diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -29,7 +29,7 @@ from transformers import (
29
29
  )
30
30
 
31
31
  from ....image_processor import PipelineImageInput, VaeImageProcessor
32
- from ....loaders import LoraLoaderMixin, TextualInversionLoaderMixin
32
+ from ....loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
33
33
  from ....models import AutoencoderKL, UNet2DConditionModel
34
34
  from ....models.attention_processor import Attention
35
35
  from ....models.lora import adjust_lora_scale_text_encoder
@@ -60,14 +60,14 @@ class Pix2PixInversionPipelineOutput(BaseOutput, TextualInversionLoaderMixin):
60
60
  Output class for Stable Diffusion pipelines.
61
61
 
62
62
  Args:
63
- latents (`torch.FloatTensor`)
63
+ latents (`torch.Tensor`)
64
64
  inverted latents tensor
65
65
  images (`List[PIL.Image.Image]` or `np.ndarray`)
66
66
  List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
67
67
  num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
68
68
  """
69
69
 
70
- latents: torch.FloatTensor
70
+ latents: torch.Tensor
71
71
  images: Union[List[PIL.Image.Image], np.ndarray]
72
72
 
73
73
 
@@ -377,8 +377,8 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
377
377
  num_images_per_prompt,
378
378
  do_classifier_free_guidance,
379
379
  negative_prompt=None,
380
- prompt_embeds: Optional[torch.FloatTensor] = None,
381
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
380
+ prompt_embeds: Optional[torch.Tensor] = None,
381
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
382
382
  lora_scale: Optional[float] = None,
383
383
  **kwargs,
384
384
  ):
@@ -410,8 +410,8 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
410
410
  num_images_per_prompt,
411
411
  do_classifier_free_guidance,
412
412
  negative_prompt=None,
413
- prompt_embeds: Optional[torch.FloatTensor] = None,
414
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
413
+ prompt_embeds: Optional[torch.Tensor] = None,
414
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
415
415
  lora_scale: Optional[float] = None,
416
416
  clip_skip: Optional[int] = None,
417
417
  ):
@@ -431,10 +431,10 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
431
431
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
432
432
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
433
433
  less than `1`).
434
- prompt_embeds (`torch.FloatTensor`, *optional*):
434
+ prompt_embeds (`torch.Tensor`, *optional*):
435
435
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
436
436
  provided, text embeddings will be generated from `prompt` input argument.
437
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
437
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
438
438
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
439
439
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
440
440
  argument.
@@ -446,7 +446,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
446
446
  """
447
447
  # set lora scale so that monkey patched LoRA
448
448
  # function of text encoder can correctly access it
449
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
449
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
450
450
  self._lora_scale = lora_scale
451
451
 
452
452
  # dynamically adjust the LoRA scale
@@ -578,9 +578,10 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
578
578
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
579
579
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
580
580
 
581
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
582
- # Retrieve the original scale by scaling back the LoRA layers
583
- unscale_lora_layers(self.text_encoder, lora_scale)
581
+ if self.text_encoder is not None:
582
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
583
+ # Retrieve the original scale by scaling back the LoRA layers
584
+ unscale_lora_layers(self.text_encoder, lora_scale)
584
585
 
585
586
  return prompt_embeds, negative_prompt_embeds
586
587
 
@@ -661,7 +662,12 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
661
662
 
662
663
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
663
664
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
664
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
665
+ shape = (
666
+ batch_size,
667
+ num_channels_latents,
668
+ int(height) // self.vae_scale_factor,
669
+ int(width) // self.vae_scale_factor,
670
+ )
665
671
  if isinstance(generator, list) and len(generator) != batch_size:
666
672
  raise ValueError(
667
673
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -702,7 +708,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
702
708
  return (embs_target.mean(0) - embs_source.mean(0)).unsqueeze(0)
703
709
 
