diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,488 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from torch import nn
|
19
|
+
|
20
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
21
|
+
from ...loaders import PeftAdapterMixin
|
22
|
+
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
23
|
+
from ..attention_processor import (
|
24
|
+
Attention,
|
25
|
+
AttentionProcessor,
|
26
|
+
AttnProcessor2_0,
|
27
|
+
SanaLinearAttnProcessor2_0,
|
28
|
+
)
|
29
|
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
30
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
31
|
+
from ..modeling_utils import ModelMixin
|
32
|
+
from ..normalization import AdaLayerNormSingle, RMSNorm
|
33
|
+
|
34
|
+
|
35
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36
|
+
|
37
|
+
|
38
|
+
class GLUMBConv(nn.Module):
|
39
|
+
def __init__(
|
40
|
+
self,
|
41
|
+
in_channels: int,
|
42
|
+
out_channels: int,
|
43
|
+
expand_ratio: float = 4,
|
44
|
+
norm_type: Optional[str] = None,
|
45
|
+
residual_connection: bool = True,
|
46
|
+
) -> None:
|
47
|
+
super().__init__()
|
48
|
+
|
49
|
+
hidden_channels = int(expand_ratio * in_channels)
|
50
|
+
self.norm_type = norm_type
|
51
|
+
self.residual_connection = residual_connection
|
52
|
+
|
53
|
+
self.nonlinearity = nn.SiLU()
|
54
|
+
self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
|
55
|
+
self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
|
56
|
+
self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
|
57
|
+
|
58
|
+
self.norm = None
|
59
|
+
if norm_type == "rms_norm":
|
60
|
+
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
|
61
|
+
|
62
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
63
|
+
if self.residual_connection:
|
64
|
+
residual = hidden_states
|
65
|
+
|
66
|
+
hidden_states = self.conv_inverted(hidden_states)
|
67
|
+
hidden_states = self.nonlinearity(hidden_states)
|
68
|
+
|
69
|
+
hidden_states = self.conv_depth(hidden_states)
|
70
|
+
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
|
71
|
+
hidden_states = hidden_states * self.nonlinearity(gate)
|
72
|
+
|
73
|
+
hidden_states = self.conv_point(hidden_states)
|
74
|
+
|
75
|
+
if self.norm_type == "rms_norm":
|
76
|
+
# move channel to the last dimension so we apply RMSnorm across channel dimension
|
77
|
+
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
78
|
+
|
79
|
+
if self.residual_connection:
|
80
|
+
hidden_states = hidden_states + residual
|
81
|
+
|
82
|
+
return hidden_states
|
83
|
+
|
84
|
+
|
85
|
+
class SanaTransformerBlock(nn.Module):
|
86
|
+
r"""
|
87
|
+
Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629).
|
88
|
+
"""
|
89
|
+
|
90
|
+
def __init__(
|
91
|
+
self,
|
92
|
+
dim: int = 2240,
|
93
|
+
num_attention_heads: int = 70,
|
94
|
+
attention_head_dim: int = 32,
|
95
|
+
dropout: float = 0.0,
|
96
|
+
num_cross_attention_heads: Optional[int] = 20,
|
97
|
+
cross_attention_head_dim: Optional[int] = 112,
|
98
|
+
cross_attention_dim: Optional[int] = 2240,
|
99
|
+
attention_bias: bool = True,
|
100
|
+
norm_elementwise_affine: bool = False,
|
101
|
+
norm_eps: float = 1e-6,
|
102
|
+
attention_out_bias: bool = True,
|
103
|
+
mlp_ratio: float = 2.5,
|
104
|
+
) -> None:
|
105
|
+
super().__init__()
|
106
|
+
|
107
|
+
# 1. Self Attention
|
108
|
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps)
|
109
|
+
self.attn1 = Attention(
|
110
|
+
query_dim=dim,
|
111
|
+
heads=num_attention_heads,
|
112
|
