diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,14 +22,16 @@ import torch
22
22
  import torch.nn.functional as F
23
23
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
24
24
 
25
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
26
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
- from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
- from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
27
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
28
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
28
29
  from ...models.lora import adjust_lora_scale_text_encoder
29
30
  from ...schedulers import KarrasDiffusionSchedulers
30
31
  from ...utils import (
31
32
  USE_PEFT_BACKEND,
32
33
  deprecate,
34
+ is_torch_xla_available,
33
35
  logging,
34
36
  replace_example_docstring,
35
37
  scale_lora_layers,
@@ -39,9 +41,15 @@ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_ten
39
41
  from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
42
  from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
41
43
  from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
42
- from .multicontrolnet import MultiControlNetModel
43
44
 
44
45
 
46
+ if is_torch_xla_available():
47
+ import torch_xla.core.xla_model as xm
48
+
49
+ XLA_AVAILABLE = True
50
+ else:
51
+ XLA_AVAILABLE = False
52
+
45
53
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
54
 
47
55
 
@@ -97,9 +105,10 @@ def retrieve_timesteps(
97
105
  num_inference_steps: Optional[int] = None,
98
106
  device: Optional[Union[str, torch.device]] = None,
99
107
  timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
100
109
  **kwargs,
101
110
  ):
102
- """
111
+ r"""
103
112
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
104
113
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
105
114
 
@@ -107,19 +116,23 @@ def retrieve_timesteps(
107
116
  scheduler (`SchedulerMixin`):
108
117
  The scheduler to get timesteps from.
109
118
  num_inference_steps (`int`):
110
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
111
- `timesteps` must be `None`.
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
112
121
  device (`str` or `torch.device`, *optional*):
113
122
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
114
123
  timesteps (`List[int]`, *optional*):
115
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
116
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
117
- must be `None`.
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
118
129
 
119
130
  Returns:
120
131
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
121
132
  second element is the number of inference steps.
122
133
  """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
123
136
  if timesteps is not None:
124
137
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
125
138
  if not accepts_timesteps:
@@ -130,6 +143,16 @@ def retrieve_timesteps(
130
143
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
131
144
  timesteps = scheduler.timesteps
132
145
  num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
133
156
  else:
134
157
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
135
158
  timesteps = scheduler.timesteps
@@ -140,7 +163,7 @@ class StableDiffusionControlNetPipeline(
140
163
  DiffusionPipeline,
141
164
  StableDiffusionMixin,
142
165
  TextualInversionLoaderMixin,
143
- LoraLoaderMixin,
166
+ StableDiffusionLoraLoaderMixin,
144
167
  IPAdapterMixin,
145
168
  FromSingleFileMixin,
146
169
  ):
@@ -152,8 +175,8 @@ class StableDiffusionControlNetPipeline(
152
175
 
153
176
  The pipeline also inherits the following loading methods:
154
177
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
155
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
156
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
178
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
179
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
157
180
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
158
181
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
159
182
 
@@ -246,8 +269,8 @@ class StableDiffusionControlNetPipeline(
246
269
  num_images_per_prompt,
247
270
  do_classifier_free_guidance,
248
271
  negative_prompt=None,
249
- prompt_embeds: Optional[torch.FloatTensor] = None,
250
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
272
+ prompt_embeds: Optional[torch.Tensor] = None,
273
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
251
274
  lora_scale: Optional[float] = None,
252
275
  **kwargs,
253
276
  ):
@@ -279,8 +302,8 @@ class StableDiffusionControlNetPipeline(
279
302
  num_images_per_prompt,
280
303
  do_classifier_free_guidance,
281
304
  negative_prompt=None,
282
- prompt_embeds: Optional[torch.FloatTensor] = None,
283
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
305
+ prompt_embeds: Optional[torch.Tensor] = None,
306
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
284
307
  lora_scale: Optional[float] = None,
285
308
  clip_skip: Optional[int] = None,
286
309
  ):
@@ -300,10 +323,10 @@ class StableDiffusionControlNetPipeline(
300
323
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
301
324
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
302
325
  less than `1`).
303
- prompt_embeds (`torch.FloatTensor`, *optional*):
326
+ prompt_embeds (`torch.Tensor`, *optional*):
304
327
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
305
328
  provided, text embeddings will be generated from `prompt` input argument.
306
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
329
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
307
330
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
308
331
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
309
332
  argument.
@@ -315,7 +338,7 @@ class StableDiffusionControlNetPipeline(
315
338
  """
316
339
  # set lora scale so that monkey patched LoRA
317
340
  # function of text encoder can correctly access it
318
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
341
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
319
342
  self._lora_scale = lora_scale
320
343
 
