diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1141 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModel,
22
+ CLIPTokenizer,
23
+ T5EncoderModel,
24
+ T5TokenizerFast,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import (
29
+ FluxLoraLoaderMixin,
30
+ FromSingleFileMixin,
31
+ TextualInversionLoaderMixin,
32
+ )
33
+ from ...models.autoencoders import AutoencoderKL
34
+ from ...models.transformers import FluxTransformer2DModel
35
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
36
+ from ...utils import (
37
+ USE_PEFT_BACKEND,
38
+ is_torch_xla_available,
39
+ logging,
40
+ replace_example_docstring,
41
+ scale_lora_layers,
42
+ unscale_lora_layers,
43
+ )
44
+ from ...utils.torch_utils import randn_tensor
45
+ from ..pipeline_utils import DiffusionPipeline
46
+ from .pipeline_output import FluxPipelineOutput
47
+
48
+
49
+ if is_torch_xla_available():
50
+ import torch_xla.core.xla_model as xm
51
+
52
+ XLA_AVAILABLE = True
53
+ else:
54
+ XLA_AVAILABLE = False
55
+
56
+
57
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
58
+
59
+ EXAMPLE_DOC_STRING = """
60
+ Examples:
61
+ ```py
62
+ import torch
63
+ from diffusers import FluxControlInpaintPipeline
64
+ from diffusers.models.transformers import FluxTransformer2DModel
65
+ from transformers import T5EncoderModel
66
+ from diffusers.utils import load_image, make_image_grid
67
+ from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
68
+ from PIL import Image
69
+ import numpy as np
70
+
71
+ pipe = FluxControlInpaintPipeline.from_pretrained(
72
+ "black-forest-labs/FLUX.1-Depth-dev",
73
+ torch_dtype=torch.bfloat16,
74
+ )
75
+ # use following lines if you have GPU constraints
76
+ # ---------------------------------------------------------------
77
+ transformer = FluxTransformer2DModel.from_pretrained(
78
+ "sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
79
+ )
80
+ text_encoder_2 = T5EncoderModel.from_pretrained(
81
+ "sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
82
+ )
83
+ pipe.transformer = transformer
84
+ pipe.text_encoder_2 = text_encoder_2
85
+ pipe.enable_model_cpu_offload()
86
+ # ---------------------------------------------------------------
87
+ pipe.to("cuda")
88
+
89
+ prompt = "a blue robot singing opera with human-like expressions"
90
+ image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
91
+
92
+ head_mask = np.zeros_like(image)
93
+ head_mask[65:580, 300:642] = 255
94
+ mask_image = Image.fromarray(head_mask)
95
+
96
+ processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
97
+ control_image = processor(image)[0].convert("RGB")
98
+
99
+ output = pipe(
100
+ prompt=prompt,
101
+ image=image,
102
+ control_image=control_image,
103
+ mask_image=mask_image,
104
+ num_inference_steps=30,
105
+ strength=0.9,
106
+ guidance_scale=10.0,
107
+ generator=torch.Generator().manual_seed(42),
108
+ ).images[0]
109
+ make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save(
110
+ "output.png"
111
+ )
112
+ ```
113
+ """
114
+
115
+
116
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
117
+ def calculate_shift(
118
+ image_seq_len,
119
+ base_seq_len: int = 256,
120
+ max_seq_len: int = 4096,
121
+ base_shift: float = 0.5,
122
+ max_shift: float = 1.16,
123
+ ):
124
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
125
+ b = base_shift - m * base_seq_len
126
+ mu = image_seq_len * m + b
127
+ return mu
128
+
129
+
130
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
131
+ def retrieve_latents(
132
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
133
+ ):
134
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
135
+ return encoder_output.latent_dist.sample(generator)
136
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
137
+ return encoder_output.latent_dist.mode()
138
+ elif hasattr(encoder_output, "latents"):
139
+ return encoder_output.latents
140
+ else:
141
+ raise AttributeError("Could not access latents of provided encoder_output")
142
+
143
+
144
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
145
+ def retrieve_timesteps(
146
+ scheduler,
147
+ num_inference_steps: Optional[int] = None,
148
+ device: Optional[Union[str, torch.device]] = None,
149
+ timesteps: Optional[List[int]] = None,
150
+ sigmas: Optional[List[float]] = None,
151
+ **kwargs,
152
+ ):
153
+ r"""
154
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
155
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
156
+
157
+ Args:
158
+ scheduler (`SchedulerMixin`):
159
+ The scheduler to get timesteps from.
