diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,338 @@
1
+ # Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import json
16
+ import os
17
+ import re
18
+ from typing import Dict, List, Optional, Union
19
+
20
+ from sentencepiece import SentencePieceProcessor
21
+ from transformers import PreTrainedTokenizer
22
+ from transformers.tokenization_utils_base import BatchEncoding, EncodedInput
23
+ from transformers.utils import PaddingStrategy
24
+
25
+
26
+ class SPTokenizer:
27
+ def __init__(self, model_path: str):
28
+ # reload tokenizer
29
+ assert os.path.isfile(model_path), model_path
30
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
31
+
32
+ # BOS / EOS token IDs
33
+ self.n_words: int = self.sp_model.vocab_size()
34
+ self.bos_id: int = self.sp_model.bos_id()
35
+ self.eos_id: int = self.sp_model.eos_id()
36
+ self.pad_id: int = self.sp_model.unk_id()
37
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
38
+
39
+ role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
40
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
41
+ self.special_tokens = {}
42
+ self.index_special_tokens = {}
43
+ for token in special_tokens:
44
+ self.special_tokens[token] = self.n_words
45
+ self.index_special_tokens[self.n_words] = token
46
+ self.n_words += 1
47
+ self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
48
+
49
+ def tokenize(self, s: str, encode_special_tokens=False):
50
+ if encode_special_tokens:
51
+ last_index = 0
52
+ t = []
53
+ for match in re.finditer(self.role_special_token_expression, s):
54
+ if last_index < match.start():
55
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index : match.start()]))
56
+ t.append(s[match.start() : match.end()])
57
+ last_index = match.end()
58
+ if last_index < len(s):
59
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
60
+ return t
61
+ else:
62
+ return self.sp_model.EncodeAsPieces(s)
63
+
64
+ def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
65
+ assert isinstance(s, str)
66
+ t = self.sp_model.encode(s)
67
+ if bos:
68
+ t = [self.bos_id] + t
69
+ if eos:
70
+ t = t + [self.eos_id]
71
+ return t
72
+
73
+ def decode(self, t: List[int]) -> str:
74
+ text, buffer = "", []
75
+ for token in t:
76
+ if token in self.index_special_tokens:
77
+ if buffer:
78
+ text += self.sp_model.decode(buffer)
79
+ buffer = []
80
+ text += self.index_special_tokens[token]
81
+ else:
82
+ buffer.append(token)
83
+ if buffer:
84
+ text += self.sp_model.decode(buffer)
85
+ return text
86
+
87
+ def decode_tokens(self, tokens: List[str]) -> str:
88
+ text = self.sp_model.DecodePieces(tokens)
89
+ return text
90
+
91
+ def convert_token_to_id(self, token):
92
+ """Converts a token (str) in an id using the vocab."""
93
+ if token in self.special_tokens:
94
+ return self.special_tokens[token]
95
+ return self.sp_model.PieceToId(token)
96
+
97
+ def convert_id_to_token(self, index):
98
+ """Converts an index (integer) in a token (str) using the vocab."""
99
+ if index in self.index_special_tokens:
100
+ return self.index_special_tokens[index]
101
+ if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
102
+ return ""
103
+ return self.sp_model.IdToPiece(index)
104
+
105
+
106
+ class ChatGLMTokenizer(PreTrainedTokenizer):
107
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
108
+
109
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
110
+
111
+ def __init__(
112
+ self,
113
+ vocab_file,
114
+ padding_side="left",
115
+ clean_up_tokenization_spaces=False,
116
+ encode_special_tokens=False,
117
+ **kwargs,
118
+ ):
119
+ self.name = "GLMTokenizer"
120
+
121
+ self.vocab_file = vocab_file
122
+ self.tokenizer = SPTokenizer(vocab_file)
123
+ self.special_tokens = {
124
+ "<bos>": self.tokenizer.bos_id,
125
+ "<eos>": self.tokenizer.eos_id,
126
+ "<pad>": self.tokenizer.pad_id,
127
+ }
128
+ self.encode_special_tokens = encode_special_tokens
129
+ super().__init__(
130
+ padding_side=padding_side,
131
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
132
+ encode_special_tokens=encode_special_tokens,
133
+ **kwargs,
134
+ )
135
+
136
+ def get_command(self, token):
137
+ if token in self.special_tokens:
138
+ return self.special_tokens[token]
139
+ assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
140
+ return self.tokenizer.special_tokens[token]
141
+
142
+ @property
143
+ def unk_token(self) -> str:
144
+ return "<unk>"
145
+
146
+ @unk_token.setter
147
+ def unk_token(self, value: str):
148
+ self._unk_token = value
149
+
150
+ @property
151
+ def pad_token(self) -> str:
152
+ return "<unk>"
153
+
154
+ @pad_token.setter
155
+ def pad_token(self, value: str):
156
+ self._pad_token = value
157
+
158
+ @property
159
+ def pad_token_id(self):
160
+ return self.get_command("<pad>")
161
+
162
+ @property
163
+ def eos_token(self) -> str:
164
+ return "</s>"
165
+
166
+ @eos_token.setter
167
+ def eos_token(self, value: str):
168
+ self._eos_token = value
169
+
170
+ @property
171
+ def eos_token_id(self):
172
+ return self.get_command("<eos>")
173
+
174
+ @property
175
+ def vocab_size(self):
176
+ return self.tokenizer.n_words
177
+
178
+ def get_vocab(self):
179
+ """Returns vocab as a dict"""
180
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
181
+ vocab.update(self.added_tokens_encoder)
182
+ return vocab
183
+
184
+ def _tokenize(self, text, **kwargs):
185
+ return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
186
+
187
+ def _convert_token_to_id(self, token):
188
+ """Converts a token (str) in an id using the vocab."""
189
+ return self.tokenizer.convert_token_to_id(token)
190
+
191
+ def _convert_id_to_token(self, index):
192
