diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,338 @@
|
|
1
|
+
# Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import json
|
16
|
+
import os
|
17
|
+
import re
|
18
|
+
from typing import Dict, List, Optional, Union
|
19
|
+
|
20
|
+
from sentencepiece import SentencePieceProcessor
|
21
|
+
from transformers import PreTrainedTokenizer
|
22
|
+
from transformers.tokenization_utils_base import BatchEncoding, EncodedInput
|
23
|
+
from transformers.utils import PaddingStrategy
|
24
|
+
|
25
|
+
|
26
|
+
class SPTokenizer:
|
27
|
+
def __init__(self, model_path: str):
|
28
|
+
# reload tokenizer
|
29
|
+
assert os.path.isfile(model_path), model_path
|
30
|
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
31
|
+
|
32
|
+
# BOS / EOS token IDs
|
33
|
+
self.n_words: int = self.sp_model.vocab_size()
|
34
|
+
self.bos_id: int = self.sp_model.bos_id()
|
35
|
+
self.eos_id: int = self.sp_model.eos_id()
|
36
|
+
self.pad_id: int = self.sp_model.unk_id()
|
37
|
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
38
|
+
|
39
|
+
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
40
|
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
41
|
+
self.special_tokens = {}
|
42
|
+
self.index_special_tokens = {}
|
43
|
+
for token in special_tokens:
|
44
|
+
self.special_tokens[token] = self.n_words
|
45
|
+
self.index_special_tokens[self.n_words] = token
|
46
|
+
self.n_words += 1
|
47
|
+
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
48
|
+
|
49
|
+
def tokenize(self, s: str, encode_special_tokens=False):
|
50
|
+
if encode_special_tokens:
|
51
|
+
last_index = 0
|
52
|
+
t = []
|
53
|
+
for match in re.finditer(self.role_special_token_expression, s):
|
54
|
+
if last_index < match.start():
|
55
|
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index : match.start()]))
|
56
|
+
t.append(s[match.start() : match.end()])
|
57
|
+
last_index = match.end()
|
58
|
+
if last_index < len(s):
|
59
|
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
60
|
+
return t
|
61
|
+
else:
|
62
|
+
return self.sp_model.EncodeAsPieces(s)
|
63
|
+
|
64
|
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
65
|
+
assert isinstance(s, str)
|
66
|
+
t = self.sp_model.encode(s)
|
67
|
+
if bos:
|
68
|
+
t = [self.bos_id] + t
|
69
|
+
if eos:
|
70
|
+
t = t + [self.eos_id]
|
71
|
+
return t
|
72
|
+
|
73
|
+
def decode(self, t: List[int]) -> str:
|
74
|
+
text, buffer = "", []
|
75
|
+
for token in t:
|
76
|
+
if token in self.index_special_tokens:
|
77
|
+
if buffer:
|
78
|
+
text += self.sp_model.decode(buffer)
|
79
|
+
buffer = []
|
80
|
+
text += self.index_special_tokens[token]
|
81
|
+
else:
|
82
|
+
buffer.append(token)
|
83
|
+
if buffer:
|
84
|
+
text += self.sp_model.decode(buffer)
|
85
|
+
return text
|
86
|
+
|
87
|
+
def decode_tokens(self, tokens: List[str]) -> str:
|
88
|
+
text = self.sp_model.DecodePieces(tokens)
|
89
|
+
return text
|
90
|
+
|
91
|
+
def convert_token_to_id(self, token):
|
92
|
+
"""Converts a token (str) in an id using the vocab."""