321
344
  # dynamically adjust the LoRA scale
@@ -447,9 +470,10 @@ class StableDiffusionControlNetPipeline(
447
470
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
448
471
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
449
472
 
450
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
451
- # Retrieve the original scale by scaling back the LoRA layers
452
- unscale_lora_layers(self.text_encoder, lora_scale)
473
+ if self.text_encoder is not None:
474
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
475
+ # Retrieve the original scale by scaling back the LoRA layers
476
+ unscale_lora_layers(self.text_encoder, lora_scale)
453
477
 
454
478
  return prompt_embeds, negative_prompt_embeds
455
479
 
@@ -482,6 +506,9 @@ class StableDiffusionControlNetPipeline(
482
506
  def prepare_ip_adapter_image_embeds(
483
507
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
484
508
  ):
509
+ image_embeds = []
510
+ if do_classifier_free_guidance:
511
+ negative_image_embeds = []
485
512
  if ip_adapter_image_embeds is None:
486
513
  if not isinstance(ip_adapter_image, list):
487
514
  ip_adapter_image = [ip_adapter_image]
@@ -491,7 +518,6 @@ class StableDiffusionControlNetPipeline(
491
518
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
492
519
  )
493
520
 
494
- image_embeds = []
495
521
  for single_ip_adapter_image, image_proj_layer in zip(
496
522
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
497
523
  ):
@@ -499,36 +525,28 @@ class StableDiffusionControlNetPipeline(
499
525
  single_image_embeds, single_negative_image_embeds = self.encode_image(
500
526
  single_ip_adapter_image, device, 1, output_hidden_state
501
527
  )
502
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
503
- single_negative_image_embeds = torch.stack(
504
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
505
- )
506
528
 
529
+ image_embeds.append(single_image_embeds[None, :])
507
530
  if do_classifier_free_guidance:
508
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
509
- single_image_embeds = single_image_embeds.to(device)
510
-
511
- image_embeds.append(single_image_embeds)
531
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
512
532
  else:
513
- repeat_dims = [1]
514
- image_embeds = []
515
533
  for single_image_embeds in ip_adapter_image_embeds:
516
534
  if do_classifier_free_guidance:
517
535
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
518
- single_image_embeds = single_image_embeds.repeat(
519
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
520
- )
521
- single_negative_image_embeds = single_negative_image_embeds.repeat(
522
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
523
- )
524
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
525
- else:
526
- single_image_embeds = single_image_embeds.repeat(
527
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
528
- )
536
+ negative_image_embeds.append(single_negative_image_embeds)
529
537
  image_embeds.append(single_image_embeds)
530
538
 
531
- return image_embeds
539
+ ip_adapter_image_embeds = []
540
+ for i, single_image_embeds in enumerate(image_embeds):
541
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
542
+ if do_classifier_free_guidance:
543
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
544
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
545
+
546
+ single_image_embeds = single_image_embeds.to(device=device)
547
+ ip_adapter_image_embeds.append(single_image_embeds)
548
+
549
+ return ip_adapter_image_embeds
532
550
 
533
551
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
534
552
  def run_safety_checker(self, image, device, dtype):
@@ -661,9 +679,9 @@ class StableDiffusionControlNetPipeline(
661
679
  raise ValueError(
662
680
  f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
663
681
  )
664
-
665
- for image_ in image:
666
- self.check_image(image_, prompt, prompt_embeds)
682
+ else:
683
+ for image_ in image:
684
+ self.check_image(image_, prompt, prompt_embeds)
667
685
  else:
668
686
  assert False
669
687
 
@@ -807,7 +825,12 @@ class StableDiffusionControlNetPipeline(
807
825
 
808
826
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
809
827
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
810
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
828
+ shape = (
829
+ batch_size,
830
+ num_channels_latents,
831
+ int(height) // self.vae_scale_factor,
832
+ int(width) // self.vae_scale_factor,
833
+ )
811
834
  if isinstance(generator, list) and len(generator) != batch_size:
812
835
  raise ValueError(
813
836
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -824,20 +847,22 @@ class StableDiffusionControlNetPipeline(
824
847
  return latents
825
848
 
826
849
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
827
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
850
+ def get_guidance_scale_embedding(
851
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
852
+ ) -> torch.Tensor:
828
853
  """
829
854
  See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
830
855
 