160
+ num_inference_steps (`int`):
161
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
162
+ must be `None`.
163
+ device (`str` or `torch.device`, *optional*):
164
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
165
+ timesteps (`List[int]`, *optional*):
166
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
167
+ `num_inference_steps` and `sigmas` must be `None`.
168
+ sigmas (`List[float]`, *optional*):
169
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
170
+ `num_inference_steps` and `timesteps` must be `None`.
171
+
172
+ Returns:
173
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
174
+ second element is the number of inference steps.
175
+ """
176
+ if timesteps is not None and sigmas is not None:
177
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
178
+ if timesteps is not None:
179
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
180
+ if not accepts_timesteps:
181
+ raise ValueError(
182
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
183
+ f" timestep schedules. Please check whether you are using the correct scheduler."
184
+ )
185
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
186
+ timesteps = scheduler.timesteps
187
+ num_inference_steps = len(timesteps)
188
+ elif sigmas is not None:
189
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
190
+ if not accept_sigmas:
191
+ raise ValueError(
192
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
193
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
194
+ )
195
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
196
+ timesteps = scheduler.timesteps
197
+ num_inference_steps = len(timesteps)
198
+ else:
199
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
200
+ timesteps = scheduler.timesteps
201
+ return timesteps, num_inference_steps
202
+
203
+
204
+ class FluxControlInpaintPipeline(
205
+ DiffusionPipeline,
206
+ FluxLoraLoaderMixin,
207
+ FromSingleFileMixin,
208
+ TextualInversionLoaderMixin,
209
+ ):
210
+ r"""
211
+ The Flux pipeline for image inpainting using Flux-dev-Depth/Canny.
212
+
213
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
214
+
215
+ Args:
216
+ transformer ([`FluxTransformer2DModel`]):
217
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
218
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
219
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
220
+ vae ([`AutoencoderKL`]):
221
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
222
+ text_encoder ([`CLIPTextModel`]):
223
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
224
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
225
+ text_encoder_2 ([`T5EncoderModel`]):
226
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
227
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
228
+ tokenizer (`CLIPTokenizer`):
229
+ Tokenizer of class
230
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
231
+ tokenizer_2 (`T5TokenizerFast`):
232
+ Second Tokenizer of class
233
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
234
+ """
235
+
236
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
237
+ _optional_components = []
238
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
239
+
240
+ def __init__(
241
+ self,
242
+ scheduler: FlowMatchEulerDiscreteScheduler,
243
+ vae: AutoencoderKL,
244
+ text_encoder: CLIPTextModel,
245
+ tokenizer: CLIPTokenizer,
246
+ text_encoder_2: T5EncoderModel,
247
+ tokenizer_2: T5TokenizerFast,
248
+ transformer: FluxTransformer2DModel,
249
+ ):
250
+ super().__init__()
251
+
252
+ self.register_modules(
253
+ vae=vae,
254
+ text_encoder=text_encoder,
255
+ text_encoder_2=text_encoder_2,
256
+ tokenizer=tokenizer,
257
+ tokenizer_2=tokenizer_2,
258
+ transformer=transformer,
259
+ scheduler=scheduler,
260
+ )
261
+ self.vae_scale_factor = (
262
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
263
+ )
264
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
265
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
266
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
267
+ self.mask_processor = VaeImageProcessor(
268
+ vae_scale_factor=self.vae_scale_factor * 2,
269
+ vae_latent_channels=self.vae.config.latent_channels,
270
+ do_normalize=False,
271
+ do_binarize=True,
272
+ do_convert_grayscale=True,
273
+ )
274
+ self.tokenizer_max_length = (
275
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
276
+ )