|
93
|
+
if token in self.special_tokens:
|
94
|
+
return self.special_tokens[token]
|
95
|
+
return self.sp_model.PieceToId(token)
|
96
|
+
|
97
|
+
def convert_id_to_token(self, index):
|
98
|
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
99
|
+
if index in self.index_special_tokens:
|
100
|
+
return self.index_special_tokens[index]
|
101
|
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
102
|
+
return ""
|
103
|
+
return self.sp_model.IdToPiece(index)
|
104
|
+
|
105
|
+
|
106
|
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
107
|
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
108
|
+
|
109
|
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
110
|
+
|
111
|
+
def __init__(
|
112
|
+
self,
|
113
|
+
vocab_file,
|
114
|
+
padding_side="left",
|
115
|
+
clean_up_tokenization_spaces=False,
|
116
|
+
encode_special_tokens=False,
|
117
|
+
**kwargs,
|
118
|
+
):
|
119
|
+
self.name = "GLMTokenizer"
|
120
|
+
|
121
|
+
self.vocab_file = vocab_file
|
122
|
+
self.tokenizer = SPTokenizer(vocab_file)
|
123
|
+
self.special_tokens = {
|
124
|
+
"<bos>": self.tokenizer.bos_id,
|
125
|
+
"<eos>": self.tokenizer.eos_id,
|
126
|
+
"<pad>": self.tokenizer.pad_id,
|
127
|
+
}
|
128
|
+
self.encode_special_tokens = encode_special_tokens
|
129
|
+
super().__init__(
|
130
|
+
padding_side=padding_side,
|
131
|
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
132
|
+
encode_special_tokens=encode_special_tokens,
|
133
|
+
**kwargs,
|
134
|
+
)
|
135
|
+
|
136
|
+
def get_command(self, token):
|
137
|
+
if token in self.special_tokens:
|
138
|
+
return self.special_tokens[token]
|
139
|
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
140
|
+
return self.tokenizer.special_tokens[token]
|
141
|
+
|
142
|
+
@property
|
143
|
+
def unk_token(self) -> str:
|
144
|
+
return "<unk>"
|
145
|
+
|
146
|
+
@unk_token.setter
|
147
|
+
def unk_token(self, value: str):
|
148
|
+
self._unk_token = value
|
149
|
+
|
150
|
+
@property
|
151
|
+
def pad_token(self) -> str:
|
152
|
+
return "<unk>"
|
153
|
+
|
154
|
+
@pad_token.setter
|
155
|
+
def pad_token(self, value: str):
|
156
|
+
self._pad_token = value
|
157
|
+
|
158
|
+
@property
|
159
|
+
def pad_token_id(self):
|
160
|
+
return self.get_command("<pad>")
|
161
|
+
|
162
|
+
@property
|
163
|
+
def eos_token(self) -> str:
|
164
|
+
return "</s>"
|
165
|
+
|
166
|
+
@eos_token.setter
|
167
|
+
def eos_token(self, value: str):
|
168
|
+
self._eos_token = value
|
169
|
+
|
170
|
+
@property
|
171
|
+
def eos_token_id(self):
|
172
|
+
return self.get_command("<eos>")
|
173
|
+
|
174
|
+
@property
|
175
|
+
def vocab_size(self):
|
176
|
+
return self.tokenizer.n_words
|
177
|
+
|
178
|
+
def get_vocab(self):
|
179
|
+
"""Returns vocab as a dict"""
|
180
|
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
181
|
+
vocab.update(self.added_tokens_encoder)
|
182
|
+
return vocab
|
183
|
+
|
184
|
+
def _tokenize(self, text, **kwargs):
|
185
|
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
186
|
+
|
187
|
+
def _convert_token_to_id(self, token):
|
188
|
+
"""Converts a token (str) in an id using the vocab."""
|
189
|
+
return self.tokenizer.convert_token_to_id(token)
|
190
|
+
|
191
|
+
def _convert_id_to_token(self, index):
|
192
|
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
193
|
+
return self.tokenizer.convert_id_to_token(index)
|
194
|
+
|
195
|
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
196
|
+
return self.tokenizer.decode_tokens(tokens)
|
197
|
+
|
198
|
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
199
|
+
"""
|
200
|
+
Save the vocabulary and special tokens file to a directory.
|
201
|
+
|
202
|
+
Args:
|
203
|
+
save_directory (`str`):
|
204
|
+
The directory in which to save the vocabulary.
