diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
diffusers/loaders/unet.py
CHANGED
@@ -11,58 +11,46 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
import inspect
|
15
14
|
import os
|
16
15
|
from collections import defaultdict
|
17
16
|
from contextlib import nullcontext
|
18
|
-
from functools import partial
|
19
17
|
from pathlib import Path
|
20
|
-
from typing import Callable, Dict,
|
18
|
+
from typing import Callable, Dict, Union
|
21
19
|
|
22
20
|
import safetensors
|
23
21
|
import torch
|
24
22
|
import torch.nn.functional as F
|
25
23
|
from huggingface_hub.utils import validate_hf_hub_args
|
26
|
-
from torch import nn
|
27
24
|
|
28
25
|
from ..models.embeddings import (
|
29
26
|
ImageProjection,
|
27
|
+
IPAdapterFaceIDImageProjection,
|
28
|
+
IPAdapterFaceIDPlusImageProjection,
|
30
29
|
IPAdapterFullImageProjection,
|
31
30
|
IPAdapterPlusImageProjection,
|
32
31
|
MultiIPAdapterImageProjection,
|
33
32
|
)
|
34
|
-
from ..models.modeling_utils import
|
33
|
+
from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict
|
35
34
|
from ..utils import (
|
36
35
|
USE_PEFT_BACKEND,
|
37
36
|
_get_model_file,
|
38
|
-
|
37
|
+
convert_unet_state_dict_to_peft,
|
38
|
+
deprecate,
|
39
|
+
get_adapter_name,
|
40
|
+
get_peft_kwargs,
|
39
41
|
is_accelerate_available,
|
42
|
+
is_peft_version,
|
40
43
|
is_torch_version,
|
41
44
|
logging,
|
42
|
-
set_adapter_layers,
|
43
|
-
set_weights_and_activate_adapters,
|
44
|
-
)
|
45
|
-
from .single_file_utils import (
|
46
|
-
convert_stable_cascade_unet_single_file_to_diffusers,
|
47
|
-
infer_stable_cascade_single_file_config,
|
48
|
-
load_single_file_model_checkpoint,
|
49
45
|
)
|
46
|
+
from .lora_base import _func_optionally_disable_offloading
|
47
|
+
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME
|
50
48
|
from .utils import AttnProcsLayers
|
51
49
|
|
52
50
|
|
53
|
-
if is_accelerate_available():
|
54
|
-
from accelerate import init_empty_weights
|
55
|
-
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
56
|
-
|
57
51
|
logger = logging.get_logger(__name__)
|
58
52
|
|
59
53
|
|
60
|
-
TEXT_ENCODER_NAME = "text_encoder"
|
61
|
-
UNET_NAME = "unet"
|
62
|
-
|
63
|
-
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
64
|
-
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
65
|
-
|
66
54
|
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
|
67
55
|
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
|
68
56
|
|
@@ -81,7 +69,8 @@ class UNet2DConditionLoadersMixin:
|
|
81
69
|
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
|
82
70
|
defined in
|
83
71
|
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
|
84
|
-
and be a `torch.nn.Module` class.
|
72
|
+
and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install
|
73
|
+
`peft`: `pip install -U peft`.
|
85
74
|
|
86
75
|
Parameters:
|
87
76
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
@@ -100,9 +89,7 @@ class UNet2DConditionLoadersMixin:
|
|
100
89
|
force_download (`bool`, *optional*, defaults to `False`):
|
101
90
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
102
91
|
cached versions if they exist.
|
103
|
-
|
104
|
-
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
105
|
-
incompletely downloaded files are deleted.
|
92
|
+
|
106
93
|
proxies (`Dict[str, str]`, *optional*):
|
107
94
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
108
95
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
@@ -112,20 +99,23 @@ class UNet2DConditionLoadersMixin:
|
|
112
99
|
token (`str` or *bool*, *optional*):
|
113
100
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
114
101
|
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
115
|
-
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
116
|
-
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
117
|
-
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
118
|
-
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
119
|
-
argument to `True` will raise an error.
|
120
102
|
revision (`str`, *optional*, defaults to `"main"`):
|
121
103
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
122
104
|
allowed by Git.
|
123
105
|
subfolder (`str`, *optional*, defaults to `""`):
|
124
106
|
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
107
|
+
network_alphas (`Dict[str, float]`):
|
108
|
+
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
109
|
+
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
110
|
+
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
111
|
+
adapter_name (`str`, *optional*, defaults to None):
|
112
|
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
113
|
+
`default_{i}` where i is the total number of adapters being loaded.
|
114
|
+
weight_name (`str`, *optional*, defaults to None):
|
115
|
+
Name of the serialized state dict file.
|
116
|
+
low_cpu_mem_usage (`bool`, *optional*):
|
117
|
+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
118
|
+
weights.
