diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,669 @@
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+
4
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """
19
+ Adapted from
20
+ https://github.com/huggingface/transformers/blob/52cb4034ada381fe1ffe8d428a1076e5411a8026/src/transformers/utils/quantization_config.py
21
+ """
22
+
23
+ import copy
24
+ import importlib.metadata
25
+ import inspect
26
+ import json
27
+ import os
28
+ from dataclasses import dataclass
29
+ from enum import Enum
30
+ from functools import partial
31
+ from typing import Any, Dict, List, Optional, Union
32
+
33
+ from packaging import version
34
+
35
+ from ..utils import is_torch_available, is_torchao_available, logging
36
+
37
+
38
+ if is_torch_available():
39
+ import torch
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+
44
+ class QuantizationMethod(str, Enum):
45
+ BITS_AND_BYTES = "bitsandbytes"
46
+ GGUF = "gguf"
47
+ TORCHAO = "torchao"
48
+
49
+
50
+ @dataclass
51
+ class QuantizationConfigMixin:
52
+ """
53
+ Mixin class for quantization config
54
+ """
55
+
56
+ quant_method: QuantizationMethod
57
+ _exclude_attributes_at_init = []
58
+
59
+ @classmethod
60
+ def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs):
61
+ """
62
+ Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters.
63
+
64
+ Args:
65
+ config_dict (`Dict[str, Any]`):
66
+ Dictionary that will be used to instantiate the configuration object.
67
+ return_unused_kwargs (`bool`,*optional*, defaults to `False`):
68
+ Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in
69
+ `PreTrainedModel`.
70
+ kwargs (`Dict[str, Any]`):
71
+ Additional parameters from which to initialize the configuration object.
72
+
73
+ Returns:
74
+ [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters.
75
+ """
76
+
77
+ config = cls(**config_dict)
78
+
79
+ to_remove = []
80
+ for key, value in kwargs.items():
81
+ if hasattr(config, key):
82
+ setattr(config, key, value)
83
+ to_remove.append(key)
84
+ for key in to_remove:
85
+ kwargs.pop(key, None)
86
+
87
+ if return_unused_kwargs:
88
+ return config, kwargs
89
+ else:
90
+ return config
91
+
92
+ def to_json_file(self, json_file_path: Union[str, os.PathLike]):
93
+ """
94
+ Save this instance to a JSON file.
95
+
96
+ Args:
97
+ json_file_path (`str` or `os.PathLike`):
98
+ Path to the JSON file in which this configuration instance's parameters will be saved.
99
+ use_diff (`bool`, *optional*, defaults to `True`):
100
+ If set to `True`, only the difference between the config instance and the default
101
+ `QuantizationConfig()` is serialized to JSON file.
102
+ """
103
+ with open(json_file_path, "w", encoding="utf-8") as writer:
104
+ config_dict = self.to_dict()
105
+ json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
106
+
107
+ writer.write(json_string)
108
+
109
+ def to_dict(self) -> Dict[str, Any]:
110
+ """
111
+ Serializes this instance to a Python dictionary. Returns:
112
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
113
+ """
114
+ return copy.deepcopy(self.__dict__)
115
+
116
+ def __iter__(self):
117
+ """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
118
+ for attr, value in copy.deepcopy(self.__dict__).items():
119
+ yield attr, value
120
+
121
+ def __repr__(self):
122
+ return f"{self.__class__.__name__} {self.to_json_string()}"
123
+
124
+ def to_json_string(self, use_diff: bool = True) -> str:
125
+ """
126
+ Serializes this instance to a JSON string.
127
+
128
+ Args:
129
+ use_diff (`bool`, *optional*, defaults to `True`):
130
+ If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
131
+ is serialized to JSON string.
132
+
133
+ Returns:
134
+ `str`: String containing all the attributes that make up this configuration instance in JSON format.
135
+ """
136
+ if use_diff is True:
137
+ config_dict = self.to_diff_dict()
138
+ else:
139
+ config_dict = self.to_dict()
140
+ return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
141
+
142
+ def update(self, **kwargs):
143
+ """
144
+ Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
145
+ returning all the unused kwargs.