831
856
  Args:
832
- timesteps (`torch.Tensor`):
833
- generate embedding vectors at these timesteps
857
+ w (`torch.Tensor`):
858
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
834
859
  embedding_dim (`int`, *optional*, defaults to 512):
835
- dimension of the embeddings to generate
836
- dtype:
837
- data type of the generated embeddings
860
+ Dimension of the embeddings to generate.
861
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
862
+ Data type of the generated embeddings.
838
863
 
839
864
  Returns:
840
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
865
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
841
866
  """
842
867
  assert len(w.shape) == 1
843
868
  w = w * 1000.0
@@ -875,6 +900,10 @@ class StableDiffusionControlNetPipeline(
875
900
  def num_timesteps(self):
876
901
  return self._num_timesteps
877
902
 
903
+ @property
904
+ def interrupt(self):
905
+ return self._interrupt
906
+
878
907
  @torch.no_grad()
879
908
  @replace_example_docstring(EXAMPLE_DOC_STRING)
880
909
  def __call__(
@@ -885,16 +914,17 @@ class StableDiffusionControlNetPipeline(
885
914
  width: Optional[int] = None,
886
915
  num_inference_steps: int = 50,
887
916
  timesteps: List[int] = None,
917
+ sigmas: List[float] = None,
888
918
  guidance_scale: float = 7.5,
889
919
  negative_prompt: Optional[Union[str, List[str]]] = None,
890
920
  num_images_per_prompt: Optional[int] = 1,
891
921
  eta: float = 0.0,
892
922
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
893
- latents: Optional[torch.FloatTensor] = None,
894
- prompt_embeds: Optional[torch.FloatTensor] = None,
895
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
923
+ latents: Optional[torch.Tensor] = None,
924
+ prompt_embeds: Optional[torch.Tensor] = None,
925
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
896
926
  ip_adapter_image: Optional[PipelineImageInput] = None,
897
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
927
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
898
928
  output_type: Optional[str] = "pil",
899
929
  return_dict: bool = True,
900
930
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -903,7 +933,9 @@ class StableDiffusionControlNetPipeline(
903
933
  control_guidance_start: Union[float, List[float]] = 0.0,
904
934
  control_guidance_end: Union[float, List[float]] = 1.0,
905
935
  clip_skip: Optional[int] = None,
906
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
936
+ callback_on_step_end: Optional[
937
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
938
+ ] = None,
907
939
  callback_on_step_end_tensor_inputs: List[str] = ["latents"],
908
940
  **kwargs,
909
941
  ):
@@ -913,16 +945,16 @@ class StableDiffusionControlNetPipeline(
913
945
  Args:
914
946
  prompt (`str` or `List[str]`, *optional*):
915
947
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
916
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
917
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
948
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
949
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
918
950
  The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
919
- specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
920
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
921
- and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
922
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
923
- input to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single ControlNet,
924
- each will be paired with each prompt in the `prompt` list. This also applies to multiple ControlNets,
925
- where a list of image lists can be passed to batch for each prompt and each ControlNet.
951
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
952
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
953
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
954
+ images must be passed as a list such that each element of the list can be correctly batched for input
955
+ to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
956
+ ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
957
+ ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
926
958
  height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
927
959
  The height in pixels of the generated image.
928
960
  width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
@@ -934,6 +966,10 @@ class StableDiffusionControlNetPipeline(
934
966
  Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
935
967
  in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
936
968
  passed will be used. Must be in descending order.
969
+ sigmas (`List[float]`, *optional*):
970
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
971
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
972
+ will be used.
937
973
  guidance_scale (`float`, *optional*, defaults to 7.5):
938
974
  A higher guidance scale value encourages the model to generate images closely linked to the text
939
975
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -948,22 +984,22 @@ class StableDiffusionControlNetPipeline(
948
984
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
949
985
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
950
986
  generation deterministic.
951
- latents (`torch.FloatTensor`, *optional*):
987
+ latents (`torch.Tensor`, *optional*):
952
988
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
953
989
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
954
990
  tensor is generated by sampling using the supplied random `generator`.
955
- prompt_embeds (`torch.FloatTensor`, *optional*):
991
+ prompt_embeds (`torch.Tensor`, *optional*):
956
992
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
957
993
  provided, text embeddings are generated from the `prompt` input argument.
958
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
994
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
959
995
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
960
996
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
961
997
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
962
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
963
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
964
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
965
- if `do_classifier_free_guidance` is set to `True`.
966
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
998
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
999
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1000
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1001
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1002
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
967
1003
  output_type (`str`, *optional*, defaults to `"pil"`):
968
1004
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
969
1005
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -971,7 +1007,7 @@ class StableDiffusionControlNetPipeline(
971
1007
  plain tuple.
972
1008
  callback (`Callable`, *optional*):
973
1009
  A function that calls every `callback_steps` steps during inference. The function is called with the
974
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
1010
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
975
1011
  callback_steps (`int`, *optional*, defaults to 1):
976
1012
  The frequency at which the `callback` function is called. If not specified, the callback is called at
977
1013
  every step.
@@ -992,15 +1028,15 @@ class StableDiffusionControlNetPipeline(
992
1028
  clip_skip (`int`, *optional*):
993
1029
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
994
1030
  the output of the pre-final layer will be used for computing the prompt embeddings.
995
- callback_on_step_end (`Callable`, *optional*):
996
- A function that calls at the end of each denoising steps during the inference. The function is called
997
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
998
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
999
- `callback_on_step_end_tensor_inputs`.
1031
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1032
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1033
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1034
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1035
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1000
1036
  callback_on_step_end_tensor_inputs (`List`, *optional*):
1001
1037
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1002
1038
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1003
- `._callback_tensor_inputs` attribute of your pipeine class.
1039
+ `._callback_tensor_inputs` attribute of your pipeline class.
1004
1040
 