|
205
|
+
filename_prefix (`str`, *optional*):
|
206
|
+
An optional prefix to add to the named of the saved files.
|
207
|
+
|
208
|
+
Returns:
|
209
|
+
`Tuple(str)`: Paths to the files saved.
|
210
|
+
"""
|
211
|
+
if os.path.isdir(save_directory):
|
212
|
+
vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
|
213
|
+
else:
|
214
|
+
vocab_file = save_directory
|
215
|
+
|
216
|
+
with open(self.vocab_file, "rb") as fin:
|
217
|
+
proto_str = fin.read()
|
218
|
+
|
219
|
+
with open(vocab_file, "wb") as writer:
|
220
|
+
writer.write(proto_str)
|
221
|
+
|
222
|
+
return (vocab_file,)
|
223
|
+
|
224
|
+
def get_prefix_tokens(self):
|
225
|
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
226
|
+
return prefix_tokens
|
227
|
+
|
228
|
+
def build_single_message(self, role, metadata, message):
|
229
|
+
assert role in ["system", "user", "assistant", "observation"], role
|
230
|
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
231
|
+
message_tokens = self.tokenizer.encode(message)
|
232
|
+
tokens = role_tokens + message_tokens
|
233
|
+
return tokens
|
234
|
+
|
235
|
+
def build_chat_input(self, query, history=None, role="user"):
|
236
|
+
if history is None:
|
237
|
+
history = []
|
238
|
+
input_ids = []
|
239
|
+
for item in history:
|
240
|
+
content = item["content"]
|
241
|
+
if item["role"] == "system" and "tools" in item:
|
242
|
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
243
|
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
244
|
+
input_ids.extend(self.build_single_message(role, "", query))
|
245
|
+
input_ids.extend([self.get_command("<|assistant|>")])
|
246
|
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
247
|
+
|
248
|
+
def build_inputs_with_special_tokens(
|
249
|
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
250
|
+
) -> List[int]:
|
251
|
+
"""
|
252
|
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
253
|
+
adding special tokens. A BERT sequence has the following format:
|
254
|
+
|
255
|
+
- single sequence: `[CLS] X [SEP]`
|
256
|
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
257
|
+
|
258
|
+
Args:
|
259
|
+
token_ids_0 (`List[int]`):
|
260
|
+
List of IDs to which the special tokens will be added.
|
261
|
+
token_ids_1 (`List[int]`, *optional*):
|
262
|
+
Optional second list of IDs for sequence pairs.
|
263
|
+
|
264
|
+
Returns:
|
265
|
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
266
|
+
"""
|
267
|
+
prefix_tokens = self.get_prefix_tokens()
|
268
|
+
token_ids_0 = prefix_tokens + token_ids_0
|
269
|
+
if token_ids_1 is not None:
|
270
|
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
271
|
+
return token_ids_0
|
272
|
+
|
273
|
+
def _pad(
|
274
|
+
self,
|
275
|
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
276
|
+
max_length: Optional[int] = None,
|
277
|
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
278
|
+
pad_to_multiple_of: Optional[int] = None,
|
279
|
+
return_attention_mask: Optional[bool] = None,
|
280
|
+
padding_side: Optional[bool] = None,
|
281
|
+
) -> dict:
|
282
|
+
"""
|
283
|
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
284
|
+
|
285
|
+
Args:
|
286
|
+
encoded_inputs:
|
287
|
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
288
|
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
289
|
+
Will truncate by taking into account the special tokens.
|
290
|
+
padding_strategy: PaddingStrategy to use for padding.
|
291
|
+
|
292
|
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
293
|
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
294
|
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
295
|
+
The tokenizer padding sides are defined in self.padding_side:
|
296
|
+
|
297
|
+
- 'left': pads on the left of the sequences
|
298
|
+
- 'right': pads on the right of the sequences
|
299
|
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
300
|
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
301
|
+
`>= 7.5` (Volta).