146
+
147
+ Args:
148
+ kwargs (`Dict[str, Any]`):
149
+ Dictionary of attributes to tentatively update this class.
150
+
151
+ Returns:
152
+ `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
153
+ """
154
+ to_remove = []
155
+ for key, value in kwargs.items():
156
+ if hasattr(self, key):
157
+ setattr(self, key, value)
158
+ to_remove.append(key)
159
+
160
+ # Remove all the attributes that were updated, without modifying the input dict
161
+ unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
162
+ return unused_kwargs
163
+
164
+
165
+ @dataclass
166
+ class BitsAndBytesConfig(QuantizationConfigMixin):
167
+ """
168
+ This is a wrapper class about all possible attributes and features that you can play with a model that has been
169
+ loaded using `bitsandbytes`.
170
+
171
+ This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive.
172
+
173
+ Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`,
174
+ then more arguments will be added to this class.
175
+
176
+ Args:
177
+ load_in_8bit (`bool`, *optional*, defaults to `False`):
178
+ This flag is used to enable 8-bit quantization with LLM.int8().
179
+ load_in_4bit (`bool`, *optional*, defaults to `False`):
180
+ This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from
181
+ `bitsandbytes`.
182
+ llm_int8_threshold (`float`, *optional*, defaults to 6.0):
183
+ This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix
184
+ Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value
185
+ that is above this threshold will be considered an outlier and the operation on those values will be done
186
+ in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but
187
+ there are some exceptional systematic outliers that are very differently distributed for large models.
188
+ These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of
189
+ magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6,
190
+ but a lower threshold might be needed for more unstable models (small models, fine-tuning).
191
+ llm_int8_skip_modules (`List[str]`, *optional*):
192
+ An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as
193
+ Jukebox that has several heads in different places and not necessarily at the last position. For example
194
+ for `CausalLM` models, the last `lm_head` is typically kept in its original `dtype`.
195
+ llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`):
196
+ This flag is used for advanced use cases and users that are aware of this feature. If you want to split
197
+ your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use
198
+ this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8
199
+ operations will not be run on CPU.
200
+ llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`):
201
+ This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not
202
+ have to be converted back and forth for the backward pass.
203
+ bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`):
204
+ This sets the computational type which might be different than the input type. For example, inputs might be
205
+ fp32, but computation can be set to bf16 for speedups.
206
+ bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`):
207
+ This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types
208
+ which are specified by `fp4` or `nf4`.
209
+ bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`):
210
+ This flag is used for nested quantization where the quantization constants from the first quantization are
211
+ quantized again.
212
+ bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`):
213
+ This sets the storage type to pack the quanitzed 4-bit prarams.
214
+ kwargs (`Dict[str, Any]`, *optional*):
215
+ Additional parameters from which to initialize the configuration object.