1005
1041
  Examples:
1006
1042
 
@@ -1028,6 +1064,9 @@ class StableDiffusionControlNetPipeline(
1028
1064
  "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1029
1065
  )
1030
1066
 
1067
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1068
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1069
+
1031
1070
  controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1032
1071
 
1033
1072
  # align format for control guidance
@@ -1061,6 +1100,7 @@ class StableDiffusionControlNetPipeline(
1061
1100
  self._guidance_scale = guidance_scale
1062
1101
  self._clip_skip = clip_skip
1063
1102
  self._cross_attention_kwargs = cross_attention_kwargs
1103
+ self._interrupt = False
1064
1104
 
1065
1105
  # 2. Define call parameters
1066
1106
  if prompt is not None and isinstance(prompt, str):
@@ -1155,7 +1195,9 @@ class StableDiffusionControlNetPipeline(
1155
1195
  assert False
1156
1196
 
1157
1197
  # 5. Prepare timesteps
1158
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1198
+ timesteps, num_inference_steps = retrieve_timesteps(
1199
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1200
+ )
1159
1201
  self._num_timesteps = len(timesteps)
1160
1202
 
1161
1203
  # 6. Prepare latent variables
@@ -1205,6 +1247,9 @@ class StableDiffusionControlNetPipeline(
1205
1247
  is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1206
1248
  with self.progress_bar(total=num_inference_steps) as progress_bar:
1207
1249
  for i, t in enumerate(timesteps):
1250
+ if self.interrupt:
1251
+ continue
1252
+
1208
1253
  # Relevant thread:
1209
1254
  # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1210
1255
  if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
@@ -1242,7 +1287,7 @@ class StableDiffusionControlNetPipeline(
1242
1287
  )
1243
1288
 
1244
1289
  if guess_mode and self.do_classifier_free_guidance:
1245
- # Infered ControlNet only for the conditional batch.
1290
+ # Inferred ControlNet only for the conditional batch.
1246
1291
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1247
1292
  # add 0 to the unconditional batch to keep it unchanged.
1248
1293
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
@@ -1286,6 +1331,8 @@ class StableDiffusionControlNetPipeline(
1286
1331
  step_idx = i // getattr(self.scheduler, "order", 1)
1287
1332
  callback(step_idx, t, latents)
1288
1333
 
1334
+ if XLA_AVAILABLE:
1335
+ xm.mark_step()
1289
1336
  # If we do sequential model offloading, let's offload unet and controlnet
1290
1337
  # manually for max memory savings
1291
1338
  if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
@@ -240,7 +240,7 @@ class BlipDiffusionControlNetPipeline(DiffusionPipeline):
240
240
  condtioning_image: PIL.Image.Image,
241
241
  source_subject_category: List[str],
242
242
  target_subject_category: List[str],
243
- latents: Optional[torch.FloatTensor] = None,
243
+ latents: Optional[torch.Tensor] = None,
244
244
  guidance_scale: float = 7.5,
245
245
  height: int = 512,
246
246
  width: int = 512,
@@ -266,7 +266,7 @@ class BlipDiffusionControlNetPipeline(DiffusionPipeline):
266
266
  The source subject category.
267
267
  target_subject_category (`List[str]`):
268
268
  The target subject category.
269
- latents (`torch.FloatTensor`, *optional*):
269
+ latents (`torch.Tensor`, *optional*):
270
270
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
271
271
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
272
272
  tensor will ge generated by random sampling.