diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,445 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Dict, Optional, Union
15
+
16
+ import torch
17
+ from torch import nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...utils import is_torch_version, logging
21
+ from ..attention import BasicTransformerBlock
22
+ from ..attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
23
+ from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
24
+ from ..modeling_outputs import Transformer2DModelOutput
25
+ from ..modeling_utils import ModelMixin
26
+ from ..normalization import AdaLayerNormSingle
27
+
28
+
29
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
+
31
+
32
+ class PixArtTransformer2DModel(ModelMixin, ConfigMixin):
33
+ r"""
34
+ A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
35
+ https://arxiv.org/abs/2403.04692).
36
+
37
+ Parameters:
38
+ num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
39
+ attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
40
+ in_channels (int, defaults to 4): The number of channels in the input.
41
+ out_channels (int, optional):
42
+ The number of channels in the output. Specify this parameter if the output channel number differs from the
43
+ input.
44
+ num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
45
+ dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
46
+ norm_num_groups (int, optional, defaults to 32):
47
+ Number of groups for group normalization within Transformer blocks.
48
+ cross_attention_dim (int, optional):
49
+ The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
50
+ attention_bias (bool, optional, defaults to True):
51
+ Configure if the Transformer blocks' attention should contain a bias parameter.
52
+ sample_size (int, defaults to 128):
53
+ The width of the latent images. This parameter is fixed during training.
54
+ patch_size (int, defaults to 2):
55
+ Size of the patches the model processes, relevant for architectures working on non-sequential data.
56
+ activation_fn (str, optional, defaults to "gelu-approximate"):
57
+ Activation function to use in feed-forward networks within Transformer blocks.
58
+ num_embeds_ada_norm (int, optional, defaults to 1000):
59
+ Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
60
+ inference.
61
+ upcast_attention (bool, optional, defaults to False):
62
+ If true, upcasts the attention mechanism dimensions for potentially improved performance.
63
+ norm_type (str, optional, defaults to "ada_norm_zero"):
64
+ Specifies the type of normalization used, can be 'ada_norm_zero'.
65
+ norm_elementwise_affine (bool, optional, defaults to False):
66
+ If true, enables element-wise affine parameters in the normalization layers.
67
+ norm_eps (float, optional, defaults to 1e-6):
68
+ A small constant added to the denominator in normalization layers to prevent division by zero.
69
+ interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
70
+ use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
71
+ attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
72
+ caption_channels (int, optional, defaults to None):
73
+ Number of channels to use for projecting the caption embeddings.
74
+ use_linear_projection (bool, optional, defaults to False):
75
+ Deprecated argument. Will be removed in a future version.
76
+ num_vector_embeds (bool, optional, defaults to False):
77
+ Deprecated argument. Will be removed in a future version.
78
+ """
79
+
80
+ _supports_gradient_checkpointing = True
81
+ _no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
82
+
83
+ @register_to_config
84
+ def __init__(
85
+ self,
86
+ num_attention_heads: int = 16,
87
+ attention_head_dim: int = 72,
88
+ in_channels: int = 4,
89
+ out_channels: Optional[int] = 8,
90
+ num_layers: int = 28,
91
+ dropout: float = 0.0,
92
+ norm_num_groups: int = 32,
93
+ cross_attention_dim: Optional[int] = 1152,
94
+ attention_bias: bool = True,
95
+ sample_size: int = 128,
96
+ patch_size: int = 2,
97
+ activation_fn: str = "gelu-approximate",
98
+ num_embeds_ada_norm: Optional[int] = 1000,
99
+ upcast_attention: bool = False,
100
+ norm_type: str = "ada_norm_single",
101
+ norm_elementwise_affine: bool = False,
102
+ norm_eps: float = 1e-6,
103
+ interpolation_scale: Optional[int] = None,
104
+ use_additional_conditions: Optional[bool] = None,
105
+ caption_channels: Optional[int] = None,
106
+ attention_type: Optional[str] = "default",
107
+ ):
108
+ super().__init__()
109
+
110
+ # Validate inputs.
111
+ if norm_type != "ada_norm_single":
112
+ raise NotImplementedError(
113
+ f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
114
+ )
115
+ elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
116
+ raise ValueError(
117
+ f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
118
+ )
119
+
120
+ # Set some common variables used across the board.
121
+ self.attention_head_dim = attention_head_dim
122
+ self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
123
+ self.out_channels = in_channels if out_channels is None else out_channels
124
+ if use_additional_conditions is None:
125
+ if sample_size == 128:
126
+ use_additional_conditions = True
127
+ else:
128
+ use_additional_conditions = False
129
+ self.use_additional_conditions = use_additional_conditions
130
+
131
+ self.gradient_checkpointing = False
132
+
133
+ # 2. Initialize the position embedding and transformer blocks.
134
+ self.height = self.config.sample_size
135
+ self.width = self.config.sample_size
136
+
137
+ interpolation_scale = (
138
+ self.config.interpolation_scale
139
+ if self.config.interpolation_scale is not None