|
302
|
+
padding_side (`str`, *optional*):
|
303
|
+
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
|
304
|
+
Default value is picked from the class attribute of the same name.
|
305
|
+
return_attention_mask:
|
306
|
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
307
|
+
"""
|
308
|
+
# Load from model defaults
|
309
|
+
assert self.padding_side == "left"
|
310
|
+
|
311
|
+
required_input = encoded_inputs[self.model_input_names[0]]
|
312
|
+
seq_length = len(required_input)
|
313
|
+
|
314
|
+
if padding_strategy == PaddingStrategy.LONGEST:
|
315
|
+
max_length = len(required_input)
|
316
|
+
|
317
|
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
318
|
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
319
|
+
|
320
|
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
321
|
+
|
322
|
+
# Initialize attention mask if not present.
|
323
|
+
if "attention_mask" not in encoded_inputs:
|
324
|
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
325
|
+
|
326
|
+
if "position_ids" not in encoded_inputs:
|
327
|
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
328
|
+
|
329
|
+
if needs_to_be_padded:
|
330
|
+
difference = max_length - len(required_input)
|
331
|
+
|
332
|
+
if "attention_mask" in encoded_inputs:
|
333
|
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
334
|
+
if "position_ids" in encoded_inputs:
|
335
|
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
336
|
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
337
|
+
|
338
|
+
return encoded_inputs
|
@@ -23,7 +23,7 @@ import torch
|
|
23
23
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
24
24
|
|
25
25
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
26
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
27
27
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
28
28
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ...schedulers import LCMScheduler
|
@@ -63,9 +63,10 @@ def retrieve_timesteps(
|
|
63
63
|
num_inference_steps: Optional[int] = None,
|
64
64
|
device: Optional[Union[str, torch.device]] = None,
|
65
65
|
timesteps: Optional[List[int]] = None,
|
66
|
+
sigmas: Optional[List[float]] = None,
|
66
67
|
**kwargs,
|
67
68
|
):
|
68
|
-
"""
|
69
|
+
r"""
|
69
70
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
70
71
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
71
72
|
|
@@ -73,19 +74,23 @@ def retrieve_timesteps(
|
|
73
74
|
scheduler (`SchedulerMixin`):
|
74
75
|
The scheduler to get timesteps from.
|
75
76
|
num_inference_steps (`int`):
|
76
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
77
|
-
|
77
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
78
|
+
must be `None`.
|
78
79
|
device (`str` or `torch.device`, *optional*):
|
79
80
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
80
81
|
timesteps (`List[int]`, *optional*):
|
81
|
-
|
82
|
-
|
83
|
-
|
82
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
83
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
84
|
+
sigmas (`List[float]`, *optional*):
|
85
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
86
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
84
87
|
|
85
88
|
Returns:
|
86
89
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
87
90
|
second element is the number of inference steps.
|
88
91
|
"""
|
92
|
+
if timesteps is not None and sigmas is not None:
|
93
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
89
94
|
if timesteps is not None:
|
90
95
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
91
96
|
if not accepts_timesteps:
|
@@ -96,6 +101,16 @@ def retrieve_timesteps(
|
|
96
101
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
97
102
|
timesteps = scheduler.timesteps
|
98
103
|
num_inference_steps = len(timesteps)
|
104
|
+
elif sigmas is not None:
|
105
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
106
|
+
if not accept_sigmas:
|
107
|
+
raise ValueError(
|
108
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
109
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
110
|
+
)
|
111
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
112
|
+
timesteps = scheduler.timesteps
|
113
|
+
num_inference_steps = len(timesteps)
|
99
114
|
else:
|
100
115
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
101
116
|
timesteps = scheduler.timesteps
|
@@ -133,7 +148,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
133
148
|
StableDiffusionMixin,
|
134
149
|
TextualInversionLoaderMixin,
|
135
150
|
IPAdapterMixin,
|
136
|
-
|
151
|
+
StableDiffusionLoraLoaderMixin,
|
137
152
|
FromSingleFileMixin,
|
138
153
|
):
|
139
154
|
r"""
|
@@ -144,8 +159,8 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
144
159
|
|
145
160
|
The pipeline also inherits the following loading methods:
|
146
161
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
147
|
-
- [`~loaders.