|
129
119
|
|
130
120
|
Example:
|
131
121
|
|
@@ -141,12 +131,8 @@ class UNet2DConditionLoadersMixin:
|
|
141
131
|
)
|
142
132
|
```
|
143
133
|
"""
|
144
|
-
from ..models.attention_processor import CustomDiffusionAttnProcessor
|
145
|
-
from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
|
146
|
-
|
147
134
|
cache_dir = kwargs.pop("cache_dir", None)
|
148
135
|
force_download = kwargs.pop("force_download", False)
|
149
|
-
resume_download = kwargs.pop("resume_download", False)
|
150
136
|
proxies = kwargs.pop("proxies", None)
|
151
137
|
local_files_only = kwargs.pop("local_files_only", None)
|
152
138
|
token = kwargs.pop("token", None)
|
@@ -154,17 +140,17 @@ class UNet2DConditionLoadersMixin:
|
|
154
140
|
subfolder = kwargs.pop("subfolder", None)
|
155
141
|
weight_name = kwargs.pop("weight_name", None)
|
156
142
|
use_safetensors = kwargs.pop("use_safetensors", None)
|
157
|
-
|
158
|
-
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
159
|
-
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
160
|
-
network_alphas = kwargs.pop("network_alphas", None)
|
161
|
-
|
143
|
+
adapter_name = kwargs.pop("adapter_name", None)
|
162
144
|
_pipeline = kwargs.pop("_pipeline", None)
|
163
|
-
|
164
|
-
|
165
|
-
|
145
|
+
network_alphas = kwargs.pop("network_alphas", None)
|
146
|
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
|
166
147
|
allow_pickle = False
|
167
148
|
|
149
|
+
if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
|
150
|
+
raise ValueError(
|
151
|
+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
152
|
+
)
|
153
|
+
|
168
154
|
if use_safetensors is None:
|
169
155
|
use_safetensors = True
|
170
156
|
allow_pickle = True
|
@@ -186,7 +172,6 @@ class UNet2DConditionLoadersMixin:
|
|
186
172
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
187
173
|
cache_dir=cache_dir,
|
188
174
|
force_download=force_download,
|
189
|
-
resume_download=resume_download,
|
190
175
|
proxies=proxies,
|
191
176
|
local_files_only=local_files_only,
|
192
177
|
token=token,
|
@@ -206,7 +191,6 @@ class UNet2DConditionLoadersMixin:
|
|
206
191
|
weights_name=weight_name or LORA_WEIGHT_NAME,
|
207
192
|
cache_dir=cache_dir,
|
208
193
|
force_download=force_download,
|
209
|
-
resume_download=resume_download,
|
210
194
|
proxies=proxies,
|
211
195
|
local_files_only=local_files_only,
|
212
196
|
token=token,
|
@@ -214,198 +198,206 @@ class UNet2DConditionLoadersMixin:
|
|
214
198
|
subfolder=subfolder,
|
215
199
|
user_agent=user_agent,
|
216
200
|
)
|
217
|
-
state_dict =
|
201
|
+
state_dict = load_state_dict(model_file)
|
218
202
|
else:
|
219
203
|
state_dict = pretrained_model_name_or_path_or_dict
|
220
204
|
|
221
|
-
# fill attn processors
|
222
|
-
lora_layers_list = []
|
223
|
-
|
224
|
-
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
|
225
205
|
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
|
206
|
+
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
|
207
|
+
is_model_cpu_offload = False
|
208
|
+
is_sequential_cpu_offload = False
|
226
209
|
|
227
210
|
if is_lora:
|
228
|
-
|
229
|
-
|
211
|
+
deprecation_message = "Using the `load_attn_procs()` method has been deprecated and will be removed in a future version. Please use `load_lora_adapter()`."
|
212
|
+
deprecate("load_attn_procs", "0.40.0", deprecation_message)
|
230
213
|
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
for k in network_alphas_keys:
|
247
|
-
if k.replace(".alpha", "") in key:
|
248
|
-
mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
|
249
|
-
used_network_alphas_keys.add(k)
|
250
|
-
|
251
|
-
if not is_network_alphas_none:
|
252
|
-
if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
|
253
|
-
raise ValueError(
|
254
|
-
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
|
255
|
-
)
|
214
|
+
if is_custom_diffusion:
|
215
|
+
attn_processors = self._process_custom_diffusion(state_dict=state_dict)
|
216
|
+
elif is_lora:
|
217
|
+
is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora(
|
218
|
+
state_dict=state_dict,
|
219
|
+
unet_identifier_key=self.unet_name,
|
220
|
+
network_alphas=network_alphas,
|
221
|
+
adapter_name=adapter_name,
|
222
|
+
_pipeline=_pipeline,
|
223
|
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
224
|
+
)
|
225
|
+
else:
|
226
|
+
raise ValueError(
|
227
|
+
f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training."
|
228
|
+
)
|
256
229
|
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
)
|
230
|
+
# <Unsafe code
|
231
|
+
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
|
232
|
+
# Now we remove any existing hooks to `_pipeline`.
|
261
233
|
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
attn_processor = getattr(attn_processor, sub_key)
|
266
|
-
|
267
|
-
# Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
|
268
|
-
# or add_{k,v,q,out_proj}_proj_lora layers.
|
269
|
-
rank = value_dict["lora.down.weight"].shape[0]
|
270
|
-
|
271
|
-
if isinstance(attn_processor, LoRACompatibleConv):
|
272
|
-
in_features = attn_processor.in_channels
|
273
|
-
out_features = attn_processor.out_channels
|
274
|
-
kernel_size = attn_processor.kernel_size
|
275
|
-
|
276
|
-
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
|
277
|
-
with ctx():
|
278
|
-
lora = LoRAConv2dLayer(
|
279
|
-
in_features=in_features,
|
280
|
-
out_features=out_features,
|
281
|
-
rank=rank,
|
282
|
-
kernel_size=kernel_size,
|
283
|
-
stride=attn_processor.stride,
|
284
|
-
padding=attn_processor.padding,
|
285
|
-
network_alpha=mapped_network_alphas.get(key),
|
286
|
-
)
|
287
|
-
elif isinstance(attn_processor, LoRACompatibleLinear):
|
288
|
-
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
|
289
|
-
with ctx():
|
290
|
-
lora = LoRALinearLayer(
|
291
|
-
attn_processor.in_features,
|
292
|
-
attn_processor.out_features,
|
293
|
-
rank,
|
294
|
-
mapped_network_alphas.get(key),
|
295
|
-
)
|
296
|
-
else:
|
297
|
-
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
|
234
|
+
# For LoRA, the UNet is already offloaded at this stage as it is handled inside `_process_lora`.
|
235
|
+
if is_custom_diffusion and _pipeline is not None:
|
236
|
+
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline)
|
298
237
|
|
299
|
-
|
300
|
-
|
238
|
+
# only custom diffusion needs to set attn processors
|
239
|
+
self.set_attn_processor(attn_processors)
|
240
|
+
self.to(dtype=self.dtype, device=self.device)