140
+ else max(self.config.sample_size // 64, 1)
141
+ )
142
+ self.pos_embed = PatchEmbed(
143
+ height=self.config.sample_size,
144
+ width=self.config.sample_size,
145
+ patch_size=self.config.patch_size,
146
+ in_channels=self.config.in_channels,
147
+ embed_dim=self.inner_dim,
148
+ interpolation_scale=interpolation_scale,
149
+ )
150
+
151
+ self.transformer_blocks = nn.ModuleList(
152
+ [
153
+ BasicTransformerBlock(
154
+ self.inner_dim,
155
+ self.config.num_attention_heads,
156
+ self.config.attention_head_dim,
157
+ dropout=self.config.dropout,
158
+ cross_attention_dim=self.config.cross_attention_dim,
159
+ activation_fn=self.config.activation_fn,
160
+ num_embeds_ada_norm=self.config.num_embeds_ada_norm,
161
+ attention_bias=self.config.attention_bias,
162
+ upcast_attention=self.config.upcast_attention,
163
+ norm_type=norm_type,
164
+ norm_elementwise_affine=self.config.norm_elementwise_affine,
165
+ norm_eps=self.config.norm_eps,
166
+ attention_type=self.config.attention_type,
167
+ )
168
+ for _ in range(self.config.num_layers)
169
+ ]
170
+ )
171
+
172
+ # 3. Output blocks.
173
+ self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
174
+ self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
175
+ self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
176
+
177
+ self.adaln_single = AdaLayerNormSingle(
178
+ self.inner_dim, use_additional_conditions=self.use_additional_conditions
179
+ )
180
+ self.caption_projection = None
181
+ if self.config.caption_channels is not None:
182
+ self.caption_projection = PixArtAlphaTextProjection(
183
+ in_features=self.config.caption_channels, hidden_size=self.inner_dim
184
+ )
185
+
186
+ def _set_gradient_checkpointing(self, module, value=False):
187
+ if hasattr(module, "gradient_checkpointing"):
188
+ module.gradient_checkpointing = value
189
+
190
+ @property
191
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
192
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
193
+ r"""
194
+ Returns:
195
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
196
+ indexed by its weight name.
197
+ """
198
+ # set recursively
199
+ processors = {}
200
+
201
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
202
+ if hasattr(module, "get_processor"):
203
+ processors[f"{name}.processor"] = module.get_processor()
204
+
205
+ for sub_name, child in module.named_children():
206
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
207
+
208
+ return processors
209
+
210
+ for name, module in self.named_children():
211
+ fn_recursive_add_processors(name, module, processors)
212
+
213
+ return processors
214
+
215
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
216
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
217
+ r"""
218
+ Sets the attention processor to use to compute attention.
219
+
220
+ Parameters:
221
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
222
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
223
+ for **all** `Attention` layers.
224
+
225
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
226
+ processor. This is strongly recommended when setting trainable attention processors.
227
+
228
+ """
229
+ count = len(self.attn_processors.keys())
230
+
231
+ if isinstance(processor, dict) and len(processor) != count:
232
+ raise ValueError(
233
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
234
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
235
+ )
236
+
237
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
238
+ if hasattr(module, "set_processor"):
239
+ if not isinstance(processor, dict):
240
+ module.set_processor(processor)
241
+ else:
242
+ module.set_processor(processor.pop(f"{name}.processor"))
243
+
244
+ for sub_name, child in module.named_children():
245
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
246
+
247
+ for name, module in self.named_children():
248
+ fn_recursive_attn_processor(name, module, processor)
249
+
250
+ def set_default_attn_processor(self):
251
+ """
252
+ Disables custom attention processors and sets the default attention implementation.
253
+
254
+ Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
255
+ """
256
+ self.set_attn_processor(AttnProcessor())
257
+
258
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
259
+ def fuse_qkv_projections(self):
260
+ """
261
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
262
+ are fused. For cross-attention modules, key and value projection matrices are fused.
263
+
264
+ <Tip warning={true}>
265
+
266
+ This API is 🧪 experimental.
267
+
268
+ </Tip>
269
+ """
270
+ self.original_attn_processors = None
271
+
272
+ for _, attn_processor in self.attn_processors.items():
273
+ if "Added" in str(attn_processor.__class__.__name__):
274
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
275
+
276
+ self.original_attn_processors = self.attn_processors
277
+
278
+ for module in self.modules():
279
+ if isinstance(module, Attention):
280
+ module.fuse_projections(fuse=True)
281
+
282
+ self.set_attn_processor(FusedAttnProcessor2_0())
283
+
284
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
285
+ def unfuse_qkv_projections(self):
286
+ """Disables the fused QKV projection if enabled.
287
+
288
+ <Tip warning={true}>
289
+
290
+ This API is 🧪 experimental.
291
+
292
+ </Tip>
293
+
294
+ """
295
+ if self.original_attn_processors is not None:
296
+ self.set_attn_processor(self.original_attn_processors)
297
+
298
+ def forward(
299
+ self,
300
+ hidden_states: torch.Tensor,
301
+ encoder_hidden_states: Optional[torch.Tensor] = None,
302
+ timestep: Optional[torch.LongTensor] = None,