+
dim_head=attention_head_dim,
|
113
|
+
dropout=dropout,
|
114
|
+
bias=attention_bias,
|
115
|
+
cross_attention_dim=None,
|
116
|
+
processor=SanaLinearAttnProcessor2_0(),
|
117
|
+
)
|
118
|
+
|
119
|
+
# 2. Cross Attention
|
120
|
+
if cross_attention_dim is not None:
|
121
|
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
122
|
+
self.attn2 = Attention(
|
123
|
+
query_dim=dim,
|
124
|
+
cross_attention_dim=cross_attention_dim,
|
125
|
+
heads=num_cross_attention_heads,
|
126
|
+
dim_head=cross_attention_head_dim,
|
127
|
+
dropout=dropout,
|
128
|
+
bias=True,
|
129
|
+
out_bias=attention_out_bias,
|
130
|
+
processor=AttnProcessor2_0(),
|
131
|
+
)
|
132
|
+
|
133
|
+
# 3. Feed-forward
|
134
|
+
self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False)
|
135
|
+
|
136
|
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
137
|
+
|
138
|
+
def forward(
|
139
|
+
self,
|
140
|
+
hidden_states: torch.Tensor,
|
141
|
+
attention_mask: Optional[torch.Tensor] = None,
|
142
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
143
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
144
|
+
timestep: Optional[torch.LongTensor] = None,
|
145
|
+
height: int = None,
|
146
|
+
width: int = None,
|
147
|
+
) -> torch.Tensor:
|
148
|
+
batch_size = hidden_states.shape[0]
|
149
|
+
|
150
|
+
# 1. Modulation
|
151
|
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
152
|
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
153
|
+
).chunk(6, dim=1)
|
154
|
+
|
155
|
+
# 2. Self Attention
|
156
|
+
norm_hidden_states = self.norm1(hidden_states)
|
157
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
158
|
+
norm_hidden_states = norm_hidden_states.to(hidden_states.dtype)
|
159
|
+
|
160
|
+
attn_output = self.attn1(norm_hidden_states)
|
161
|
+
hidden_states = hidden_states + gate_msa * attn_output
|
162
|
+
|
163
|
+
# 3. Cross Attention
|
164
|
+
if self.attn2 is not None:
|
165
|
+
attn_output = self.attn2(
|
166
|
+
hidden_states,
|
167
|
+
encoder_hidden_states=encoder_hidden_states,
|
168
|
+
attention_mask=encoder_attention_mask,
|
169
|
+
)
|
170
|
+
hidden_states = attn_output + hidden_states
|
171
|
+
|
172
|
+
# 4. Feed-forward
|
173
|
+
norm_hidden_states = self.norm2(hidden_states)
|
174
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
175
|
+
|
176
|
+
norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2)
|
177
|
+
ff_output = self.ff(norm_hidden_states)
|
178
|
+
ff_output = ff_output.flatten(2, 3).permute(0, 2, 1)
|
179
|
+
hidden_states = hidden_states + gate_mlp * ff_output
|
180
|
+
|
181
|
+
return hidden_states
|
182
|
+
|
183
|
+
|
184
|
+
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
185
|
+
r"""
|
186
|
+
A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models.
|
187
|
+
|
188
|
+
Args:
|
189
|
+
in_channels (`int`, defaults to `32`):
|
190
|
+
The number of channels in the input.
|
191
|
+
out_channels (`int`, *optional*, defaults to `32`):
|
192
|
+
The number of channels in the output.
|
193
|
+
num_attention_heads (`int`, defaults to `70`):
|
194
|
+
The number of heads to use for multi-head attention.
|
195
|
+
attention_head_dim (`int`, defaults to `32`):
|
196
|
+
The number of channels in each head.
|
197
|
+
num_layers (`int`, defaults to `20`):
|
198
|
+
The number of layers of Transformer blocks to use.
|
199
|
+
num_cross_attention_heads (`int`, *optional*, defaults to `20`):
|
200
|
+
The number of heads to use for cross-attention.