|
301
241
|
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
242
|
+
# Offload back.
|
243
|
+
if is_model_cpu_offload:
|
244
|
+
_pipeline.enable_model_cpu_offload()
|
245
|
+
elif is_sequential_cpu_offload:
|
246
|
+
_pipeline.enable_sequential_cpu_offload()
|
247
|
+
# Unsafe code />
|
308
248
|
|
309
|
-
|
310
|
-
|
311
|
-
custom_diffusion_grouped_dict = defaultdict(dict)
|
312
|
-
for key, value in state_dict.items():
|
313
|
-
if len(value) == 0:
|
314
|
-
custom_diffusion_grouped_dict[key] = {}
|
315
|
-
else:
|
316
|
-
if "to_out" in key:
|
317
|
-
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
318
|
-
else:
|
319
|
-
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
|
320
|
-
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
|
249
|
+
def _process_custom_diffusion(self, state_dict):
|
250
|
+
from ..models.attention_processor import CustomDiffusionAttnProcessor
|
321
251
|
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
252
|
+
attn_processors = {}
|
253
|
+
custom_diffusion_grouped_dict = defaultdict(dict)
|
254
|
+
for key, value in state_dict.items():
|
255
|
+
if len(value) == 0:
|
256
|
+
custom_diffusion_grouped_dict[key] = {}
|
257
|
+
else:
|
258
|
+
if "to_out" in key:
|
259
|
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
327
260
|
else:
|
328
|
-
|
329
|
-
|
330
|
-
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
|
331
|
-
attn_processors[key] = CustomDiffusionAttnProcessor(
|
332
|
-
train_kv=True,
|
333
|
-
train_q_out=train_q_out,
|
334
|
-
hidden_size=hidden_size,
|
335
|
-
cross_attention_dim=cross_attention_dim,
|
336
|
-
)
|
337
|
-
attn_processors[key].load_state_dict(value_dict)
|
338
|
-
elif USE_PEFT_BACKEND:
|
339
|
-
# In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
|
340
|
-
# on the Unet
|
341
|
-
pass
|
342
|
-
else:
|
343
|
-
raise ValueError(
|
344
|
-
f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
|
345
|
-
)
|
261
|
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
|
262
|
+
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
|
346
263
|
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
264
|
+
for key, value_dict in custom_diffusion_grouped_dict.items():
|
265
|
+
if len(value_dict) == 0:
|
266
|
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
267
|
+
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
|
268
|
+
)
|
269
|
+
else:
|
270
|
+
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
|
271
|
+
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
|
272
|
+
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
|
273
|
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
274
|
+
train_kv=True,
|
275
|
+
train_q_out=train_q_out,
|
276
|
+
hidden_size=hidden_size,
|
277
|
+
cross_attention_dim=cross_attention_dim,
|
278
|
+
)
|
279
|
+
attn_processors[key].load_state_dict(value_dict)
|
352
280
|
|
353
|
-
|
354
|
-
if not USE_PEFT_BACKEND:
|
355
|
-
if _pipeline is not None:
|
356
|
-
for _, component in _pipeline.components.items():
|
357
|
-
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
358
|
-
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
359
|
-
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
360
|
-
|
361
|
-
logger.info(
|
362
|
-
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
363
|
-
)
|
364
|
-
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
281
|
+
return attn_processors
|
365
282
|
|
366
|
-
|
367
|
-
|
368
|
-
|
283
|
+
def _process_lora(
|
284
|
+
self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline, low_cpu_mem_usage
|
285
|
+
):
|
286
|
+
# This method does the following things:
|
287
|
+
# 1. Filters the `state_dict` with keys matching `unet_identifier_key` when using the non-legacy
|
288
|
+
# format. For legacy format no filtering is applied.
|
289
|
+
# 2. Converts the `state_dict` to the `peft` compatible format.
|
290
|
+
# 3. Creates a `LoraConfig` and then injects the converted `state_dict` into the UNet per the
|
291
|
+
# `LoraConfig` specs.
|
292
|
+
# 4. It also reports if the underlying `_pipeline` has any kind of offloading inside of it.
|
293
|
+
if not USE_PEFT_BACKEND:
|
294
|
+
raise ValueError("PEFT backend is required for this method.")
|
369
295
|
|
370
|
-
|
371
|
-
for target_module, lora_layer in lora_layers_list:
|
372
|
-
target_module.set_lora_layer(lora_layer)
|
296
|
+
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
373
297
|
|
374
|
-
|
298
|
+
keys = list(state_dict.keys())
|
375
299
|
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
_pipeline.enable_sequential_cpu_offload()
|
381
|
-
# Unsafe code />
|
300
|
+
unet_keys = [k for k in keys if k.startswith(unet_identifier_key)]
|
301
|
+
unet_state_dict = {
|
302
|
+
k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys
|
303
|
+
}
|
382
304
|
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
# Strip the `"unet"` prefix.
|
389
|
-
is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
|
390
|
-
if is_text_encoder_present:
|
391
|
-
warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
|
392
|
-
logger.warning(warn_message)
|
393
|
-
unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
|
394
|
-
state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
|
305
|
+
if network_alphas is not None:
|
306
|
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)]
|
307
|
+
network_alphas = {
|
308
|
+
k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
309
|
+
}
|
395
310
|
|
396
|
-
|
397
|
-
|
311
|
+
is_model_cpu_offload = False
|
312
|
+
is_sequential_cpu_offload = False
|
313
|
+
state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict
|
398
314
|
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
315
|
+
if len(state_dict_to_be_used) > 0:
|
316
|
+
if adapter_name in getattr(self, "peft_config", {}):
|
317
|
+
raise ValueError(
|
318
|
+
f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
|
319
|
+
)
|
403
320
|
|
404
|
-
state_dict =
|
321
|
+
state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used)
|
405
322
|
|
406
323
|
if network_alphas is not None:
|
407
|
-
|
408
|
-
|
324
|
+
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
|
325
|
+
# `convert_unet_state_dict_to_peft` method.
|
326
|
+
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
|
327
|
+
|
328
|
+
rank = {}
|
329
|
+
for key, val in state_dict.items():
|
330
|
+
if "lora_B" in key:
|
331
|
+
rank[key] = val.shape[1]
|
332
|
+
|
333
|
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
|
334
|
+
if "use_dora" in lora_config_kwargs:
|
335
|
+
if lora_config_kwargs["use_dora"]:
|
336
|
+
if is_peft_version("<", "0.9.0"):
|
337
|
+
raise ValueError(
|
338
|
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
339
|
+
)
|
340
|
+
else:
|
341
|
+
if is_peft_version("<", "0.9.0"):
|
342
|
+
lora_config_kwargs.pop("use_dora")
|
343
|
+
lora_config = LoraConfig(**lora_config_kwargs)
|
344
|
+
|
345
|
+
# adapter_name
|
346
|
+
if adapter_name is None:
|
347
|
+
adapter_name = get_adapter_name(self)
|
348
|
+
|
349
|
+
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
350
|
+
# otherwise loading LoRA weights will lead to an error
|
351
|
+
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
|
352
|
+
peft_kwargs = {}
|
353
|
+
if is_peft_version(">=", "0.13.1"):
|
354
|
+
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
355
|
+
|
356
|
+
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
|
357
|
+
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
|
358
|
+
|
359
|
+
warn_msg = ""
|
360
|
+
if incompatible_keys is not None:
|
361
|
+
# Check only for unexpected keys.
|
362
|
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
363
|
+
if unexpected_keys:
|
364
|
+
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
365
|
+
if lora_unexpected_keys:
|
366
|
+
warn_msg = (
|
367
|
+
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
368
|
+
f" {', '.join(lora_unexpected_keys)}. "
|
369
|
+
)
|
370
|
+
|
371
|
+
# Filter missing keys specific to the current adapter.
|
372
|
+
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
373
|
+
if missing_keys:
|
374
|
+
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
375
|
+
if lora_missing_keys:
|
376
|
+
warn_msg += (
|
377
|
+
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
378
|
+
f" {', '.join(lora_missing_keys)}."
|
379
|
+
)
|
380
|
+
|
381
|
+
if warn_msg:
|
382
|
+
logger.warning(warn_msg)
|
383
|
+
|
384
|
+
return is_model_cpu_offload, is_sequential_cpu_offload
|
385
|
+
|
386
|
+
@classmethod
|
387
|
+
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
|
388
|
+
def _optionally_disable_offloading(cls, _pipeline):
|
389
|
+
"""
|
390
|
+
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
391
|
+
|
392
|
+
Args:
|
393
|
+
_pipeline (`DiffusionPipeline`):
|
394
|
+
The pipeline to disable offloading for.
|
395
|
+
|
396
|
+
Returns:
|
397
|
+
tuple:
|
398
|
+
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
399
|
+
"""
|
400
|
+
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
409
401
|
|
410
402
|
def save_attn_procs(
|
411
403
|
self,
|
@@ -458,17 +450,6 @@ class UNet2DConditionLoadersMixin:
|
|
458
450
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
459
451
|
return
|
460
452
|
|
461
|
-
if save_function is None:
|
462
|
-
if safe_serialization:
|
463
|
-
|
464
|
-
def save_function(weights, filename):
|
465
|
-
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
466
|
-
|
467
|
-
else:
|
468
|
-
save_function = torch.save
|
469
|
-
|
470
|
-
os.makedirs(save_directory, exist_ok=True)
|
471
|
-
|
472
453
|
is_custom_diffusion = any(
|
473
454
|
isinstance(
|
474
455
|
x,
|
@@ -477,27 +458,37 @@ class UNet2DConditionLoadersMixin:
|
|
477
458
|
for (_, x) in self.attn_processors.items()
|
478
459
|
)
|
479
460
|
if is_custom_diffusion:
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
CustomDiffusionAttnProcessor2_0,
|
489
|
-
CustomDiffusionXFormersAttnProcessor,
|
490
|
-
),
|
461
|
+
state_dict = self._get_custom_diffusion_state_dict()
|
462
|
+
if save_function is None and safe_serialization:
|
463
|
+
# safetensors does not support saving dicts with non-tensor values
|
464
|
+
empty_state_dict = {k: v for k, v in state_dict.items() if not isinstance(v, torch.Tensor)}
|
465
|
+
if len(empty_state_dict) > 0:
|
466
|
+
logger.warning(
|
467
|
+
f"Safetensors does not support saving dicts with non-tensor values. "
|
468
|
+
f"The following keys will be ignored: {empty_state_dict.keys()}"
|
491
469
|
)
|
492
|
-
}
|
493
|
-
)
|
494
|
-
state_dict = model_to_save.state_dict()
|
495
|
-
for name, attn in self.attn_processors.items():
|
496
|
-
if len(attn.state_dict()) == 0:
|
497
|
-
state_dict[name] = {}
|
470
|
+
state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)}
|
498
471
|
else:
|
499
|
-
|
500
|
-
|
472
|
+
deprecation_message = "Using the `save_attn_procs()` method has been deprecated and will be removed in a future version. Please use `save_lora_adapter()`."
|
473
|
+
deprecate("save_attn_procs", "0.40.0", deprecation_message)
|
474
|
+
|
475
|
+
if not USE_PEFT_BACKEND:
|
476
|
+
raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.")
|
477
|
+
|
478
|
+
from peft.utils import get_peft_model_state_dict
|
479
|
+
|
480
|
+
state_dict = get_peft_model_state_dict(self)
|
481
|
+
|
482
|
+
if save_function is None:
|
483
|
+
if safe_serialization:
|
484
|
+
|
485
|
+
def save_function(weights, filename):
|
486
|
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
487
|
+
|
488
|
+
else:
|
489
|
+
save_function = torch.save
|
490
|
+
|
491
|
+
os.makedirs(save_directory, exist_ok=True)
|
501
492
|
|
502
493
|
if weight_name is None:
|
503
494
|
if safe_serialization:
|
@@ -510,186 +501,33 @@ class UNet2DConditionLoadersMixin:
|
|
510
501
|
save_function(state_dict, save_path)
|
511
502
|
logger.info(f"Model weights saved in {save_path}")
|
512
503
|
|
513
|
-
def
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
def _fuse_lora_apply(self, module, adapter_names=None):
|
519
|
-
if not USE_PEFT_BACKEND:
|
520
|
-
if hasattr(module, "_fuse_lora"):
|
521
|
-
module._fuse_lora(self.lora_scale, self._safe_fusing)
|
522
|
-
|
523
|
-
if adapter_names is not None:
|
524
|
-
raise ValueError(
|
525
|
-
"The `adapter_names` argument is not supported in your environment. Please switch"
|
526
|
-
" to PEFT backend to use this argument by installing latest PEFT and transformers."