277
+ self.default_sample_size = 128
278
+
279
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
280
+ def _get_t5_prompt_embeds(
281
+ self,
282
+ prompt: Union[str, List[str]] = None,
283
+ num_images_per_prompt: int = 1,
284
+ max_sequence_length: int = 512,
285
+ device: Optional[torch.device] = None,
286
+ dtype: Optional[torch.dtype] = None,
287
+ ):
288
+ device = device or self._execution_device
289
+ dtype = dtype or self.text_encoder.dtype
290
+
291
+ prompt = [prompt] if isinstance(prompt, str) else prompt
292
+ batch_size = len(prompt)
293
+
294
+ if isinstance(self, TextualInversionLoaderMixin):
295
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
296
+
297
+ text_inputs = self.tokenizer_2(
298
+ prompt,
299
+ padding="max_length",
300
+ max_length=max_sequence_length,
301
+ truncation=True,
302
+ return_length=False,
303
+ return_overflowing_tokens=False,
304
+ return_tensors="pt",
305
+ )
306
+ text_input_ids = text_inputs.input_ids
307
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
308
+
309
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
310
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
311
+ logger.warning(
312
+ "The following part of your input was truncated because `max_sequence_length` is set to "
313
+ f" {max_sequence_length} tokens: {removed_text}"
314
+ )
315
+
316
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
317
+
318
+ dtype = self.text_encoder_2.dtype
319
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
320
+
321
+ _, seq_len, _ = prompt_embeds.shape
322
+
323
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
324
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
325
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
326
+
327
+ return prompt_embeds
328
+
329
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
330
+ def _get_clip_prompt_embeds(
331
+ self,
332
+ prompt: Union[str, List[str]],
333
+ num_images_per_prompt: int = 1,
334
+ device: Optional[torch.device] = None,
335
+ ):
336
+ device = device or self._execution_device
337
+
338
+ prompt = [prompt] if isinstance(prompt, str) else prompt
339
+ batch_size = len(prompt)
340
+
341
+ if isinstance(self, TextualInversionLoaderMixin):
342
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
343
+
344
+ text_inputs = self.tokenizer(
345
+ prompt,
346
+ padding="max_length",
347
+ max_length=self.tokenizer_max_length,
348
+ truncation=True,
349
+ return_overflowing_tokens=False,
350
+ return_length=False,
351
+ return_tensors="pt",
352
+ )
353
+
354
+ text_input_ids = text_inputs.input_ids
355
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
356
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
357
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
358
+ logger.warning(
359
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
360
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
361
+ )
362
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
363
+
364
+ # Use pooled output of CLIPTextModel
365
+ prompt_embeds = prompt_embeds.pooler_output
366
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
367
+
368
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
369
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
370
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
371
+
372
+ return prompt_embeds
373
+
374
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
375
+ def encode_prompt(
376
+ self,
377
+ prompt: Union[str, List[str]],
378
+ prompt_2: Union[str, List[str]],
379
+ device: Optional[torch.device] = None,
380
+ num_images_per_prompt: int = 1,
381
+ prompt_embeds: Optional[torch.FloatTensor] = None,
382
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
383
+ max_sequence_length: int = 512,
384
+ lora_scale: Optional[float] = None,
385
+ ):
386
+ r"""
387
+
388
+ Args:
389
+ prompt (`str` or `List[str]`, *optional*):
390
+ prompt to be encoded
391
+ prompt_2 (`str` or `List[str]`, *optional*):
392
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
393
+ used in all text-encoders
394
+ device: (`torch.device`):
395
+ torch device
396
+ num_images_per_prompt (`int`):
397
+ number of images that should be generated per prompt
398
+ prompt_embeds (`torch.FloatTensor`, *optional*):
399
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
400
+ provided, text embeddings will be generated from `prompt` input argument.