|
201
|
+
cross_attention_head_dim (`int`, *optional*, defaults to `112`):
|
202
|
+
The number of channels in each head for cross-attention.
|
203
|
+
cross_attention_dim (`int`, *optional*, defaults to `2240`):
|
204
|
+
The number of channels in the cross-attention output.
|
205
|
+
caption_channels (`int`, defaults to `2304`):
|
206
|
+
The number of channels in the caption embeddings.
|
207
|
+
mlp_ratio (`float`, defaults to `2.5`):
|
208
|
+
The expansion ratio to use in the GLUMBConv layer.
|
209
|
+
dropout (`float`, defaults to `0.0`):
|
210
|
+
The dropout probability.
|
211
|
+
attention_bias (`bool`, defaults to `False`):
|
212
|
+
Whether to use bias in the attention layer.
|
213
|
+
sample_size (`int`, defaults to `32`):
|
214
|
+
The base size of the input latent.
|
215
|
+
patch_size (`int`, defaults to `1`):
|
216
|
+
The size of the patches to use in the patch embedding layer.
|
217
|
+
norm_elementwise_affine (`bool`, defaults to `False`):
|
218
|
+
Whether to use elementwise affinity in the normalization layer.
|
219
|
+
norm_eps (`float`, defaults to `1e-6`):
|
220
|
+
The epsilon value for the normalization layer.
|
221
|
+
"""
|
222
|
+
|
223
|
+
_supports_gradient_checkpointing = True
|
224
|
+
_no_split_modules = ["SanaTransformerBlock", "PatchEmbed"]
|
225
|
+
|
226
|
+
@register_to_config
|
227
|
+
def __init__(
|
228
|
+
self,
|
229
|
+
in_channels: int = 32,
|
230
|
+
out_channels: Optional[int] = 32,
|
231
|
+
num_attention_heads: int = 70,
|
232
|
+
attention_head_dim: int = 32,
|
233
|
+
num_layers: int = 20,
|
234
|
+
num_cross_attention_heads: Optional[int] = 20,
|
235
|
+
cross_attention_head_dim: Optional[int] = 112,
|
236
|
+
cross_attention_dim: Optional[int] = 2240,
|
237
|
+
caption_channels: int = 2304,
|
238
|
+
mlp_ratio: float = 2.5,
|
239
|
+
dropout: float = 0.0,
|
240
|
+
attention_bias: bool = False,
|
241
|
+
sample_size: int = 32,
|
242
|
+
patch_size: int = 1,
|
243
|
+
norm_elementwise_affine: bool = False,
|
244
|
+
norm_eps: float = 1e-6,
|
245
|
+
interpolation_scale: Optional[int] = None,
|
246
|
+
) -> None:
|
247
|
+
super().__init__()
|
248
|
+
|
249
|
+
out_channels = out_channels or in_channels
|
250
|
+
inner_dim = num_attention_heads * attention_head_dim
|
251
|
+
|
252
|
+
# 1. Patch Embedding
|
253
|
+
interpolation_scale = interpolation_scale if interpolation_scale is not None else max(sample_size // 64, 1)
|
254
|
+
self.patch_embed = PatchEmbed(
|
255
|
+
height=sample_size,
|
256
|
+
width=sample_size,
|
257
|
+
patch_size=patch_size,
|
258
|
+
in_channels=in_channels,
|
259
|
+
embed_dim=inner_dim,
|
260
|
+
interpolation_scale=interpolation_scale,
|
261
|
+
)
|
262
|
+
|
263
|
+
# 2. Additional condition embeddings
|
264
|
+
self.time_embed = AdaLayerNormSingle(inner_dim)
|
265
|
+
|
266
|
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
267
|
+
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
|
268
|
+
|
269
|
+
# 3. Transformer blocks
|
270
|
+
self.transformer_blocks = nn.ModuleList(
|
271
|
+
[
|
272
|
+
SanaTransformerBlock(
|
273
|
+
inner_dim,
|
274
|
+
num_attention_heads,
|
275
|
+
attention_head_dim,
|
276
|
+
dropout=dropout,
|
277
|
+
num_cross_attention_heads=num_cross_attention_heads,
|
278
|
+
cross_attention_head_dim=cross_attention_head_dim,
|
279
|
+
cross_attention_dim=cross_attention_dim,
|
280
|
+
attention_bias=attention_bias,
|
281
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
282
|
+
norm_eps=norm_eps,
|
283
|
+
mlp_ratio=mlp_ratio,
|
284
|
+
)
|
285
|
+
for _ in range(num_layers)
|
286
|
+
]
|
287
|
+
)
|
288
|
+
|
289
|
+
# 4. Output blocks
|
290
|
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
291
|
+
|
292
|
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
293
|
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
294
|
+
|
295
|
+
self.gradient_checkpointing = False
|
296
|
+
|
297
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
298
|
+
if hasattr(module, "gradient_checkpointing"):
|
299
|
+
module.gradient_checkpointing = value
|
300
|
+
|
301
|
+
@property
|
302
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
303
|
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
304
|
+
r"""
|
305
|
+
Returns:
|
306
|
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
307
|
+
indexed by its weight name.