+ """Converts an index (integer) in a token (str) using the vocab."""
193
+ return self.tokenizer.convert_id_to_token(index)
194
+
195
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
196
+ return self.tokenizer.decode_tokens(tokens)
197
+
198
+ def save_vocabulary(self, save_directory, filename_prefix=None):
199
+ """
200
+ Save the vocabulary and special tokens file to a directory.
201
+
202
+ Args:
203
+ save_directory (`str`):
204
+ The directory in which to save the vocabulary.
205
+ filename_prefix (`str`, *optional*):
206
+ An optional prefix to add to the named of the saved files.
207
+
208
+ Returns:
209
+ `Tuple(str)`: Paths to the files saved.
210
+ """
211
+ if os.path.isdir(save_directory):
212
+ vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
213
+ else:
214
+ vocab_file = save_directory
215
+
216
+ with open(self.vocab_file, "rb") as fin:
217
+ proto_str = fin.read()
218
+
219
+ with open(vocab_file, "wb") as writer:
220
+ writer.write(proto_str)
221
+
222
+ return (vocab_file,)
223
+
224
+ def get_prefix_tokens(self):
225
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
226
+ return prefix_tokens
227
+
228
+ def build_single_message(self, role, metadata, message):
229
+ assert role in ["system", "user", "assistant", "observation"], role
230
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
231
+ message_tokens = self.tokenizer.encode(message)
232
+ tokens = role_tokens + message_tokens
233
+ return tokens
234
+
235
+ def build_chat_input(self, query, history=None, role="user"):
236
+ if history is None:
237
+ history = []
238
+ input_ids = []
239
+ for item in history:
240
+ content = item["content"]
241
+ if item["role"] == "system" and "tools" in item:
242
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
243
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
244
+ input_ids.extend(self.build_single_message(role, "", query))
245
+ input_ids.extend([self.get_command("<|assistant|>")])
246
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
247
+
248
+ def build_inputs_with_special_tokens(
249
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
250
+ ) -> List[int]:
251
+ """
252
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
253
+ adding special tokens. A BERT sequence has the following format:
254
+
255
+ - single sequence: `[CLS] X [SEP]`
256
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
257
+
258
+ Args:
259
+ token_ids_0 (`List[int]`):
260
+ List of IDs to which the special tokens will be added.
261
+ token_ids_1 (`List[int]`, *optional*):
262
+ Optional second list of IDs for sequence pairs.
263
+
264
+ Returns:
265
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
266
+ """
267
+ prefix_tokens = self.get_prefix_tokens()
268
+ token_ids_0 = prefix_tokens + token_ids_0
269
+ if token_ids_1 is not None:
270
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
271
+ return token_ids_0
272
+
273
+ def _pad(
274
+ self,
275
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
276
+ max_length: Optional[int] = None,
277
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
278
+ pad_to_multiple_of: Optional[int] = None,
279
+ return_attention_mask: Optional[bool] = None,
280
+ padding_side: Optional[bool] = None,
281
+ ) -> dict:
282
+ """
283
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
284
+
285
+ Args:
286
+ encoded_inputs:
287
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
288
+ max_length: maximum length of the returned list and optionally padding length (see below).
289
+ Will truncate by taking into account the special tokens.
290
+ padding_strategy: PaddingStrategy to use for padding.
291
+
292
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
293
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
294
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
295
+ The tokenizer padding sides are defined in self.padding_side:
296
+
297
+ - 'left': pads on the left of the sequences
298
+ - 'right': pads on the right of the sequences
299
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
300
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
301
+ `>= 7.5` (Volta).
302
+ padding_side (`str`, *optional*):
303
+ The side on which the model should have padding applied. Should be selected between ['right', 'left'].
304
+ Default value is picked from the class attribute of the same name.
305
+ return_attention_mask:
306
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
307
+ """
308
+ # Load from model defaults
309
+ assert self.padding_side == "left"
310
+
311
+ required_input = encoded_inputs[self.model_input_names[0]]
312
+ seq_length = len(required_input)
313
+
314
+ if padding_strategy == PaddingStrategy.LONGEST:
315
+ max_length = len(required_input)
316
+
317
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
318
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
319
+
320
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
321
+
322
+ # Initialize attention mask if not present.
323
+ if "attention_mask" not in encoded_inputs:
324
+ encoded_inputs["attention_mask"] = [1] * seq_length
325
+
326
+ if "position_ids" not in encoded_inputs:
327
+ encoded_inputs["position_ids"] = list(range(seq_length))
328
+
329
+ if needs_to_be_padded:
330
+ difference = max_length - len(required_input)
331
+
332
+ if "attention_mask" in encoded_inputs:
333
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
334
+ if "position_ids" in encoded_inputs:
335
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
336
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
337
+
338
+ return encoded_inputs
@@ -23,7 +23,7 @@ import torch
23
23
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
24
24
 