303
+ added_cond_kwargs: Dict[str, torch.Tensor] = None,
304
+ cross_attention_kwargs: Dict[str, Any] = None,
305
+ attention_mask: Optional[torch.Tensor] = None,
306
+ encoder_attention_mask: Optional[torch.Tensor] = None,
307
+ return_dict: bool = True,
308
+ ):
309
+ """
310
+ The [`PixArtTransformer2DModel`] forward method.
311
+
312
+ Args:
313
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
314
+ Input `hidden_states`.
315
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
316
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
317
+ self-attention.
318
+ timestep (`torch.LongTensor`, *optional*):
319
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
320
+ added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
321
+ cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
322
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
323
+ `self.processor` in
324
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
325
+ attention_mask ( `torch.Tensor`, *optional*):
326
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
327
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
328
+ negative values to the attention scores corresponding to "discard" tokens.
329
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
330
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
331
+
332
+ * Mask `(batch, sequence_length)` True = keep, False = discard.
333
+ * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
334
+
335
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
336
+ above. This bias will be added to the cross-attention scores.
337
+ return_dict (`bool`, *optional*, defaults to `True`):
338
+ Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
339
+ tuple.
340
+
341
+ Returns:
342
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
343
+ `tuple` where the first element is the sample tensor.
344
+ """
345
+ if self.use_additional_conditions and added_cond_kwargs is None:
346
+ raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
347
+
348
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
349
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
350
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
351
+ # expects mask of shape:
352
+ # [batch, key_tokens]
353
+ # adds singleton query_tokens dimension:
354
+ # [batch, 1, key_tokens]
355
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
356
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
357
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
358
+ if attention_mask is not None and attention_mask.ndim == 2:
359
+ # assume that mask is expressed as:
360
+ # (1 = keep, 0 = discard)
361
+ # convert mask into a bias that can be added to attention scores:
362
+ # (keep = +0, discard = -10000.0)
363
+ attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
364
+ attention_mask = attention_mask.unsqueeze(1)
365
+
366
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
367
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
368
+ encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
369
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
370
+
371
+ # 1. Input
372
+ batch_size = hidden_states.shape[0]
373
+ height, width = (
374
+ hidden_states.shape[-2] // self.config.patch_size,
375
+ hidden_states.shape[-1] // self.config.patch_size,
376
+ )
377
+ hidden_states = self.pos_embed(hidden_states)
378
+
379
+ timestep, embedded_timestep = self.adaln_single(
380
+ timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
381
+ )
382
+
383
+ if self.caption_projection is not None:
384
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
385
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
386
+
387
+ # 2. Blocks
388
+ for block in self.transformer_blocks:
389
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
390
+
391
+ def create_custom_forward(module, return_dict=None):
392
+ def custom_forward(*inputs):
393
+ if return_dict is not None:
394
+ return module(*inputs, return_dict=return_dict)
395
+ else:
396
+ return module(*inputs)
397
+
398
+ return custom_forward
399
+
400
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
401
+ hidden_states = torch.utils.checkpoint.checkpoint(
402
+ create_custom_forward(block),
403
+ hidden_states,
404
+ attention_mask,
405
+ encoder_hidden_states,
406
+ encoder_attention_mask,
407
+ timestep,
408
+ cross_attention_kwargs,
409
+ None,
410
+ **ckpt_kwargs,
411
+ )
412
+ else:
413
+ hidden_states = block(
414
+ hidden_states,
415
+ attention_mask=attention_mask,
416
+ encoder_hidden_states=encoder_hidden_states,
417
+ encoder_attention_mask=encoder_attention_mask,
418
+ timestep=timestep,
419
+ cross_attention_kwargs=cross_attention_kwargs,
420
+ class_labels=None,
421
+ )
422
+
423
+ # 3. Output
424
+ shift, scale = (
425
+ self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
426
+ ).chunk(2, dim=1)
427
+ hidden_states = self.norm_out(hidden_states)
428
+ # Modulation
429
+ hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
430
+ hidden_states = self.proj_out(hidden_states)
431
+ hidden_states = hidden_states.squeeze(1)
432
+
433
+ # unpatchify
434
+ hidden_states = hidden_states.reshape(
435
+ shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
436
+ )
437
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
438
+ output = hidden_states.reshape(
439
+ shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
440
+ )
441
+
442
+ if not return_dict:
443
+ return (output,)
444
+
445
+ return Transformer2DModelOutput(sample=output)
@@ -26,11 +26,11 @@ class PriorTransformerOutput(BaseOutput):
26
26
  The output of [`PriorTransformer`].
27
27
 