|
527
|
-
" `pip install -U peft transformers`"
|
528
|
-
)
|
529
|
-
else:
|
530
|
-
from peft.tuners.tuners_utils import BaseTunerLayer
|
531
|
-
|
532
|
-
merge_kwargs = {"safe_merge": self._safe_fusing}
|
533
|
-
|
534
|
-
if isinstance(module, BaseTunerLayer):
|
535
|
-
if self.lora_scale != 1.0:
|
536
|
-
module.scale_layer(self.lora_scale)
|
537
|
-
|
538
|
-
# For BC with prevous PEFT versions, we need to check the signature
|
539
|
-
# of the `merge` method to see if it supports the `adapter_names` argument.
|
540
|
-
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
|
541
|
-
if "adapter_names" in supported_merge_kwargs:
|
542
|
-
merge_kwargs["adapter_names"] = adapter_names
|
543
|
-
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
|
544
|
-
raise ValueError(
|
545
|
-
"The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
|
546
|
-
" to the latest version of PEFT. `pip install -U peft`"
|
547
|
-
)
|
548
|
-
|
549
|
-
module.merge(**merge_kwargs)
|
550
|
-
|
551
|
-
def unfuse_lora(self):
|
552
|
-
self.apply(self._unfuse_lora_apply)
|
553
|
-
|
554
|
-
def _unfuse_lora_apply(self, module):
|
555
|
-
if not USE_PEFT_BACKEND:
|
556
|
-
if hasattr(module, "_unfuse_lora"):
|
557
|
-
module._unfuse_lora()
|
558
|
-
else:
|
559
|
-
from peft.tuners.tuners_utils import BaseTunerLayer
|
560
|
-
|
561
|
-
if isinstance(module, BaseTunerLayer):
|
562
|
-
module.unmerge()
|
563
|
-
|
564
|
-
def set_adapters(
|
565
|
-
self,
|
566
|
-
adapter_names: Union[List[str], str],
|
567
|
-
weights: Optional[Union[List[float], float]] = None,
|
568
|
-
):
|
569
|
-
"""
|
570
|
-
Set the currently active adapters for use in the UNet.
|
571
|
-
|
572
|
-
Args:
|
573
|
-
adapter_names (`List[str]` or `str`):
|
574
|
-
The names of the adapters to use.
|
575
|
-
adapter_weights (`Union[List[float], float]`, *optional*):
|
576
|
-
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
577
|
-
adapters.
|
578
|
-
|
579
|
-
Example:
|
580
|
-
|
581
|
-
```py
|
582
|
-
from diffusers import AutoPipelineForText2Image
|
583
|
-
import torch
|
584
|
-
|
585
|
-
pipeline = AutoPipelineForText2Image.from_pretrained(
|
586
|
-
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
587
|
-
).to("cuda")
|
588
|
-
pipeline.load_lora_weights(
|
589
|
-
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
590
|
-
)
|
591
|
-
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
592
|
-
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
593
|
-
```
|
594
|
-
"""
|
595
|
-
if not USE_PEFT_BACKEND:
|
596
|
-
raise ValueError("PEFT backend is required for `set_adapters()`.")
|
597
|
-
|
598
|
-
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
599
|
-
|
600
|
-
if weights is None:
|
601
|
-
weights = [1.0] * len(adapter_names)
|
602
|
-
elif isinstance(weights, float):
|
603
|
-
weights = [weights] * len(adapter_names)
|
604
|
-
|
605
|
-
if len(adapter_names) != len(weights):
|
606
|
-
raise ValueError(
|
607
|
-
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
|
608
|
-
)
|
609
|
-
|
610
|
-
set_weights_and_activate_adapters(self, adapter_names, weights)
|
611
|
-
|
612
|
-
def disable_lora(self):
|
613
|
-
"""
|
614
|
-
Disable the UNet's active LoRA layers.
|
615
|
-
|
616
|
-
Example:
|
617
|
-
|
618
|
-
```py
|
619
|
-
from diffusers import AutoPipelineForText2Image
|
620
|
-
import torch
|
621
|
-
|
622
|
-
pipeline = AutoPipelineForText2Image.from_pretrained(
|
623
|
-
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
624
|
-
).to("cuda")
|
625
|
-
pipeline.load_lora_weights(
|
626
|
-
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
627
|
-
)
|
628
|
-
pipeline.disable_lora()
|
629
|
-
```
|
630
|
-
"""
|
631
|
-
if not USE_PEFT_BACKEND:
|
632
|
-
raise ValueError("PEFT backend is required for this method.")
|
633
|
-
set_adapter_layers(self, enabled=False)
|
634
|
-
|
635
|
-
def enable_lora(self):
|
636
|
-
"""
|
637
|
-
Enable the UNet's active LoRA layers.
|
638
|
-
|
639
|
-
Example:
|
640
|
-
|
641
|
-
```py
|
642
|
-
from diffusers import AutoPipelineForText2Image
|
643
|
-
import torch
|
644
|
-
|
645
|
-
pipeline = AutoPipelineForText2Image.from_pretrained(
|
646
|
-
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
647
|
-
).to("cuda")
|
648
|
-
pipeline.load_lora_weights(
|
649
|
-
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
504
|
+
def _get_custom_diffusion_state_dict(self):
|
505
|
+
from ..models.attention_processor import (
|
506
|
+
CustomDiffusionAttnProcessor,
|
507
|
+
CustomDiffusionAttnProcessor2_0,
|
508
|
+
CustomDiffusionXFormersAttnProcessor,
|
650
509
|
)
|
651
|
-
pipeline.enable_lora()
|
652
|
-
```
|
653
|
-
"""
|
654
|
-
if not USE_PEFT_BACKEND:
|
655
|
-
raise ValueError("PEFT backend is required for this method.")
|
656
|
-
set_adapter_layers(self, enabled=True)
|
657
|
-
|
658
|
-
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
659
|
-
"""
|
660
|
-
Delete an adapter's LoRA layers from the UNet.
|
661
|
-
|
662
|
-
Args:
|
663
|
-
adapter_names (`Union[List[str], str]`):
|
664
|
-
The names (single string or list of strings) of the adapter to delete.
|
665
|
-
|
666
|
-
Example:
|
667
510
|
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
675
|
-
|
676
|
-
|
511
|
+
model_to_save = AttnProcsLayers(
|
512
|
+
{
|
513
|
+
y: x
|
514
|
+
for (y, x) in self.attn_processors.items()
|
515
|
+
if isinstance(
|
516
|
+
x,
|
517
|
+
(
|
518
|
+
CustomDiffusionAttnProcessor,
|
519
|
+
CustomDiffusionAttnProcessor2_0,
|
520
|
+
CustomDiffusionXFormersAttnProcessor,
|
521
|
+
),
|
522
|
+
)
|
523
|
+
}
|
677
524
|
)
|
678
|
-
|
679
|
-
|
680
|
-
|
681
|
-
|
682
|
-
raise ValueError("PEFT backend is required for this method.")
