddings are generated from the `prompt` input argument.
|
668
|
-
negative_prompt_embeds (`torch.
|
860
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
669
861
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
670
862
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
671
863
|
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
672
864
|
Optional image input to work with IP Adapters.
|
673
|
-
ip_adapter_image_embeds (`List[torch.
|
674
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
675
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
676
|
-
if `do_classifier_free_guidance` is set to `True`.
|
677
|
-
|
865
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
866
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
867
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
868
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
869
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
678
870
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
679
871
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
680
872
|
return_dict (`bool`, *optional*, defaults to `True`):
|
681
873
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
682
874
|
plain tuple.
|
683
|
-
callback (`Callable`, *optional*):
|
684
|
-
A function that calls every `callback_steps` steps during inference. The function is called with the
|
685
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
686
|
-
callback_steps (`int`, *optional*, defaults to 1):
|
687
|
-
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
688
|
-
every step.
|
689
875
|
cross_attention_kwargs (`dict`, *optional*):
|
690
876
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
691
877
|
`self.processor` in
|
692
878
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
879
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
880
|
+
A rescaling factor for the guidance embeddings. A value of 0.0 means no rescaling is applied.
|
693
881
|
circular_padding (`bool`, *optional*, defaults to `False`):
|
694
882
|
If set to `True`, circular padding is applied to ensure there are no stitching artifacts. Circular
|
695
883
|
padding allows the model to seamlessly generate a transition from the rightmost part of the image to
|
@@ -697,6 +885,15 @@ class StableDiffusionPanoramaPipeline(
|
|
697
885
|
clip_skip (`int`, *optional*):
|
698
886
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
699
887
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
888
|
+
callback_on_step_end (`Callable`, *optional*):
|
889
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
890
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
891
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
892
|
+
`callback_on_step_end_tensor_inputs`.
|
893
|
+
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
|
894
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
895
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
896
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
700
897
|
Examples:
|
701
898
|
|
702
899
|
Returns:
|
@@ -706,6 +903,22 @@ class StableDiffusionPanoramaPipeline(
|
|
706
903
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
707
904
|
"not-safe-for-work" (nsfw) content.
|
708
905
|
"""
|
906
|
+
callback = kwargs.pop("callback", None)
|
907
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
908
|
+
|
909
|
+
if callback is not None:
|
910
|
+
deprecate(
|
911
|
+
"callback",
|
912
|
+
"1.0.0",
|
913
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
914
|
+
)
|
915
|
+
if callback_steps is not None:
|
916
|
+
deprecate(
|
917
|
+
"callback_steps",
|
918
|
+
"1.0.0",
|
919
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
920
|
+
)
|
921
|
+
|
709
922
|
# 0. Default height and width to unet
|
710
923
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
711
924
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
@@ -721,8 +934,15 @@ class StableDiffusionPanoramaPipeline(
|
|
721
934
|
negative_prompt_embeds,
|
722
935
|
ip_adapter_image,
|
723
936
|
ip_adapter_image_embeds,
|
937
|
+
callback_on_step_end_tensor_inputs,
|
724
938
|
)
|
725
939
|
|
940
|
+
self._guidance_scale = guidance_scale
|
941
|
+
self._guidance_rescale = guidance_rescale
|
942
|
+
self._clip_skip = clip_skip
|
943
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
944
|
+
self._interrupt = False
|
945
|
+
|
726
946
|
# 2. Define call parameters
|
727
947
|
if prompt is not None and isinstance(prompt, str):
|
728
948
|
batch_size = 1
|
@@ -768,8 +988,7 @@ class StableDiffusionPanoramaPipeline(
|
|
768
988
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
769
989
|
|
770
990
|
# 4. Prepare timesteps
|
771
|
-
self.scheduler
|
772
|
-
timesteps = self.scheduler.timesteps
|
991
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
773
992
|
|
774
993
|
# 5. Prepare latent variables
|
775
994
|
num_channels_latents = self.unet.config.in_channels
|
@@ -802,12 +1021,23 @@ class StableDiffusionPanoramaPipeline(
|
|
802
1021
|
else None
|
803
1022
|
)
|
804
1023
|
|
1024
|
+
# 7.2 Optionally get Guidance Scale Embedding
|
1025
|
+
timestep_cond = None
|
1026
|
+
if self.unet.config.time_cond_proj_dim is not None:
|
1027
|
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1028
|
+
timestep_cond = self.get_guidance_scale_embedding(
|
1029
|
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1030
|
+
).to(device=device, dtype=latents.dtype)
|
1031
|
+
|
805
1032
|
# 8. Denoising loop
|
806
1033
|
# Each denoising step also includes refinement of the latents with respect to the
|
807
1034
|
# views.
|
808
1035
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1036
|
+
self._num_timesteps = len(timesteps)
|
809
1037
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
810
1038
|
for i, t in enumerate(timesteps):
|
1039
|
+
if self.interrupt:
|
1040
|
+
continue
|
811
1041
|
count.zero_()
|
812
1042
|
value.zero_()
|
813
1043
|
|
@@ -863,6 +1093,7 @@ class StableDiffusionPanoramaPipeline(
|
|
863
1093
|
latent_model_input,
|
864
1094
|
t,
|
865
1095
|
encoder_hidden_states=prompt_embeds_input,
|
1096
|
+
timestep_cond=timestep_cond,
|
866
1097
|
cross_attention_kwargs=cross_attention_kwargs,
|
867
1098
|
added_cond_kwargs=added_cond_kwargs,
|
868
1099
|
).sample
|
@@ -872,6 +1103,12 @@ class StableDiffusionPanoramaPipeline(
|
|
872
1103
|
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
|
873
1104
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
874
1105
|
|
1106
|
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1107
|
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1108
|
+
noise_pred = rescale_noise_cfg(
|
1109
|
+
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
|
1110
|
+
)
|
1111
|
+
|
875
1112
|
# compute the previous noisy sample x_t -> x_t-1
|
876
1113
|
latents_denoised_batch = self.scheduler.step(
|
877
1114
|
noise_pred, t, latents_for_view, **extra_step_kwargs
|
@@ -901,6 +1138,16 @@ class StableDiffusionPanoramaPipeline(
|
|
901
1138
|
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
|
902
1139
|
latents = torch.where(count > 0, value / count, value)
|
903
1140
|
|
1141
|
+
if callback_on_step_end is not None:
|
1142
|
+
callback_kwargs = {}
|
1143
|
+
for k in callback_on_step_end_tensor_inputs:
|
1144
|
+
callback_kwargs[k] = locals()[k]
|
1145
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1146
|
+
|
1147
|
+
latents = callback_outputs.pop("latents", latents)
|
1148
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1149
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1150
|
+
|
904
1151
|
# call the callback, if provided
|
905
1152
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
906
1153
|
progress_bar.update()
|
@@ -908,7 +1155,7 @@ class StableDiffusionPanoramaPipeline(
|
|
908
1155
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
909
1156
|
callback(step_idx, t, latents)
|
910
1157
|
|
911
|
-
if
|
1158
|
+
if output_type != "latent":
|
912
1159
|
if circular_padding:
|
913
1160
|
image = self.decode_latents_with_padding(latents)
|
914
1161
|
else:
|