|
148
|
-
- [`~loaders.
|
162
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
163
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
149
164
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
150
165
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
151
166
|
|
@@ -222,8 +237,8 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
222
237
|
num_images_per_prompt,
|
223
238
|
do_classifier_free_guidance,
|
224
239
|
negative_prompt=None,
|
225
|
-
prompt_embeds: Optional[torch.
|
226
|
-
negative_prompt_embeds: Optional[torch.
|
240
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
241
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
227
242
|
lora_scale: Optional[float] = None,
|
228
243
|
clip_skip: Optional[int] = None,
|
229
244
|
):
|
@@ -243,10 +258,10 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
243
258
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
244
259
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
245
260
|
less than `1`).
|
246
|
-
prompt_embeds (`torch.
|
261
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
247
262
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
248
263
|
provided, text embeddings will be generated from `prompt` input argument.
|
249
|
-
negative_prompt_embeds (`torch.
|
264
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
250
265
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
251
266
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
252
267
|
argument.
|
@@ -258,7 +273,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
258
273
|
"""
|
259
274
|
# set lora scale so that monkey patched LoRA
|
260
275
|
# function of text encoder can correctly access it
|
261
|
-
if lora_scale is not None and isinstance(self,
|
276
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
262
277
|
self._lora_scale = lora_scale
|
263
278
|
|
264
279
|
# dynamically adjust the LoRA scale
|
@@ -390,9 +405,10 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
390
405
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
391
406
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
392
407
|
|
393
|
-
if
|
394
|
-
|
395
|
-
|
408
|
+
if self.text_encoder is not None:
|
409
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
410
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
411
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
396
412
|
|
397
413
|
return prompt_embeds, negative_prompt_embeds
|
398
414
|
|
@@ -425,6 +441,9 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
425
441
|
def prepare_ip_adapter_image_embeds(
|
426
442
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
427
443
|
):
|
444
|
+
image_embeds = []
|
445
|
+
if do_classifier_free_guidance:
|
446
|
+
negative_image_embeds = []
|
428
447
|
if ip_adapter_image_embeds is None:
|
429
448
|
if not isinstance(ip_adapter_image, list):
|
430
449
|
ip_adapter_image = [ip_adapter_image]
|
@@ -434,7 +453,6 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
434
453
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
435
454
|
)
|
436
455
|
|
437
|
-
image_embeds = []
|
438
456
|
for single_ip_adapter_image, image_proj_layer in zip(
|
439
457
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
440
458
|
):
|
@@ -442,36 +460,28 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
442
460
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
443
461
|
single_ip_adapter_image, device, 1, output_hidden_state
|
444
462
|
)
|
445
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
446
|
-
single_negative_image_embeds = torch.stack(
|
447
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
448
|
-
)
|
449
463
|
|
464
|
+
image_embeds.append(single_image_embeds[None, :])
|
450
465
|
if do_classifier_free_guidance:
|
451
|
-
|
452
|
-
single_image_embeds = single_image_embeds.to(device)
|
453
|
-
|
454
|
-
image_embeds.append(single_image_embeds)
|
466
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
455
467
|
else:
|
456
|
-
repeat_dims = [1]
|
457
|
-
image_embeds = []
|
458
468
|
for single_image_embeds in ip_adapter_image_embeds:
|
459
469
|
if do_classifier_free_guidance:
|
460
470
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
461
|
-
|
462
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
463
|
-
)
|
464
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
465
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
466
|
-
)
|
467
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
468
|
-
else:
|
469
|
-
single_image_embeds = single_image_embeds.repeat(
|
470
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
471
|
-
)
|
471
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
472
472
|
image_embeds.append(single_image_embeds)
|
473
473
|
|
474
|
-
|
474
|
+
ip_adapter_image_embeds = []
|
475
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
476
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
477
|
+
if do_classifier_free_guidance:
|
478
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
479
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
480
|
+
|
481