|
683
|
-
|
684
|
-
if isinstance(adapter_names, str):
|
685
|
-
adapter_names = [adapter_names]
|
525
|
+
state_dict = model_to_save.state_dict()
|
526
|
+
for name, attn in self.attn_processors.items():
|
527
|
+
if len(attn.state_dict()) == 0:
|
528
|
+
state_dict[name] = {}
|
686
529
|
|
687
|
-
|
688
|
-
delete_adapter_layers(self, adapter_name)
|
689
|
-
|
690
|
-
# Pop also the corresponding adapter from the config
|
691
|
-
if hasattr(self, "peft_config"):
|
692
|
-
self.peft_config.pop(adapter_name, None)
|
530
|
+
return state_dict
|
693
531
|
|
694
532
|
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
|
695
533
|
if low_cpu_mem_usage:
|
@@ -748,13 +586,102 @@ class UNet2DConditionLoadersMixin:
|
|
748
586
|
diffusers_name = diffusers_name.replace("proj.3", "norm")
|
749
587
|
updated_state_dict[diffusers_name] = value
|
750
588
|
|
589
|
+
elif "perceiver_resampler.proj_in.weight" in state_dict:
|
590
|
+
# IP-Adapter Face ID Plus
|
591
|
+
id_embeddings_dim = state_dict["proj.0.weight"].shape[1]
|
592
|
+
embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0]
|
593
|
+
hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1]
|
594
|
+
output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0]
|
595
|
+
heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64
|
596
|
+
|
597
|
+
with init_context():
|
598
|
+
image_projection = IPAdapterFaceIDPlusImageProjection(
|
599
|
+
embed_dims=embed_dims,
|
600
|
+
output_dims=output_dims,
|
601
|
+
hidden_dims=hidden_dims,
|
602
|
+
heads=heads,
|
603
|
+
id_embeddings_dim=id_embeddings_dim,
|
604
|
+
)
|
605
|
+
|
606
|
+
for key, value in state_dict.items():
|
607
|
+
diffusers_name = key.replace("perceiver_resampler.", "")
|
608
|
+
diffusers_name = diffusers_name.replace("0.to", "attn.to")
|
609
|
+
diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.")
|
610
|
+
diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight")
|
611
|
+
diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight")
|
612
|
+
diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.")
|
613
|
+
diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight")
|
614
|
+
diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight")
|
615
|
+
diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.")
|
616
|
+
diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight")
|
617
|
+
diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight")
|
618
|
+
diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.")
|
619
|
+
diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight")
|
620
|
+
diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight")
|
621
|
+
diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0")
|
622
|
+
diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1")
|
623
|
+
diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0")
|
624
|
+
diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1")
|
625
|
+
diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0")
|
626
|
+
diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1")
|
627
|
+
diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0")
|
628
|
+
diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1")
|
629
|
+
|
630
|
+
if "norm1" in diffusers_name:
|
631
|
+
updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
|
632
|
+
elif "norm2" in diffusers_name:
|
633
|
+
updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
|
634
|
+
elif "to_kv" in diffusers_name:
|
635
|
+
v_chunk = value.chunk(2, dim=0)
|
636
|
+
updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
|
637
|
+
updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
|
638
|
+
elif "to_out" in diffusers_name:
|
639
|
+
updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
|
640
|
+
elif "proj.0.weight" == diffusers_name:
|
641
|
+
updated_state_dict["proj.net.0.proj.weight"] = value
|
642
|
+
elif "proj.0.bias" == diffusers_name:
|
643
|
+
updated_state_dict["proj.net.0.proj.bias"] = value
|
644
|
+
elif "proj.2.weight" == diffusers_name:
|
645
|
+
updated_state_dict["proj.net.2.weight"] = value
|
646
|
+
elif "proj.2.bias" == diffusers_name:
|
647
|
+
updated_state_dict["proj.net.2.bias"] = value
|
648
|
+
else:
|
649
|
+
updated_state_dict[diffusers_name] = value
|
650
|
+
|
651
|
+
elif "norm.weight" in state_dict:
|
652
|
+
# IP-Adapter Face ID
|
653
|
+
id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1]
|
654
|
+
id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0]
|
655
|
+
multiplier = id_embeddings_dim_out // id_embeddings_dim_in
|
656
|
+
norm_layer = "norm.weight"
|
657
|
+
cross_attention_dim = state_dict[norm_layer].shape[0]
|
658
|
+
num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim
|
659
|
+
|
660
|
+
with init_context():
|
661
|
+
image_projection = IPAdapterFaceIDImageProjection(
|
662
|
+
cross_attention_dim=cross_attention_dim,
|
663
|
+
image_embed_dim=id_embeddings_dim_in,
|
664
|
+
mult=multiplier,
|
665
|
+
num_tokens=num_tokens,
|
666
|
+
)
|
667
|
+
|
668
|
+
for key, value in state_dict.items():
|
669
|
+
diffusers_name = key.replace("proj.0", "ff.net.0.proj")
|
670
|
+
diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
|
671
|
+
updated_state_dict[diffusers_name] = value
|
672
|
+
|
751
673
|
else:
|
752
674
|
# IP-Adapter Plus
|
753
675
|
num_image_text_embeds = state_dict["latents"].shape[1]
|
754
676
|
embed_dims = state_dict["proj_in.weight"].shape[1]
|
755
677
|
output_dims = state_dict["proj_out.weight"].shape[0]
|
756
678
|
hidden_dims = state_dict["latents"].shape[2]
|
757
|
-
|
679
|
+
attn_key_present = any("attn" in k for k in state_dict)
|
680
|
+
heads = (
|
681
|
+
state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
|
682
|
+
if attn_key_present
|
683
|
+
else state_dict["layers.0.0.to_q.weight"].shape[0] // 64
|
684
|
+
)
|
758
685
|
|
759
686
|
with init_context():
|
760
687
|
image_projection = IPAdapterPlusImageProjection(
|
@@ -767,26 +694,53 @@ class UNet2DConditionLoadersMixin:
|
|
767
694
|
|
768
695
|
for key, value in state_dict.items():
|
769
696
|
diffusers_name = key.replace("0.to", "2.to")
|
770
|
-
diffusers_name = diffusers_name.replace("1.0.weight", "3.0.weight")
|
771
|
-
diffusers_name = diffusers_name.replace("1.0.bias", "3.0.bias")
|
772
|
-
diffusers_name = diffusers_name.replace("1.1.weight", "3.1.net.0.proj.weight")
|
773
|
-
diffusers_name = diffusers_name.replace("1.3.weight", "3.1.net.2.weight")
|
774
697
|
|
775
|
-
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
|
698
|
+
diffusers_name = diffusers_name.replace("0.0.norm1", "0.ln0")
|
699
|
+
diffusers_name = diffusers_name.replace("0.0.norm2", "0.ln1")
|
700
|
+
diffusers_name = diffusers_name.replace("1.0.norm1", "1.ln0")
|
701
|
+
diffusers_name = diffusers_name.replace("1.0.norm2", "1.ln1")
|
702
|
+
diffusers_name = diffusers_name.replace("2.0.norm1", "2.ln0")
|
703
|
+
diffusers_name = diffusers_name.replace("2.0.norm2", "2.ln1")
|
704
|
+
diffusers_name = diffusers_name.replace("3.0.norm1", "3.ln0")
|
705
|
+
diffusers_name = diffusers_name.replace("3.0.norm2", "3.ln1")
|
706
|
+
|
707
|
+
if "to_kv" in diffusers_name:
|
708
|
+
parts = diffusers_name.split(".")