28
28
  Args:
29
- predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
29
+ predicted_image_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`):
30
30
  The predicted CLIP image embedding conditioned on the CLIP text embedding input.
31
31
  """
32
32
 
33
- predicted_image_embedding: torch.FloatTensor
33
+ predicted_image_embedding: torch.Tensor
34
34
 
35
35
 
36
36
  class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
@@ -179,7 +179,7 @@ class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Pef
179
179
 
180
180
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
181
181
  if hasattr(module, "get_processor"):
182
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
182
+ processors[f"{name}.processor"] = module.get_processor()
183
183
 
184
184
  for sub_name, child in module.named_children():
185
185
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -246,8 +246,8 @@ class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Pef
246
246
  self,
247
247
  hidden_states,
248
248
  timestep: Union[torch.Tensor, float, int],
249
- proj_embedding: torch.FloatTensor,
250
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
249
+ proj_embedding: torch.Tensor,
250
+ encoder_hidden_states: Optional[torch.Tensor] = None,
251
251
  attention_mask: Optional[torch.BoolTensor] = None,
252
252
  return_dict: bool = True,
253
253
  ):
@@ -255,24 +255,24 @@ class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Pef
255
255
  The [`PriorTransformer`] forward method.
256
256
 
257
257
  Args:
258
- hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
258
+ hidden_states (`torch.Tensor` of shape `(batch_size, embedding_dim)`):
259
259
  The currently predicted image embeddings.
260
260
  timestep (`torch.LongTensor`):
261
261
  Current denoising step.
262
- proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
262
+ proj_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`):
263
263
  Projected embedding vector the denoising process is conditioned on.
264
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
264
+ encoder_hidden_states (`torch.Tensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
265
265
  Hidden states of the text embeddings the denoising process is conditioned on.
266
266
  attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
267
267
  Text mask for the text embeddings.
268
268
  return_dict (`bool`, *optional*, defaults to `True`):
269
- Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
270
- tuple.
269
+ Whether or not to return a [`~models.transformers.prior_transformer.PriorTransformerOutput`] instead of
270
+ a plain tuple.
271
271
 
272
272
  Returns:
273
- [`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
274
- If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
275
- tuple is returned where the first element is the sample tensor.
273
+ [`~models.transformers.prior_transformer.PriorTransformerOutput`] or `tuple`:
274
+ If return_dict is True, a [`~models.transformers.prior_transformer.PriorTransformerOutput`] is
275
+ returned, otherwise a tuple is returned where the first element is the sample tensor.
276
276
  """
277
277
  batch_size = hidden_states.shape[0]
278
278