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
482
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
483
|
+
|
484
|
+
return ip_adapter_image_embeds
|
475
485
|
|
476
486
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
477
487
|
def run_safety_checker(self, image, device, dtype):
|
@@ -510,6 +520,13 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
510
520
|
)
|
511
521
|
|
512
522
|
elif isinstance(generator, list):
|
523
|
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
524
|
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
525
|
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
526
|
+
raise ValueError(
|
527
|
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
528
|
+
)
|
529
|
+
|
513
530
|
init_latents = [
|
514
531
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
515
532
|
for i in range(batch_size)
|
@@ -548,20 +565,22 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
548
565
|
return latents
|
549
566
|
|
550
567
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
551
|
-
def get_guidance_scale_embedding(
|
568
|
+
def get_guidance_scale_embedding(
|
569
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
570
|
+
) -> torch.Tensor:
|
552
571
|
"""
|
553
572
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
554
573
|
|
555
574
|
Args:
|
556
|
-
|
557
|
-
|
575
|
+
w (`torch.Tensor`):
|
576
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
558
577
|
embedding_dim (`int`, *optional*, defaults to 512):
|
559
|
-
|
560
|
-
dtype:
|
561
|
-
|
578
|
+
Dimension of the embeddings to generate.
|
579
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
580
|
+
Data type of the generated embeddings.
|
562
581
|
|
563
582
|
Returns:
|
564
|
-
`torch.
|
583
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
565
584
|
"""
|
566
585
|
assert len(w.shape) == 1
|
567
586
|
w = w * 1000.0
|
@@ -611,7 +630,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
611
630
|
prompt: Union[str, List[str]],
|
612
631
|
strength: float,
|
613
632
|
callback_steps: int,
|
614
|
-
prompt_embeds: Optional[torch.
|
633
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
615
634
|
ip_adapter_image=None,
|
616
635
|
ip_adapter_image_embeds=None,
|
617
636
|
callback_on_step_end_tensor_inputs=None,
|
@@ -692,10 +711,10 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
692
711
|
guidance_scale: float = 8.5,
|
693
712
|
num_images_per_prompt: Optional[int] = 1,
|
694
713
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
695
|
-
latents: Optional[torch.
|
696
|
-
prompt_embeds: Optional[torch.
|
714
|
+
latents: Optional[torch.Tensor] = None,
|
715
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
697
716
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
698
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
717
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
699
718
|
output_type: Optional[str] = "pil",
|
700
719
|
return_dict: bool = True,
|
701
720
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -737,20 +756,20 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
737
756
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
738
757
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
739
758
|
generation deterministic.
|
740
|
-
latents (`torch.
|
759
|
+
latents (`torch.Tensor`, *optional*):
|
741
760
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
742
761
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
743
762
|
tensor is generated by sampling using the supplied random `generator`.
|
744
|
-
prompt_embeds (`torch.
|
763
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
745
764
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
746
765
|
provided, text embeddings are generated from the `prompt` input argument.
|
747
766
|
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
748
767
|
Optional image input to work with IP Adapters.
|
749
|
-
ip_adapter_image_embeds (`List[torch.
|
750
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
751
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
752
|
-
if `do_classifier_free_guidance` is set to `True`.
|
753
|
-
|
768
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
769
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
770
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
771
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
772
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
754
773
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
755
774
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
756
775
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -870,9 +889,10 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
870
889
|
else self.scheduler.config.original_inference_steps
|
871
890
|
)
|
872
891
|
latent_timestep = timesteps[:1]
|
873
|
-
latents
|
874
|
-
|
875
|
-
|
892
|
+
if latents is None:
|
893
|
+
latents = self.prepare_latents(
|
894
|
+
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
895
|
+
)
|
876
896
|
bs = batch_size * num_images_per_prompt
|
877
897
|
|
878
898
|
# 6. Get Guidance Scale Embedding
|