401
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
402
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
403
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
404
+ lora_scale (`float`, *optional*):
405
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
406
+ """
407
+ device = device or self._execution_device
408
+
409
+ # set lora scale so that monkey patched LoRA
410
+ # function of text encoder can correctly access it
411
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
412
+ self._lora_scale = lora_scale
413
+
414
+ # dynamically adjust the LoRA scale
415
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
416
+ scale_lora_layers(self.text_encoder, lora_scale)
417
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
418
+ scale_lora_layers(self.text_encoder_2, lora_scale)
419
+
420
+ prompt = [prompt] if isinstance(prompt, str) else prompt
421
+
422
+ if prompt_embeds is None:
423
+ prompt_2 = prompt_2 or prompt
424
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
425
+
426
+ # We only use the pooled prompt output from the CLIPTextModel
427
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
428
+ prompt=prompt,
429
+ device=device,
430
+ num_images_per_prompt=num_images_per_prompt,
431
+ )
432
+ prompt_embeds = self._get_t5_prompt_embeds(
433
+ prompt=prompt_2,
434
+ num_images_per_prompt=num_images_per_prompt,
435
+ max_sequence_length=max_sequence_length,
436
+ device=device,
437
+ )
438
+
439
+ if self.text_encoder is not None:
440
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
441
+ # Retrieve the original scale by scaling back the LoRA layers
442
+ unscale_lora_layers(self.text_encoder, lora_scale)
443
+
444
+ if self.text_encoder_2 is not None:
445
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
446
+ # Retrieve the original scale by scaling back the LoRA layers
447
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
448
+
449
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
450
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
451
+
452
+ return prompt_embeds, pooled_prompt_embeds, text_ids
453
+
454
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
455
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
456
+ if isinstance(generator, list):
457
+ image_latents = [
458
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
459
+ for i in range(image.shape[0])
460
+ ]
461
+ image_latents = torch.cat(image_latents, dim=0)
462
+ else:
463
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
464
+
465
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
466
+
467
+ return image_latents
468
+
469
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
470
+ def get_timesteps(self, num_inference_steps, strength, device):
471
+ # get the original timestep using init_timestep
472
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
473
+
474
+ t_start = int(max(num_inference_steps - init_timestep, 0))
475
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
476
+ if hasattr(self.scheduler, "set_begin_index"):
477
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
478
+
479
+ return timesteps, num_inference_steps - t_start
480
+
481
+ # Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.check_inputs
482
+ def check_inputs(
483
+ self,
484
+ prompt,
485
+ prompt_2,
486
+ strength,
487
+ height,
488
+ width,
489
+ prompt_embeds=None,
490
+ pooled_prompt_embeds=None,
491
+ callback_on_step_end_tensor_inputs=None,
492
+ max_sequence_length=None,
493
+ ):
494
+ if strength < 0 or strength > 1:
495
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
496
+
497
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
498
+ logger.warning(
499
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
500
+ )
501
+
502
+ if callback_on_step_end_tensor_inputs is not None and not all(
503
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
504
+ ):
505
+ raise ValueError(
506
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
507
+ )
508
+
509
+ if prompt is not None and prompt_embeds is not None:
510
+ raise ValueError(
511
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
512
+ " only forward one of the two."
513
+ )
514
+ elif prompt_2 is not None and prompt_embeds is not None:
515
+ raise ValueError(
516
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
517
+ " only forward one of the two."
518
+ )
519
+ elif prompt is None and prompt_embeds is None:
520
+ raise ValueError(
521
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
522
+ )
523
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
524
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
525
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
526
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
527
+
528
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
529
+ raise ValueError(
530
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
531
+ )
532
+
533
+ if max_sequence_length is not None and max_sequence_length > 512:
534
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
535
+
536
+ @staticmethod
537
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
538
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
539
+ latent_image_ids = torch.zeros(height, width, 3)
540
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
541
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
542
+
543
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
544
+
545
+ latent_image_ids = latent_image_ids.reshape(
546
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
547
+ )
548
+
549
+ return latent_image_ids.to(device=device, dtype=dtype)
550
+
551
+ @staticmethod
552
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
553
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
554
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
555
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
556
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
557
+
558
+ return latents
559
+
560
+ @staticmethod
561
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
562
+ def _unpack_latents(latents, height, width, vae_scale_factor):
563
+ batch_size, num_patches, channels = latents.shape
564
+
565
+ # VAE applies 8x compression on images but we must also account for packing which requires
566
+ # latent height and width to be divisible by 2.
567
+ height = 2 * (int(height) // (vae_scale_factor * 2))
568
+ width = 2 * (int(width) // (vae_scale_factor * 2))
569
+
570
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
571
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
572
+
573
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
574
+
575
+ return latents
576
+
577
+ def enable_vae_slicing(self):
578
+ r"""
579
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
580
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
581
+ """
582
+ self.vae.enable_slicing()
583
+
584
+ def disable_vae_slicing(self):
585
+ r"""
586
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
587
+ computing decoding in one step.
588
+ """
589
+ self.vae.disable_slicing()
590
+
591
+ def enable_vae_tiling(self):
592
+ r"""
593
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
594
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
595
+ processing larger images.