216
+ """
217
+
218
+ _exclude_attributes_at_init = ["_load_in_4bit", "_load_in_8bit", "quant_method"]
219
+
220
+ def __init__(
221
+ self,
222
+ load_in_8bit=False,
223
+ load_in_4bit=False,
224
+ llm_int8_threshold=6.0,
225
+ llm_int8_skip_modules=None,
226
+ llm_int8_enable_fp32_cpu_offload=False,
227
+ llm_int8_has_fp16_weight=False,
228
+ bnb_4bit_compute_dtype=None,
229
+ bnb_4bit_quant_type="fp4",
230
+ bnb_4bit_use_double_quant=False,
231
+ bnb_4bit_quant_storage=None,
232
+ **kwargs,
233
+ ):
234
+ self.quant_method = QuantizationMethod.BITS_AND_BYTES
235
+
236
+ if load_in_4bit and load_in_8bit:
237
+ raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
238
+
239
+ self._load_in_8bit = load_in_8bit
240
+ self._load_in_4bit = load_in_4bit
241
+ self.llm_int8_threshold = llm_int8_threshold
242
+ self.llm_int8_skip_modules = llm_int8_skip_modules
243
+ self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload
244
+ self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight
245
+ self.bnb_4bit_quant_type = bnb_4bit_quant_type
246
+ self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant
247
+
248
+ if bnb_4bit_compute_dtype is None:
249
+ self.bnb_4bit_compute_dtype = torch.float32
250
+ elif isinstance(bnb_4bit_compute_dtype, str):
251
+ self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
252
+ elif isinstance(bnb_4bit_compute_dtype, torch.dtype):
253
+ self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype
254
+ else:
255
+ raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype")
256
+
257
+ if bnb_4bit_quant_storage is None:
258
+ self.bnb_4bit_quant_storage = torch.uint8
259
+ elif isinstance(bnb_4bit_quant_storage, str):
260
+ if bnb_4bit_quant_storage not in ["float16", "float32", "int8", "uint8", "float64", "bfloat16"]:
261
+ raise ValueError(
262
+ "`bnb_4bit_quant_storage` must be a valid string (one of 'float16', 'float32', 'int8', 'uint8', 'float64', 'bfloat16') "
263
+ )
264
+ self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage)
265
+ elif isinstance(bnb_4bit_quant_storage, torch.dtype):
266
+ self.bnb_4bit_quant_storage = bnb_4bit_quant_storage
267
+ else:
268
+ raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype")
269
+
270
+ if kwargs and not all(k in self._exclude_attributes_at_init for k in kwargs):
271
+ logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.")
272
+
273
+ self.post_init()
274
+
275
+ @property
276
+ def load_in_4bit(self):
277
+ return self._load_in_4bit
278
+
279
+ @load_in_4bit.setter
280
+ def load_in_4bit(self, value: bool):
281
+ if not isinstance(value, bool):
282
+ raise TypeError("load_in_4bit must be a boolean")
283
+
284
+ if self.load_in_8bit and value:
285
+ raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
286
+ self._load_in_4bit = value
287
+
288
+ @property
289
+ def load_in_8bit(self):
290
+ return self._load_in_8bit
291
+
292
+ @load_in_8bit.setter
293
+ def load_in_8bit(self, value: bool):
294
+ if not isinstance(value, bool):
295
+ raise TypeError("load_in_8bit must be a boolean")
296
+
297
+ if self.load_in_4bit and value:
298
+ raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
299
+ self._load_in_8bit = value
300
+
301
+ def post_init(self):
302
+ r"""
303
+ Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
304
+ """
305
+ if not isinstance(self.load_in_4bit, bool):
306
+ raise TypeError("load_in_4bit must be a boolean")
307
+
308
+ if not isinstance(self.load_in_8bit, bool):
309
+ raise TypeError("load_in_8bit must be a boolean")
310
+
311
+ if not isinstance(self.llm_int8_threshold, float):
312
+ raise TypeError("llm_int8_threshold must be a float")
313
+
314
+ if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list):
315
+ raise TypeError("llm_int8_skip_modules must be a list of strings")
316
+ if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool):
317
+ raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean")
318
+
319
+ if not isinstance(self.llm_int8_has_fp16_weight, bool):
320
+ raise TypeError("llm_int8_has_fp16_weight must be a boolean")
321
+
322
+ if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
323
+ raise TypeError("bnb_4bit_compute_dtype must be torch.dtype")
324
+
325
+ if not isinstance(self.bnb_4bit_quant_type, str):
326
+ raise TypeError("bnb_4bit_quant_type must be a string")
327
+
328
+ if not isinstance(self.bnb_4bit_use_double_quant, bool):
329
+ raise TypeError("bnb_4bit_use_double_quant must be a boolean")
330
+
331
+ if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
332
+ "0.39.0"
333
+ ):
334
+ raise ValueError(
335
+ "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version"
336
+ )
337
+
338
+ def is_quantizable(self):
339
+ r"""
340
+ Returns `True` if the model is quantizable, `False` otherwise.