25
25
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
- from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
27
27
  from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
28
28
  from ...models.lora import adjust_lora_scale_text_encoder
29
29
  from ...schedulers import LCMScheduler
@@ -63,9 +63,10 @@ def retrieve_timesteps(
63
63
  num_inference_steps: Optional[int] = None,
64
64
  device: Optional[Union[str, torch.device]] = None,
65
65
  timesteps: Optional[List[int]] = None,
66
+ sigmas: Optional[List[float]] = None,
66
67
  **kwargs,
67
68
  ):
68
- """
69
+ r"""
69
70
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
70
71
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
71
72
 
@@ -73,19 +74,23 @@ def retrieve_timesteps(
73
74
  scheduler (`SchedulerMixin`):
74
75
  The scheduler to get timesteps from.
75
76
  num_inference_steps (`int`):
76
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
77
- `timesteps` must be `None`.
77
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
78
+ must be `None`.
78
79
  device (`str` or `torch.device`, *optional*):
79
80
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
80
81
  timesteps (`List[int]`, *optional*):
81
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
82
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
83
- must be `None`.
82
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
83
+ `num_inference_steps` and `sigmas` must be `None`.
84
+ sigmas (`List[float]`, *optional*):
85
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
86
+ `num_inference_steps` and `timesteps` must be `None`.
84
87
 
85
88
  Returns:
86
89
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
87
90
  second element is the number of inference steps.
88
91
  """
92
+ if timesteps is not None and sigmas is not None:
93
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
89
94
  if timesteps is not None:
90
95
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
91
96
  if not accepts_timesteps:
@@ -96,6 +101,16 @@ def retrieve_timesteps(
96
101
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
97
102
  timesteps = scheduler.timesteps
98
103
  num_inference_steps = len(timesteps)
104
+ elif sigmas is not None:
105
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
106
+ if not accept_sigmas:
107
+ raise ValueError(
108
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
109
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
110
+ )
111
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
112
+ timesteps = scheduler.timesteps
113
+ num_inference_steps = len(timesteps)
99
114
  else:
100
115
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
101
116
  timesteps = scheduler.timesteps
@@ -133,7 +148,7 @@ class LatentConsistencyModelImg2ImgPipeline(
133
148
  StableDiffusionMixin,
134
149
  TextualInversionLoaderMixin,
135
150
  IPAdapterMixin,
136
- LoraLoaderMixin,
151
+ StableDiffusionLoraLoaderMixin,
137
152
  FromSingleFileMixin,
138
153
  ):
139
154
  r"""
@@ -144,8 +159,8 @@ class LatentConsistencyModelImg2ImgPipeline(
144
159
 