596
+ """
597
+ self.vae.enable_tiling()
598
+
599
+ def disable_vae_tiling(self):
600
+ r"""
601
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
602
+ computing decoding in one step.
603
+ """
604
+ self.vae.disable_tiling()
605
+
606
+ def prepare_latents(
607
+ self,
608
+ image,
609
+ timestep,
610
+ batch_size,
611
+ num_channels_latents,
612
+ height,
613
+ width,
614
+ dtype,
615
+ device,
616
+ generator,
617
+ latents=None,
618
+ ):
619
+ if isinstance(generator, list) and len(generator) != batch_size:
620
+ raise ValueError(
621
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
622
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
623
+ )
624
+
625
+ # VAE applies 8x compression on images but we must also account for packing which requires
626
+ # latent height and width to be divisible by 2.
627
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
628
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
629
+ shape = (batch_size, num_channels_latents, height, width)
630
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
631
+
632
+ if latents is not None:
633
+ return latents.to(device=device, dtype=dtype), latent_image_ids
634
+
635
+ image = image.to(device=device, dtype=dtype)
636
+ image_latents = self._encode_vae_image(image=image, generator=generator)
637
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
638
+ # expand init_latents for batch_size
639
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
640
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
641
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
642
+ raise ValueError(
643
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
644
+ )
645
+ else:
646
+ image_latents = torch.cat([image_latents], dim=0)
647
+
648
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
649
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
650
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
651
+ return latents, noise, image_latents, latent_image_ids
652
+
653
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
654
+ def prepare_image(
655
+ self,
656
+ image,
657
+ width,
658
+ height,
659
+ batch_size,
660
+ num_images_per_prompt,
661
+ device,
662
+ dtype,
663
+ do_classifier_free_guidance=False,
664
+ guess_mode=False,
665
+ ):
666
+ if isinstance(image, torch.Tensor):
667
+ pass
668
+ else:
669
+ image = self.image_processor.preprocess(image, height=height, width=width)
670
+
671
+ image_batch_size = image.shape[0]
672
+
673
+ if image_batch_size == 1:
674
+ repeat_by = batch_size
675
+ else:
676
+ # image batch size is the same as prompt batch size
677
+ repeat_by = num_images_per_prompt
678
+
679
+ image = image.repeat_interleave(repeat_by, dim=0)
680
+
681
+ image = image.to(device=device, dtype=dtype)
682
+
683
+ if do_classifier_free_guidance and not guess_mode:
684
+ image = torch.cat([image] * 2)
685
+
686
+ return image
687
+
688
+ def prepare_mask_latents(
689
+ self,
690
+ image,
691
+ mask_image,
692
+ batch_size,
693
+ num_channels_latents,
694
+ num_images_per_prompt,
695
+ height,
696
+ width,
697
+ dtype,
698
+ device,
699
+ generator,
700
+ ):
701
+ # VAE applies 8x compression on images but we must also account for packing which requires
702
+ # latent height and width to be divisible by 2.
703
+ image = self.image_processor.preprocess(image, height=height, width=width)
704
+ mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)
705
+
706
+ masked_image = image * (1 - mask_image)
707
+ masked_image = masked_image.to(device=device, dtype=dtype)
708
+
709
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
710
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
711
+ # resize the mask to latents shape as we concatenate the mask to the latents
712
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
713
+ # and half precision
714
+ mask_image = torch.nn.functional.interpolate(mask_image, size=(height, width))
715
+ mask_image = mask_image.to(device=device, dtype=dtype)
716
+
717
+ batch_size = batch_size * num_images_per_prompt
718
+
719
+ masked_image = masked_image.to(device=device, dtype=dtype)
720
+
721
+ if masked_image.shape[1] == num_channels_latents:
722
+ masked_image_latents = masked_image
723
+ else:
724
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
725
+
726
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
727
+
728
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
729
+ if mask_image.shape[0] < batch_size:
730
+ if not batch_size % mask_image.shape[0] == 0:
731
+ raise ValueError(
732
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
733
+ f" a total batch size of {batch_size}, but {mask_image.shape[0]} mask_image were passed. Make sure the number"
734
+ " of masks that you pass is divisible by the total requested batch size."