|
308
|
+
"""
|
309
|
+
# set recursively
|
310
|
+
processors = {}
|
311
|
+
|
312
|
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
313
|
+
if hasattr(module, "get_processor"):
|
314
|
+
processors[f"{name}.processor"] = module.get_processor()
|
315
|
+
|
316
|
+
for sub_name, child in module.named_children():
|
317
|
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
318
|
+
|
319
|
+
return processors
|
320
|
+
|
321
|
+
for name, module in self.named_children():
|
322
|
+
fn_recursive_add_processors(name, module, processors)
|
323
|
+
|
324
|
+
return processors
|
325
|
+
|
326
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
327
|
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
328
|
+
r"""
|
329
|
+
Sets the attention processor to use to compute attention.
|
330
|
+
|
331
|
+
Parameters:
|
332
|
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
333
|
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
334
|
+
for **all** `Attention` layers.
|
335
|
+
|
336
|
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
337
|
+
processor. This is strongly recommended when setting trainable attention processors.
|
338
|
+
|
339
|
+
"""
|
340
|
+
count = len(self.attn_processors.keys())
|
341
|
+
|
342
|
+
if isinstance(processor, dict) and len(processor) != count:
|
343
|
+
raise ValueError(
|
344
|
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
345
|
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
346
|
+
)
|
347
|
+
|
348
|
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
349
|
+
if hasattr(module, "set_processor"):
|
350
|
+
if not isinstance(processor, dict):
|
351
|
+
module.set_processor(processor)
|
352
|
+
else:
|
353
|
+
module.set_processor(processor.pop(f"{name}.processor"))
|
354
|
+
|
355
|
+
for sub_name, child in module.named_children():
|
356
|
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
357
|
+
|
358
|
+
for name, module in self.named_children():
|
359
|
+
fn_recursive_attn_processor(name, module, processor)
|
360
|
+
|
361
|
+
def forward(
|
362
|
+
self,
|
363
|
+
hidden_states: torch.Tensor,
|
364
|
+
encoder_hidden_states: torch.Tensor,
|
365
|
+
timestep: torch.LongTensor,
|
366
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
367
|
+
attention_mask: Optional[torch.Tensor] = None,
|
368
|
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
369
|
+
return_dict: bool = True,
|
370
|
+
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
|
371
|
+
if attention_kwargs is not None:
|
372
|
+
attention_kwargs = attention_kwargs.copy()
|
373
|
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
374
|
+
else:
|
375
|
+
lora_scale = 1.0
|
376
|
+
|
377
|
+
if USE_PEFT_BACKEND:
|
378
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
379
|
+
scale_lora_layers(self, lora_scale)
|
380
|
+
else:
|
381
|
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
382
|
+
logger.warning(
|
383
|
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
384
|
+
)
|
385
|
+
|
386
|
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
387
|
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
388
|
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
389
|
+
# expects mask of shape:
|
390
|
+
# [batch, key_tokens]
|
391
|
+
# adds singleton query_tokens dimension:
|
392
|
+
# [batch, 1, key_tokens]
|
393
|
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
394
|
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