|
709
|
+
parts[2] = "attn"
|
710
|
+
diffusers_name = ".".join(parts)
|
780
711
|
v_chunk = value.chunk(2, dim=0)
|
781
712
|
updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
|
782
713
|
updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
|
714
|
+
elif "to_q" in diffusers_name:
|
715
|
+
parts = diffusers_name.split(".")
|
716
|
+
parts[2] = "attn"
|
717
|
+
diffusers_name = ".".join(parts)
|
718
|
+
updated_state_dict[diffusers_name] = value
|
783
719
|
elif "to_out" in diffusers_name:
|
720
|
+
parts = diffusers_name.split(".")
|
721
|
+
parts[2] = "attn"
|
722
|
+
diffusers_name = ".".join(parts)
|
784
723
|
updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
|
785
724
|
else:
|
725
|
+
diffusers_name = diffusers_name.replace("0.1.0", "0.ff.0")
|
726
|
+
diffusers_name = diffusers_name.replace("0.1.1", "0.ff.1.net.0.proj")
|
727
|
+
diffusers_name = diffusers_name.replace("0.1.3", "0.ff.1.net.2")
|
728
|
+
|
729
|
+
diffusers_name = diffusers_name.replace("1.1.0", "1.ff.0")
|
730
|
+
diffusers_name = diffusers_name.replace("1.1.1", "1.ff.1.net.0.proj")
|
731
|
+
diffusers_name = diffusers_name.replace("1.1.3", "1.ff.1.net.2")
|
732
|
+
|
733
|
+
diffusers_name = diffusers_name.replace("2.1.0", "2.ff.0")
|
734
|
+
diffusers_name = diffusers_name.replace("2.1.1", "2.ff.1.net.0.proj")
|
735
|
+
diffusers_name = diffusers_name.replace("2.1.3", "2.ff.1.net.2")
|
736
|
+
|
737
|
+
diffusers_name = diffusers_name.replace("3.1.0", "3.ff.0")
|
738
|
+
diffusers_name = diffusers_name.replace("3.1.1", "3.ff.1.net.0.proj")
|
739
|
+
diffusers_name = diffusers_name.replace("3.1.3", "3.ff.1.net.2")
|
786
740
|
updated_state_dict[diffusers_name] = value
|
787
741
|
|
788
742
|
if not low_cpu_mem_usage:
|
789
|
-
image_projection.load_state_dict(updated_state_dict)
|
743
|
+
image_projection.load_state_dict(updated_state_dict, strict=True)
|
790
744
|
else:
|
791
745
|
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
|
792
746
|
|
@@ -794,10 +748,9 @@ class UNet2DConditionLoadersMixin:
|
|
794
748
|
|
795
749
|
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
|
796
750
|
from ..models.attention_processor import (
|
797
|
-
AttnProcessor,
|
798
|
-
AttnProcessor2_0,
|
799
751
|
IPAdapterAttnProcessor,
|
800
752
|
IPAdapterAttnProcessor2_0,
|
753
|
+
IPAdapterXFormersAttnProcessor,
|
801
754
|
)
|
802
755
|
|
803
756
|
if low_cpu_mem_usage:
|
@@ -835,14 +788,17 @@ class UNet2DConditionLoadersMixin:
|
|
835
788
|
hidden_size = self.config.block_out_channels[block_id]
|
836
789
|
|
837
790
|
if cross_attention_dim is None or "motion_modules" in name:
|
838
|
-
attn_processor_class =
|
839
|
-
AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
|
840
|
-
)
|
791
|
+
attn_processor_class = self.attn_processors[name].__class__
|
841
792
|
attn_procs[name] = attn_processor_class()
|
842
793
|
else:
|
843
|
-
|
844
|
-
|
845
|
-
|
794
|
+
if "XFormers" in str(self.attn_processors[name].__class__):
|
795
|
+
attn_processor_class = IPAdapterXFormersAttnProcessor
|
796
|
+
else:
|
797
|
+
attn_processor_class = (
|
798
|
+
IPAdapterAttnProcessor2_0
|
799
|
+
if hasattr(F, "scaled_dot_product_attention")
|
800
|
+
else IPAdapterAttnProcessor
|
801
|
+
)
|
846
802
|
num_image_text_embeds = []
|
847
803
|
for state_dict in state_dicts:
|
848
804
|
if "proj.weight" in state_dict["image_proj"]:
|
@@ -851,6 +807,12 @@ class UNet2DConditionLoadersMixin:
|
|
851
807
|
elif "proj.3.weight" in state_dict["image_proj"]:
|
852
808
|
# IP-Adapter Full Face
|
853
809
|
num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token
|
810
|
+
elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]:
|
811
|
+
# IP-Adapter Face ID Plus
|
812
|
+
num_image_text_embeds += [4]
|
813
|
+
elif "norm.weight" in state_dict["image_proj"]:
|
814
|
+
# IP-Adapter Face ID
|
815
|
+
num_image_text_embeds += [4]
|
854
816
|
else:
|
855
817
|
# IP-Adapter Plus
|
856
818
|
num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]
|
@@ -882,6 +844,15 @@ class UNet2DConditionLoadersMixin:
|
|
882
844
|
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
|
883
845
|
if not isinstance(state_dicts, list):
|
884
846
|
state_dicts = [state_dicts]
|
847
|
+
|
848
|
+
# Kolors Unet already has a `encoder_hid_proj`
|
849
|
+
if (
|
850
|
+
self.encoder_hid_proj is not None
|
851
|
+
and self.config.encoder_hid_dim_type == "text_proj"
|
852
|
+
and not hasattr(self, "text_encoder_hid_proj")
|
853
|
+
):