735
+ )
736
+ mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1)
737
+ if masked_image_latents.shape[0] < batch_size:
738
+ if not batch_size % masked_image_latents.shape[0] == 0:
739
+ raise ValueError(
740
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
741
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
742
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
743
+ )
744
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
745
+
746
+ # aligning device to prevent device errors when concating it with the latent model input
747
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
748
+ masked_image_latents = self._pack_latents(
749
+ masked_image_latents,
750
+ batch_size,
751
+ num_channels_latents,
752
+ height,
753
+ width,
754
+ )
755
+ mask_image = self._pack_latents(
756
+ mask_image.repeat(1, num_channels_latents, 1, 1),
757
+ batch_size,
758
+ num_channels_latents,
759
+ height,
760
+ width,
761
+ )
762
+ masked_image_latents = torch.cat((masked_image_latents, mask_image), dim=-1)
763
+
764
+ return mask_image, masked_image_latents
765
+
766
+ @property
767
+ def guidance_scale(self):
768
+ return self._guidance_scale
769
+
770
+ @property
771
+ def joint_attention_kwargs(self):
772
+ return self._joint_attention_kwargs
773
+
774
+ @property
775
+ def num_timesteps(self):
776
+ return self._num_timesteps
777
+
778
+ @property
779
+ def interrupt(self):
780
+ return self._interrupt
781
+
782
+ @torch.no_grad()
783
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
784
+ def __call__(
785
+ self,
786
+ prompt: Union[str, List[str]] = None,
787
+ prompt_2: Optional[Union[str, List[str]]] = None,
788
+ image: PipelineImageInput = None,
789
+ control_image: PipelineImageInput = None,
790
+ mask_image: PipelineImageInput = None,
791
+ masked_image_latents: PipelineImageInput = None,
792
+ height: Optional[int] = None,
793
+ width: Optional[int] = None,
794
+ strength: float = 0.6,
795
+ num_inference_steps: int = 28,
796
+ sigmas: Optional[List[float]] = None,
797
+ guidance_scale: float = 7.0,
798
+ num_images_per_prompt: Optional[int] = 1,
799
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
800
+ latents: Optional[torch.FloatTensor] = None,
801
+ prompt_embeds: Optional[torch.FloatTensor] = None,
802
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
803
+ output_type: Optional[str] = "pil",
804
+ return_dict: bool = True,
805
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
806
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
807
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
808
+ max_sequence_length: int = 512,
809
+ ):
810
+ r"""
811
+ Function invoked when calling the pipeline for generation.
812
+
813
+ Args:
814
+ prompt (`str` or `List[str]`, *optional*):
815
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
816
+ instead.
817
+ prompt_2 (`str` or `List[str]`, *optional*):
818
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
819
+ will be used instead
820
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
821
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
822
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
823
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
824
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
825
+ latents as `image`, but if passing latents directly it is not encoded again.
826
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
827
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
828
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
829
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
830
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
831
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
832
+ images must be passed as a list such that each element of the list can be correctly batched for input
833
+ to a single ControlNet.
834
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
835
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
836
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
837
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
838
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
839
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
840
+ 1)`, or `(H, W)`.
841
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
842
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
843
+ latents tensor will ge generated by `mask_image`.
844
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
845
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
846
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
847
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
848
+ strength (`float`, *optional*, defaults to 1.0):
849
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
850
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
851
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
852
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
853
+ essentially ignores `image`.
854
+ num_inference_steps (`int`, *optional*, defaults to 50):
855
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
856
+ expense of slower inference.
857
+ sigmas (`List[float]`, *optional*):
858
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
859
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
860
+ will be used.
861
+ guidance_scale (`float`, *optional*, defaults to 7.0):
862
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
863
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
864
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
865
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
866
+ usually at the expense of lower image quality.
867
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
868
+ The number of images to generate per prompt.
869
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
870
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
871
+ to make generation deterministic.
872
+ latents (`torch.FloatTensor`, *optional*):
873
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
874
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
875
+ tensor will ge generated by sampling using the supplied random `generator`.
876
+ prompt_embeds (`torch.FloatTensor`, *optional*):
877
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
878
+ provided, text embeddings will be generated from `prompt` input argument.