395
|
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
396
|
+
if attention_mask is not None and attention_mask.ndim == 2:
|
397
|
+
# assume that mask is expressed as:
|
398
|
+
# (1 = keep, 0 = discard)
|
399
|
+
# convert mask into a bias that can be added to attention scores:
|
400
|
+
# (keep = +0, discard = -10000.0)
|
401
|
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
402
|
+
attention_mask = attention_mask.unsqueeze(1)
|
403
|
+
|
404
|
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
405
|
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
406
|
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
407
|
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
408
|
+
|
409
|
+
# 1. Input
|
410
|
+
batch_size, num_channels, height, width = hidden_states.shape
|
411
|
+
p = self.config.patch_size
|
412
|
+
post_patch_height, post_patch_width = height // p, width // p
|
413
|
+
|
414
|
+
hidden_states = self.patch_embed(hidden_states)
|
415
|
+
|
416
|
+
timestep, embedded_timestep = self.time_embed(
|
417
|
+
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
418
|
+
)
|
419
|
+
|
420
|
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
421
|
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
422
|
+
|
423
|
+
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
|
424
|
+
|
425
|
+
# 2. Transformer blocks
|
426
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
427
|
+
|
428
|
+
def create_custom_forward(module, return_dict=None):
|
429
|
+
def custom_forward(*inputs):
|
430
|
+
if return_dict is not None:
|
431
|
+
return module(*inputs, return_dict=return_dict)
|
432
|
+
else:
|
433
|
+
return module(*inputs)
|
434
|
+
|
435
|
+
return custom_forward
|
436
|
+
|
437
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
438
|
+
|
439
|
+
for block in self.transformer_blocks:
|
440
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
441
|
+
create_custom_forward(block),
|
442
|
+
hidden_states,
|
443
|
+
attention_mask,
|
444
|
+
encoder_hidden_states,
|
445
|
+
encoder_attention_mask,
|
446
|
+
timestep,
|
447
|
+
post_patch_height,
|
448
|
+
post_patch_width,
|
449
|
+
**ckpt_kwargs,
|
450
|
+
)
|
451
|
+
|
452
|
+
else:
|
453
|
+
for block in self.transformer_blocks:
|
454
|
+
hidden_states = block(
|
455
|
+
hidden_states,
|
456
|
+
attention_mask,
|
457
|
+
encoder_hidden_states,
|
458
|
+
encoder_attention_mask,
|
459
|
+
timestep,
|
460
|
+
post_patch_height,
|
461
|
+
post_patch_width,
|
462
|
+
)
|
463
|
+
|
464
|
+
# 3. Normalization
|
465
|
+
shift, scale = (
|
466
|
+
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
467
|
+
).chunk(2, dim=1)
|
468
|
+
hidden_states = self.norm_out(hidden_states)
|
469
|
+
|
470
|
+
# 4. Modulation
|
471
|
+
hidden_states = hidden_states * (1 + scale) + shift
|
472
|
+
hidden_states = self.proj_out(hidden_states)
|
473
|
+
|
474
|
+
# 5. Unpatchify
|
475
|
+
hidden_states = hidden_states.reshape(
|
476
|
+
batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1
|
477
|
+
)
|
478
|
+
hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4)
|
479
|
+
output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p)
|
480
|
+
|
481
|
+
if USE_PEFT_BACKEND:
|
482
|
+
# remove `lora_scale` from each PEFT layer
|
483
|
+
unscale_lora_layers(self, lora_scale)
|
484
|
+
|
485
|
+
if not return_dict:
|
486
|
+
return (output,)
|
487
|
+
|
488
|
+
return Transformer2DModelOutput(sample=output)
|