|
854
|
+
self.text_encoder_hid_proj = self.encoder_hid_proj
|
855
|
+
|
885
856
|
# Set encoder_hid_proj after loading ip_adapter weights,
|
886
857
|
# because `IPAdapterPlusImageProjection` also has `attn_processors`.
|
887
858
|
self.encoder_hid_proj = None
|
@@ -902,102 +873,55 @@ class UNet2DConditionLoadersMixin:
|
|
902
873
|
|
903
874
|
self.to(dtype=self.dtype, device=self.device)
|
904
875
|
|
905
|
-
|
906
|
-
|
907
|
-
|
908
|
-
|
909
|
-
|
910
|
-
|
911
|
-
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
|
916
|
-
|
917
|
-
|
918
|
-
|
919
|
-
|
920
|
-
|
921
|
-
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
|
926
|
-
|
927
|
-
|
928
|
-
|
929
|
-
|
930
|
-
|
931
|
-
|
932
|
-
|
933
|
-
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
|
938
|
-
|
939
|
-
|
940
|
-
|
941
|
-
|
942
|
-
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
|
949
|
-
|
950
|
-
|
951
|
-
|
952
|
-
|
953
|
-
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
config = kwargs.pop("config", None)
|
959
|
-
resume_download = kwargs.pop("resume_download", False)
|
960
|
-
force_download = kwargs.pop("force_download", False)
|
961
|
-
proxies = kwargs.pop("proxies", None)
|
962
|
-
token = kwargs.pop("token", None)
|
963
|
-
cache_dir = kwargs.pop("cache_dir", None)
|
964
|
-
local_files_only = kwargs.pop("local_files_only", None)
|
965
|
-
revision = kwargs.pop("revision", None)
|
966
|
-
torch_dtype = kwargs.pop("torch_dtype", None)
|
967
|
-
|
968
|
-
checkpoint = load_single_file_model_checkpoint(
|
969
|
-
pretrained_model_link_or_path,
|
970
|
-
resume_download=resume_download,
|
971
|
-
force_download=force_download,
|
972
|
-
proxies=proxies,
|
973
|
-
token=token,
|
974
|
-
cache_dir=cache_dir,
|
975
|
-
local_files_only=local_files_only,
|
976
|
-
revision=revision,
|
977
|
-
)
|
978
|
-
|
979
|
-
if config is None:
|
980
|
-
config = infer_stable_cascade_single_file_config(checkpoint)
|
981
|
-
model_config = cls.load_config(**config, **kwargs)
|
982
|
-
else:
|
983
|
-
model_config = config
|
984
|
-
|
985
|
-
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
986
|
-
with ctx():
|
987
|
-
model = cls.from_config(model_config, **kwargs)
|
988
|
-
|
989
|
-
diffusers_format_checkpoint = convert_stable_cascade_unet_single_file_to_diffusers(checkpoint)
|
990
|
-
if is_accelerate_available():
|
991
|
-
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
|
992
|
-
if len(unexpected_keys) > 0:
|
993
|
-
logger.warn(
|
994
|
-
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
|
995
|
-
)
|
996
|
-
|
997
|
-
else:
|
998
|
-
model.load_state_dict(diffusers_format_checkpoint)
|
999
|
-
|
1000
|
-
if torch_dtype is not None:
|
1001
|
-
model.to(torch_dtype)
|
1002
|
-
|
1003
|
-
return model
|
876
|
+
def _load_ip_adapter_loras(self, state_dicts):
|
877
|
+
lora_dicts = {}
|
878
|
+
for key_id, name in enumerate(self.attn_processors.keys()):
|
879
|
+
for i, state_dict in enumerate(state_dicts):
|
880
|
+
if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]:
|
881
|
+
if i not in lora_dicts:
|
882
|
+
lora_dicts[i] = {}
|
883
|
+
lora_dicts[i].update(
|
884
|
+
{
|
885
|
+
f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][
|
886
|
+
f"{key_id}.to_k_lora.down.weight"
|
887
|
+
]
|
888
|
+
}
|
889
|
+
)
|
890
|
+
lora_dicts[i].update(
|
891
|
+
{
|
892
|
+
f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][
|
893
|
+
f"{key_id}.to_q_lora.down.weight"
|
894
|
+
]
|
895
|
+
}
|
896
|
+
)
|
897
|
+
lora_dicts[i].update(
|
898
|
+
{
|
899
|
+
f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][
|
900
|
+
f"{key_id}.to_v_lora.down.weight"
|
901
|
+
]
|
902
|
+
}
|
903
|
+
)
|
904
|
+
lora_dicts[i].update(
|
905
|
+
{
|
906
|
+
f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][
|
907
|
+
f"{key_id}.to_out_lora.down.weight"
|
908
|
+
]
|
909
|
+
}
|
910
|
+
)
|
911
|
+
lora_dicts[i].update(
|
912
|
+
{f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]}
|
913
|
+
)
|
914
|
+
lora_dicts[i].update(
|
915
|
+
{f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]}
|
916
|
+
)
|
917
|
+
lora_dicts[i].update(
|
918
|
+
{f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]}
|
919
|
+
)
|
920
|
+
lora_dicts[i].update(
|
921
|
+
{
|
922
|
+
f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][
|
923
|
+
f"{key_id}.to_out_lora.up.weight"
|
924
|
+
]
|
925
|
+
}
|
926
|
+
)
|
927
|
+
return lora_dicts
|