879
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
880
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
881
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
882
+ output_type (`str`, *optional*, defaults to `"pil"`):
883
+ The output format of the generate image. Choose between
884
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
885
+ return_dict (`bool`, *optional*, defaults to `True`):
886
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
887
+ joint_attention_kwargs (`dict`, *optional*):
888
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
889
+ `self.processor` in
890
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
891
+ callback_on_step_end (`Callable`, *optional*):
892
+ A function that calls at the end of each denoising steps during the inference. The function is called
893
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
894
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
895
+ `callback_on_step_end_tensor_inputs`.
896
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
897
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
898
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
899
+ `._callback_tensor_inputs` attribute of your pipeline class.
900
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
901
+
902
+ Examples:
903
+
904
+ Returns:
905
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
906
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
907
+ images.
908
+ """
909
+
910
+ height = height or self.default_sample_size * self.vae_scale_factor
911
+ width = width or self.default_sample_size * self.vae_scale_factor
912
+
913
+ # 1. Check inputs. Raise error if not correct
914
+ self.check_inputs(
915
+ prompt,
916
+ prompt_2,
917
+ strength,
918
+ height,
919
+ width,
920
+ prompt_embeds=prompt_embeds,
921
+ pooled_prompt_embeds=pooled_prompt_embeds,
922
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
923
+ max_sequence_length=max_sequence_length,
924
+ )
925
+
926
+ self._guidance_scale = guidance_scale
927
+ self._joint_attention_kwargs = joint_attention_kwargs
928
+ self._interrupt = False
929
+ device = self._execution_device
930
+
931
+ # 3. Define call parameters
932
+ if prompt is not None and isinstance(prompt, str):
933
+ batch_size = 1
934
+ elif prompt is not None and isinstance(prompt, list):
935
+ batch_size = len(prompt)
936
+ else:
937
+ batch_size = prompt_embeds.shape[0]
938
+
939
+ device = self._execution_device
940
+
941
+ # 3. Prepare text embeddings
942
+ lora_scale = (
943
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
944
+ )
945
+ (
946
+ prompt_embeds,
947
+ pooled_prompt_embeds,
948
+ text_ids,
949
+ ) = self.encode_prompt(
950
+ prompt=prompt,
951
+ prompt_2=prompt_2,
952
+ prompt_embeds=prompt_embeds,
953
+ pooled_prompt_embeds=pooled_prompt_embeds,
954
+ device=device,
955
+ num_images_per_prompt=num_images_per_prompt,
956
+ max_sequence_length=max_sequence_length,
957
+ lora_scale=lora_scale,
958
+ )
959
+
960
+ # 3. Preprocess mask and image
961
+ num_channels_latents = self.vae.config.latent_channels
962
+ if masked_image_latents is not None:
963
+ # pre computed masked_image_latents and mask_image
964
+ masked_image_latents = masked_image_latents.to(latents.device)
965
+ mask = mask_image.to(latents.device)
966
+ else:
967
+ mask, masked_image_latents = self.prepare_mask_latents(
968
+ image,
969
+ mask_image,
970
+ batch_size,
971
+ num_channels_latents,
972
+ num_images_per_prompt,
973
+ height,
974
+ width,
975
+ prompt_embeds.dtype,
976
+ device,
977
+ generator,
978
+ )
979
+
980
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
981
+ init_image = init_image.to(dtype=torch.float32)
982
+
983
+ # 4.Prepare timesteps
984
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
985
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
986
+ mu = calculate_shift(
987
+ image_seq_len,
988
+ self.scheduler.config.base_image_seq_len,
989
+ self.scheduler.config.max_image_seq_len,
990
+ self.scheduler.config.base_shift,
991
+ self.scheduler.config.max_shift,
992
+ )
993
+ timesteps, num_inference_steps = retrieve_timesteps(
994
+ self.scheduler,
995
+ num_inference_steps,
996
+ device,
997
+ sigmas=sigmas,
998
+ mu=mu,
999
+ )
1000
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1001
+
1002
+ if num_inference_steps < 1:
1003
+ raise ValueError(
1004
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1005
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1006
+ )
1007
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1008
+
1009
+ # 5. Prepare latent variables
1010
+ num_channels_latents = self.transformer.config.in_channels // 8
1011
+
1012
+ control_image = self.prepare_image(
1013
+ image=control_image,
1014
+ width=width,
1015
+ height=height,
1016
+ batch_size=batch_size * num_images_per_prompt,
1017
+ num_images_per_prompt=num_images_per_prompt,
1018
+ device=device,
1019
+ dtype=self.vae.dtype,
1020
+ )
1021
+
1022
+ if control_image.ndim == 4:
1023
+ control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator)
1024
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
1025
+
1026
+ height_control_image, width_control_image = control_image.shape[2:]
1027
+ control_image = self._pack_latents(
1028
+ control_image,
1029
+ batch_size * num_images_per_prompt,
1030
+ num_channels_latents,
1031
+ height_control_image,
1032
+ width_control_image,
1033
+ )
1034
+
1035
+ latents, noise, image_latents, latent_image_ids = self.prepare_latents(
1036
+ init_image,
1037
+ latent_timestep,
1038
+ batch_size * num_images_per_prompt,
1039
+ num_channels_latents,
1040
+ height,
1041
+ width,
1042
+ prompt_embeds.dtype,
1043
+ device,
1044
+ generator,
1045
+ latents,
1046
+ )
1047
+
1048
+ # VAE applies 8x compression on images but we must also account for packing which requires
1049
+ # latent height and width to be divisible by 2.