341
+ """
342
+ return self.load_in_8bit or self.load_in_4bit
343
+
344
+ def quantization_method(self):
345
+ r"""
346
+ This method returns the quantization method used for the model. If the model is not quantizable, it returns
347
+ `None`.
348
+ """
349
+ if self.load_in_8bit:
350
+ return "llm_int8"
351
+ elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4":
352
+ return "fp4"
353
+ elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4":
354
+ return "nf4"
355
+ else:
356
+ return None
357
+
358
+ def to_dict(self) -> Dict[str, Any]:
359
+ """
360
+ Serializes this instance to a Python dictionary. Returns:
361
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
362
+ """
363
+ output = copy.deepcopy(self.__dict__)
364
+ output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1]
365
+ output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1]
366
+ output["load_in_4bit"] = self.load_in_4bit
367
+ output["load_in_8bit"] = self.load_in_8bit
368
+
369
+ return output
370
+
371
+ def __repr__(self):
372
+ config_dict = self.to_dict()
373
+ return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
374
+
375
+ def to_diff_dict(self) -> Dict[str, Any]:
376
+ """
377
+ Removes all attributes from config which correspond to the default config attributes for better readability and
378
+ serializes to a Python dictionary.
379
+
380
+ Returns:
381
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
382
+ """
383
+ config_dict = self.to_dict()
384
+
385
+ # get the default config dict
386
+ default_config_dict = BitsAndBytesConfig().to_dict()
387
+
388
+ serializable_config_dict = {}
389
+
390
+ # only serialize values that differ from the default config
391
+ for key, value in config_dict.items():
392
+ if value != default_config_dict[key]:
393
+ serializable_config_dict[key] = value
394
+
395
+ return serializable_config_dict
396
+
397
+
398
+ @dataclass
399
+ class GGUFQuantizationConfig(QuantizationConfigMixin):
400
+ """This is a config class for GGUF Quantization techniques.
401
+
402
+ Args:
403
+ compute_dtype: (`torch.dtype`, defaults to `torch.float32`):
404
+ This sets the computational type which might be different than the input type. For example, inputs might be
405
+ fp32, but computation can be set to bf16 for speedups.
406
+
407
+ """
408
+
409
+ def __init__(self, compute_dtype: Optional["torch.dtype"] = None):
410
+ self.quant_method = QuantizationMethod.GGUF
411
+ self.compute_dtype = compute_dtype
412
+ self.pre_quantized = True
413
+
414
+ # TODO: (Dhruv) Add this as an init argument when we can support loading unquantized checkpoints.
415
+ self.modules_to_not_convert = None
416
+
417
+ if self.compute_dtype is None:
418
+ self.compute_dtype = torch.float32
419
+
420
+
421
+ @dataclass
422
+ class TorchAoConfig(QuantizationConfigMixin):
423
+ """This is a config class for torchao quantization/sparsity techniques.
424
+
425
+ Args:
426
+ quant_type (`str`):
427
+ The type of quantization we want to use, currently supporting:
428
+ - **Integer quantization:**
429
+ - Full function names: `int4_weight_only`, `int8_dynamic_activation_int4_weight`,
430
+ `int8_weight_only`, `int8_dynamic_activation_int8_weight`
431
+ - Shorthands: `int4wo`, `int4dq`, `int8wo`, `int8dq`
432
+
433
+ - **Floating point 8-bit quantization:**
434
+ - Full function names: `float8_weight_only`, `float8_dynamic_activation_float8_weight`,
435
+ `float8_static_activation_float8_weight`
436
+ - Shorthands: `float8wo`, `float8wo_e5m2`, `float8wo_e4m3`, `float8dq`, `float8dq_e4m3`,
437
+ `float8_e4m3_tensor`, `float8_e4m3_row`,
438
+
439
+ - **Floating point X-bit quantization:**
440
+ - Full function names: `fpx_weight_only`
441
+ - Shorthands: `fpX_eAwB`, where `X` is the number of bits (between `1` to `7`), `A` is the number
442
+ of exponent bits and `B` is the number of mantissa bits. The constraint of `X == A + B + 1` must
443
+ be satisfied for a given shorthand notation.