145
160
  The pipeline also inherits the following loading methods:
146
161
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
147
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
148
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
162
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
163
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
149
164
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
150
165
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
151
166
 
@@ -222,8 +237,8 @@ class LatentConsistencyModelImg2ImgPipeline(
222
237
  num_images_per_prompt,
223
238
  do_classifier_free_guidance,
224
239
  negative_prompt=None,
225
- prompt_embeds: Optional[torch.FloatTensor] = None,
226
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
240
+ prompt_embeds: Optional[torch.Tensor] = None,
241
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
227
242
  lora_scale: Optional[float] = None,
228
243
  clip_skip: Optional[int] = None,
229
244
  ):
@@ -243,10 +258,10 @@ class LatentConsistencyModelImg2ImgPipeline(
243
258
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
244
259
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
245
260
  less than `1`).
246
- prompt_embeds (`torch.FloatTensor`, *optional*):
261
+ prompt_embeds (`torch.Tensor`, *optional*):
247
262
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
248
263
  provided, text embeddings will be generated from `prompt` input argument.
249
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
264
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
250
265
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
251
266
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
252
267
  argument.
@@ -258,7 +273,7 @@ class LatentConsistencyModelImg2ImgPipeline(
258
273
  """
259
274
  # set lora scale so that monkey patched LoRA
260
275
  # function of text encoder can correctly access it
261
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
276
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
262
277
  self._lora_scale = lora_scale
263
278
 
264
279
  # dynamically adjust the LoRA scale
@@ -390,9 +405,10 @@ class LatentConsistencyModelImg2ImgPipeline(
390
405
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
391
406
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
392
407
 
393
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
394
- # Retrieve the original scale by scaling back the LoRA layers
395
- unscale_lora_layers(self.text_encoder, lora_scale)
408
+ if self.text_encoder is not None:
409
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
410
+ # Retrieve the original scale by scaling back the LoRA layers
411
+ unscale_lora_layers(self.text_encoder, lora_scale)
396
412
 
397
413
  return prompt_embeds, negative_prompt_embeds
398
414
 
@@ -425,6 +441,9 @@ class LatentConsistencyModelImg2ImgPipeline(
425
441
  def prepare_ip_adapter_image_embeds(
426
442
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
427
443
  ):
444
+ image_embeds = []
445
+ if do_classifier_free_guidance:
446
+ negative_image_embeds = []
428
447
  if ip_adapter_image_embeds is None:
429
448
  if not isinstance(ip_adapter_image, list):
430
449
  ip_adapter_image = [ip_adapter_image]
@@ -434,7 +453,6 @@ class LatentConsistencyModelImg2ImgPipeline(
434
453
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
435
454
  )
436
455
 
437
- image_embeds = []
438
456
  for single_ip_adapter_image, image_proj_layer in zip(
439
457
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
440
458
  ):
@@ -442,36 +460,28 @@ class LatentConsistencyModelImg2ImgPipeline(
442
460
  single_image_embeds, single_negative_image_embeds = self.encode_image(
443
461
  single_ip_adapter_image, device, 1, output_hidden_state
444
462
  )
445
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
446
- single_negative_image_embeds = torch.stack(
447
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
448
- )
449
463
 
464
+ image_embeds.append(single_image_embeds[None, :])
450
465
  if do_classifier_free_guidance:
451
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
452
- single_image_embeds = single_image_embeds.to(device)
453
-
454
- image_embeds.append(single_image_embeds)
466
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
455
467
  else:
456
- repeat_dims = [1]
457
- image_embeds = []
458
468
  for single_image_embeds in ip_adapter_image_embeds:
459
469
  if do_classifier_free_guidance:
460
470
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
461
- single_image_embeds = single_image_embeds.repeat(
462
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
463
- )
464
- single_negative_image_embeds = single_negative_image_embeds.repeat(
465
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
466
- )
467
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
468
- else:
469
- single_image_embeds = single_image_embeds.repeat(
470
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
471
- )
471
+ negative_image_embeds.append(single_negative_image_embeds)
472
472
  image_embeds.append(single_image_embeds)
473
473
 