1050
+ height_8 = 2 * (int(height) // (self.vae_scale_factor * 2))
1051
+ width_8 = 2 * (int(width) // (self.vae_scale_factor * 2))
1052
+
1053
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1054
+ self._num_timesteps = len(timesteps)
1055
+
1056
+ # handle guidance
1057
+ if self.transformer.config.guidance_embeds:
1058
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
1059
+ guidance = guidance.expand(latents.shape[0])
1060
+ else:
1061
+ guidance = None
1062
+
1063
+ # 6. Denoising loop
1064
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1065
+ for i, t in enumerate(timesteps):
1066
+ if self.interrupt:
1067
+ continue
1068
+
1069
+ latent_model_input = torch.cat([latents, control_image], dim=2)
1070
+
1071
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1072
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
1073
+
1074
+ noise_pred = self.transformer(
1075
+ hidden_states=latent_model_input,
1076
+ timestep=timestep / 1000,
1077
+ guidance=guidance,
1078
+ pooled_projections=pooled_prompt_embeds,
1079
+ encoder_hidden_states=prompt_embeds,
1080
+ txt_ids=text_ids,
1081
+ img_ids=latent_image_ids,
1082
+ joint_attention_kwargs=self.joint_attention_kwargs,
1083
+ return_dict=False,
1084
+ )[0]
1085
+
1086
+ # compute the previous noisy sample x_t -> x_t-1
1087
+ latents_dtype = latents.dtype
1088
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1089
+
1090
+ # for 64 channel transformer only.
1091
+ init_mask = mask
1092
+ if i < len(timesteps) - 1:
1093
+ noise_timestep = timesteps[i + 1]
1094
+ init_latents_proper = self.scheduler.scale_noise(
1095
+ image_latents, torch.tensor([noise_timestep]), noise
1096
+ )
1097
+ else:
1098
+ init_latents_proper = image_latents
1099
+ init_latents_proper = self._pack_latents(
1100
+ init_latents_proper, batch_size * num_images_per_prompt, num_channels_latents, height_8, width_8
1101
+ )
1102
+
1103
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1104
+
1105
+ if latents.dtype != latents_dtype:
1106
+ if torch.backends.mps.is_available():
1107
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1108
+ latents = latents.to(latents_dtype)
1109
+
1110
+ if callback_on_step_end is not None:
1111
+ callback_kwargs = {}
1112
+ for k in callback_on_step_end_tensor_inputs:
1113
+ callback_kwargs[k] = locals()[k]
1114
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1115
+
1116
+ latents = callback_outputs.pop("latents", latents)
1117
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1118
+
1119
+ # call the callback, if provided
1120
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1121
+ progress_bar.update()
1122
+
1123
+ if XLA_AVAILABLE:
1124
+ xm.mark_step()
1125
+
1126
+ if output_type == "latent":
1127
+ image = latents
1128
+
1129
+ else:
1130
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1131
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1132
+ image = self.vae.decode(latents, return_dict=False)[0]
1133
+ image = self.image_processor.postprocess(image, output_type=output_type)
1134
+
1135
+ # Offload all models
1136
+ self.maybe_free_model_hooks()
1137
+
1138
+ if not return_dict:
1139
+ return (image,)
1140
+
1141
+ return FluxPipelineOutput(images=image)