444
+
445
+ - **Unsigned Integer quantization:**
446
+ - Full function names: `uintx_weight_only`
447
+ - Shorthands: `uint1wo`, `uint2wo`, `uint3wo`, `uint4wo`, `uint5wo`, `uint6wo`, `uint7wo`
448
+ modules_to_not_convert (`List[str]`, *optional*, default to `None`):
449
+ The list of modules to not quantize, useful for quantizing models that explicitly require to have some
450
+ modules left in their original precision.
451
+ kwargs (`Dict[str, Any]`, *optional*):
452
+ The keyword arguments for the chosen type of quantization, for example, int4_weight_only quantization
453
+ supports two keyword arguments `group_size` and `inner_k_tiles` currently. More API examples and
454
+ documentation of arguments can be found in
455
+ https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques
456
+
457
+ Example:
458
+ ```python
459
+ from diffusers import FluxTransformer2DModel, TorchAoConfig
460
+
461
+ quantization_config = TorchAoConfig("int8wo")
462
+ transformer = FluxTransformer2DModel.from_pretrained(
463
+ "black-forest-labs/Flux.1-Dev",
464
+ subfolder="transformer",
465
+ quantization_config=quantization_config,
466
+ torch_dtype=torch.bfloat16,
467
+ )
468
+ ```
469
+ """
470
+
471
+ def __init__(self, quant_type: str, modules_to_not_convert: Optional[List[str]] = None, **kwargs) -> None:
472
+ self.quant_method = QuantizationMethod.TORCHAO
473
+ self.quant_type = quant_type
474
+ self.modules_to_not_convert = modules_to_not_convert
475
+
476
+ # When we load from serialized config, "quant_type_kwargs" will be the key
477
+ if "quant_type_kwargs" in kwargs:
478
+ self.quant_type_kwargs = kwargs["quant_type_kwargs"]
479
+ else:
480
+ self.quant_type_kwargs = kwargs
481
+
482
+ TORCHAO_QUANT_TYPE_METHODS = self._get_torchao_quant_type_to_method()
483
+ if self.quant_type not in TORCHAO_QUANT_TYPE_METHODS.keys():
484
+ raise ValueError(
485
+ f"Requested quantization type: {self.quant_type} is not supported yet or is incorrect. If you think the "
486
+ f"provided quantization type should be supported, please open an issue at https://github.com/huggingface/diffusers/issues."
487
+ )
488
+
489
+ method = TORCHAO_QUANT_TYPE_METHODS[self.quant_type]
490
+ signature = inspect.signature(method)
491
+ all_kwargs = {
492
+ param.name
493
+ for param in signature.parameters.values()
494
+ if param.kind in [inspect.Parameter.KEYWORD_ONLY, inspect.Parameter.POSITIONAL_OR_KEYWORD]
495
+ }
496
+ unsupported_kwargs = list(self.quant_type_kwargs.keys() - all_kwargs)
497
+
498
+ if len(unsupported_kwargs) > 0:
499
+ raise ValueError(
500
+ f'The quantization method "{quant_type}" does not support the following keyword arguments: '
501
+ f"{unsupported_kwargs}. The following keywords arguments are supported: {all_kwargs}."
502
+ )
503
+
504
+ @classmethod
505
+ def _get_torchao_quant_type_to_method(cls):
506
+ r"""
507
+ Returns supported torchao quantization types with all commonly used notations.