474
- return image_embeds
474
+ ip_adapter_image_embeds = []
475
+ for i, single_image_embeds in enumerate(image_embeds):
476
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
477
+ if do_classifier_free_guidance:
478
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
479
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
480
+
481
+ single_image_embeds = single_image_embeds.to(device=device)
482
+ ip_adapter_image_embeds.append(single_image_embeds)
483
+
484
+ return ip_adapter_image_embeds
475
485
 
476
486
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
477
487
  def run_safety_checker(self, image, device, dtype):
@@ -510,6 +520,13 @@ class LatentConsistencyModelImg2ImgPipeline(
510
520
  )
511
521
 
512
522
  elif isinstance(generator, list):
523
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
524
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
525
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
526
+ raise ValueError(
527
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
528
+ )
529
+
513
530
  init_latents = [
514
531
  retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
515
532
  for i in range(batch_size)
@@ -548,20 +565,22 @@ class LatentConsistencyModelImg2ImgPipeline(
548
565
  return latents
549
566
 
550
567
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
551
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
568
+ def get_guidance_scale_embedding(
569
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
570
+ ) -> torch.Tensor:
552
571
  """
553
572
  See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
554
573
 
555
574
  Args:
556
- timesteps (`torch.Tensor`):
557
- generate embedding vectors at these timesteps
575
+ w (`torch.Tensor`):
576
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
558
577
  embedding_dim (`int`, *optional*, defaults to 512):
559
- dimension of the embeddings to generate
560
- dtype:
561
- data type of the generated embeddings
578
+ Dimension of the embeddings to generate.
579
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
580
+ Data type of the generated embeddings.
562
581
 
563
582
  Returns:
564
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
583
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
565
584
  """
566
585
  assert len(w.shape) == 1
567
586
  w = w * 1000.0
@@ -611,7 +630,7 @@ class LatentConsistencyModelImg2ImgPipeline(
611
630
  prompt: Union[str, List[str]],
612
631
  strength: float,
613
632
  callback_steps: int,
614
- prompt_embeds: Optional[torch.FloatTensor] = None,
633
+ prompt_embeds: Optional[torch.Tensor] = None,
615
634
  ip_adapter_image=None,
616
635
  ip_adapter_image_embeds=None,
617
636
  callback_on_step_end_tensor_inputs=None,
@@ -692,10 +711,10 @@ class LatentConsistencyModelImg2ImgPipeline(
692
711
  guidance_scale: float = 8.5,
693
712
  num_images_per_prompt: Optional[int] = 1,
694
713
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
695
- latents: Optional[torch.FloatTensor] = None,
696
- prompt_embeds: Optional[torch.FloatTensor] = None,
714
+ latents: Optional[torch.Tensor] = None,
715
+ prompt_embeds: Optional[torch.Tensor] = None,
697
716
  ip_adapter_image: Optional[PipelineImageInput] = None,
698
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
717
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
699
718
  output_type: Optional[str] = "pil",
700
719
  return_dict: bool = True,
701
720
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -737,20 +756,20 @@ class LatentConsistencyModelImg2ImgPipeline(
737
756
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
738
757
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
739
758
  generation deterministic.
740
- latents (`torch.FloatTensor`, *optional*):
759
+ latents (`torch.Tensor`, *optional*):
741
760
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
742
761
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
743
762
  tensor is generated by sampling using the supplied random `generator`.
744
- prompt_embeds (`torch.FloatTensor`, *optional*):
763
+ prompt_embeds (`torch.Tensor`, *optional*):
745
764
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
746
765
  provided, text embeddings are generated from the `prompt` input argument.
747
766
  ip_adapter_image: (`PipelineImageInput`, *optional*):
748
767
  Optional image input to work with IP Adapters.
749
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
750
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
751
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
752
- if `do_classifier_free_guidance` is set to `True`.
753
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
768
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
769
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
770
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
771
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
772
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
754
773
  output_type (`str`, *optional*, defaults to `"pil"`):
755
774
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
756
775
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -870,9 +889,10 @@ class LatentConsistencyModelImg2ImgPipeline(
870
889
  else self.scheduler.config.original_inference_steps
871
890
  )
872
891
  latent_timestep = timesteps[:1]
873
- latents = self.prepare_latents(
874
- image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
875
- )
892
+ if latents is None:
893
+ latents = self.prepare_latents(
894
+ image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
895
+ )
876
896
  bs = batch_size * num_images_per_prompt
877
897
 
878
898
  # 6. Get Guidance Scale Embedding