508
+ """
509
+
510
+ if is_torchao_available():
511
+ # TODO(aryan): Support autoquant and sparsify
512
+ from torchao.quantization import (
513
+ float8_dynamic_activation_float8_weight,
514
+ float8_static_activation_float8_weight,
515
+ float8_weight_only,
516
+ fpx_weight_only,
517
+ int4_weight_only,
518
+ int8_dynamic_activation_int4_weight,
519
+ int8_dynamic_activation_int8_weight,
520
+ int8_weight_only,
521
+ uintx_weight_only,
522
+ )
523
+
524
+ # TODO(aryan): Add a note on how to use PerAxis and PerGroup observers
525
+ from torchao.quantization.observer import PerRow, PerTensor
526
+
527
+ def generate_float8dq_types(dtype: torch.dtype):
528
+ name = "e5m2" if dtype == torch.float8_e5m2 else "e4m3"
529
+ types = {}
530
+
531
+ for granularity_cls in [PerTensor, PerRow]:
532
+ # Note: Activation and Weights cannot have different granularities
533
+ granularity_name = "tensor" if granularity_cls is PerTensor else "row"
534
+ types[f"float8dq_{name}_{granularity_name}"] = partial(
535
+ float8_dynamic_activation_float8_weight,
536
+ activation_dtype=dtype,
537
+ weight_dtype=dtype,
538
+ granularity=(granularity_cls(), granularity_cls()),
539
+ )
540
+
541
+ return types
542
+
543
+ def generate_fpx_quantization_types(bits: int):
544
+ types = {}
545
+
546
+ for ebits in range(1, bits):
547
+ mbits = bits - ebits - 1
548
+ types[f"fp{bits}_e{ebits}m{mbits}"] = partial(fpx_weight_only, ebits=ebits, mbits=mbits)
549
+
550
+ non_sign_bits = bits - 1
551
+ default_ebits = (non_sign_bits + 1) // 2
552
+ default_mbits = non_sign_bits - default_ebits
553
+ types[f"fp{bits}"] = partial(fpx_weight_only, ebits=default_ebits, mbits=default_mbits)
554
+
555
+ return types
556
+
557
+ INT4_QUANTIZATION_TYPES = {
558
+ # int4 weight + bfloat16/float16 activation
559
+ "int4wo": int4_weight_only,
560
+ "int4_weight_only": int4_weight_only,
561
+ # int4 weight + int8 activation
562
+ "int4dq": int8_dynamic_activation_int4_weight,
563
+ "int8_dynamic_activation_int4_weight": int8_dynamic_activation_int4_weight,
564
+ }
565
+
566
+ INT8_QUANTIZATION_TYPES = {
567
+ # int8 weight + bfloat16/float16 activation
568
+ "int8wo": int8_weight_only,
569
+ "int8_weight_only": int8_weight_only,
570
+ # int8 weight + int8 activation
571
+ "int8dq": int8_dynamic_activation_int8_weight,
572
+ "int8_dynamic_activation_int8_weight": int8_dynamic_activation_int8_weight,
573
+ }
574
+
575
+ # TODO(aryan): handle torch 2.2/2.3
576
+ FLOATX_QUANTIZATION_TYPES = {
577
+ # float8_e5m2 weight + bfloat16/float16 activation
578
+ "float8wo": partial(float8_weight_only, weight_dtype=torch.float8_e5m2),
579
+ "float8_weight_only": float8_weight_only,
580
+ "float8wo_e5m2": partial(float8_weight_only, weight_dtype=torch.float8_e5m2),
581
+ # float8_e4m3 weight + bfloat16/float16 activation
582
+ "float8wo_e4m3": partial(float8_weight_only, weight_dtype=torch.float8_e4m3fn),
583
+ # float8_e5m2 weight + float8 activation (dynamic)
584
+ "float8dq": float8_dynamic_activation_float8_weight,
585
+ "float8_dynamic_activation_float8_weight": float8_dynamic_activation_float8_weight,
586
+ # ===== Matrix multiplication is not supported in float8_e5m2 so the following errors out.
587
+ # However, changing activation_dtype=torch.float8_e4m3 might work here =====
588
+ # "float8dq_e5m2": partial(
589
+ # float8_dynamic_activation_float8_weight,
590
+ # activation_dtype=torch.float8_e5m2,
591
+ # weight_dtype=torch.float8_e5m2,
592
+ # ),
593
+ # **generate_float8dq_types(torch.float8_e5m2),
594
+ # ===== =====
595
+ # float8_e4m3 weight + float8 activation (dynamic)
596
+ "float8dq_e4m3": partial(
597
+ float8_dynamic_activation_float8_weight,
598
+ activation_dtype=torch.float8_e4m3fn,
599
+ weight_dtype=torch.float8_e4m3fn,
600
+ ),
601
+ **generate_float8dq_types(torch.float8_e4m3fn),
602
+ # float8 weight + float8 activation (static)
603
+ "float8_static_activation_float8_weight": float8_static_activation_float8_weight,
604
+ # For fpx, only x <= 8 is supported by default. Other dtypes can be explored by users directly
605
+ # fpx weight + bfloat16/float16 activation
606
+ **generate_fpx_quantization_types(3),
607
+ **generate_fpx_quantization_types(4),
608
+ **generate_fpx_quantization_types(5),
609
+ **generate_fpx_quantization_types(6),
610
+ **generate_fpx_quantization_types(7),
611
+ }
612
+
613
+ UINTX_QUANTIZATION_DTYPES = {
614
+ "uintx_weight_only": uintx_weight_only,
615
+ "uint1wo": partial(uintx_weight_only, dtype=torch.uint1),
616
+ "uint2wo": partial(uintx_weight_only, dtype=torch.uint2),
617
+ "uint3wo": partial(uintx_weight_only, dtype=torch.uint3),
618
+ "uint4wo": partial(uintx_weight_only, dtype=torch.uint4),
619
+ "uint5wo": partial(uintx_weight_only, dtype=torch.uint5),
620
+ "uint6wo": partial(uintx_weight_only, dtype=torch.uint6),
621
+ "uint7wo": partial(uintx_weight_only, dtype=torch.uint7),
622
+ # "uint8wo": partial(uintx_weight_only, dtype=torch.uint8), # uint8 quantization is not supported
623
+ }
624
+
625
+ QUANTIZATION_TYPES = {}
626
+ QUANTIZATION_TYPES.update(INT4_QUANTIZATION_TYPES)
627
+ QUANTIZATION_TYPES.update(INT8_QUANTIZATION_TYPES)
628
+ QUANTIZATION_TYPES.update(UINTX_QUANTIZATION_DTYPES)
629
+
630
+ if cls._is_cuda_capability_atleast_8_9():
631
+ QUANTIZATION_TYPES.update(FLOATX_QUANTIZATION_TYPES)
632
+
633
+ return QUANTIZATION_TYPES
634
+ else:
635
+ raise ValueError(
636
+ "TorchAoConfig requires torchao to be installed, please install with `pip install torchao`"
637
+ )
638
+
639
+ @staticmethod
640
+ def _is_cuda_capability_atleast_8_9() -> bool:
641
+ if not torch.cuda.is_available():
642
+ raise RuntimeError("TorchAO requires a CUDA compatible GPU and installation of PyTorch.")
643
+
644
+ major, minor = torch.cuda.get_device_capability()
645
+ if major == 8:
646
+ return minor >= 9
647
+ return major >= 9
648
+
649
+ def get_apply_tensor_subclass(self):
650
+ TORCHAO_QUANT_TYPE_METHODS = self._get_torchao_quant_type_to_method()
651
+ return TORCHAO_QUANT_TYPE_METHODS[self.quant_type](**self.quant_type_kwargs)
652
+
653
+ def __repr__(self):
654
+ r"""
655
+ Example of how this looks for `TorchAoConfig("uint_a16w4", group_size=32)`:
656
+
657
+ ```
658
+ TorchAoConfig {
659
+ "modules_to_not_convert": null,
660
+ "quant_method": "torchao",
661
+ "quant_type": "uint_a16w4",
662
+ "quant_type_kwargs": {
663
+ "group_size": 32
664
+ }
665
+ }
666
+ ```
667
+ """
668
+ config_dict = self.to_dict()
669
+ return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
@@ -0,0 +1,15 @@
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .torchao_quantizer import TorchAoHfQuantizer