704
710
  @torch.no_grad()
705
- def get_embeds(self, prompt: List[str], batch_size: int = 16) -> torch.FloatTensor:
711
+ def get_embeds(self, prompt: List[str], batch_size: int = 16) -> torch.Tensor:
706
712
  num_prompts = len(prompt)
707
713
  embeds = []
708
714
  for i in range(0, num_prompts, batch_size):
@@ -822,13 +828,13 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
822
828
  num_images_per_prompt: Optional[int] = 1,
823
829
  eta: float = 0.0,
824
830
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
825
- latents: Optional[torch.FloatTensor] = None,
826
- prompt_embeds: Optional[torch.FloatTensor] = None,
827
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
831
+ latents: Optional[torch.Tensor] = None,
832
+ prompt_embeds: Optional[torch.Tensor] = None,
833
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
828
834
  cross_attention_guidance_amount: float = 0.1,
829
835
  output_type: Optional[str] = "pil",
830
836
  return_dict: bool = True,
831
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
837
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
832
838
  callback_steps: Optional[int] = 1,
833
839
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
834
840
  clip_skip: Optional[int] = None,
@@ -871,14 +877,14 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
871
877
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
872
878
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
873
879
  to make generation deterministic.
874
- latents (`torch.FloatTensor`, *optional*):
880
+ latents (`torch.Tensor`, *optional*):
875
881
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
876
882
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
877
883
  tensor will ge generated by sampling using the supplied random `generator`.
878
- prompt_embeds (`torch.FloatTensor`, *optional*):
884
+ prompt_embeds (`torch.Tensor`, *optional*):
879
885
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
880
886
  provided, text embeddings will be generated from `prompt` input argument.
881
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
887
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
882
888
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
883
889
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
884
890
  argument.
@@ -892,7 +898,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
892
898
  plain tuple.
893
899
  callback (`Callable`, *optional*):
894
900
  A function that will be called every `callback_steps` steps during inference. The function will be
895
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
901
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
896
902
  callback_steps (`int`, *optional*, defaults to 1):
897
903
  The frequency at which the `callback` function will be called. If not specified, the callback will be
898
904
  called at every step.
@@ -1107,12 +1113,12 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
1107
1113
  num_inference_steps: int = 50,
1108
1114
  guidance_scale: float = 1,
1109
1115
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1110
- latents: Optional[torch.FloatTensor] = None,
1111
- prompt_embeds: Optional[torch.FloatTensor] = None,
1116
+ latents: Optional[torch.Tensor] = None,
1117
+ prompt_embeds: Optional[torch.Tensor] = None,
1112
1118
  cross_attention_guidance_amount: float = 0.1,
1113
1119
  output_type: Optional[str] = "pil",
1114
1120
  return_dict: bool = True,
1115
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
1121
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
1116
1122
  callback_steps: Optional[int] = 1,
1117
1123
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1118
1124
  lambda_auto_corr: float = 20.0,
@@ -1127,7 +1133,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
1127
1133
  prompt (`str` or `List[str]`, *optional*):
1128
1134
  The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1129
1135
  instead.
1130
- image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1136
+ image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
1131
1137
  `Image`, or tensor representing an image batch which will be used for conditioning. Can also accept
1132
1138
  image latents as `image`, if passing latents directly, it will not be encoded again.
1133
1139
  num_inference_steps (`int`, *optional*, defaults to 50):
@@ -1142,11 +1148,11 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
1142
1148
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1143
1149
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1144
1150
  to make generation deterministic.
1145
- latents (`torch.FloatTensor`, *optional*):
1151
+ latents (`torch.Tensor`, *optional*):
1146
1152
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1147
1153
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1148
1154
  tensor will ge generated by sampling using the supplied random `generator`.
1149
- prompt_embeds (`torch.FloatTensor`, *optional*):
1155
+ prompt_embeds (`torch.Tensor`, *optional*):
1150
1156
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1151
1157
  provided, text embeddings will be generated from `prompt` input argument.
1152
1158
  cross_attention_guidance_amount (`float`, defaults to 0.1):
@@ -1159,7 +1165,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
1159
1165
  plain tuple.
1160
1166
  callback (`Callable`, *optional*):
1161
1167
  A function that will be called every `callback_steps` steps during inference. The function will be
1162
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
1168
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
1163
1169
  callback_steps (`int`, *optional*, defaults to 1):
1164
1170
  The frequency at which the `callback` function will be called. If not specified, the callback will be
1165
1171
  called at every step.
@@ -363,6 +363,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
363
363
  """
364
364
 
365
365
  _supports_gradient_checkpointing = True
366
+ _no_split_modules = ["BasicTransformerBlock", "ResnetBlockFlat", "CrossAttnUpBlockFlat"]
366
367
 
367
368
  @register_to_config
368
369
  def __init__(
@@ -531,7 +532,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
531
532
  elif encoder_hid_dim_type == "text_image_proj":
532
533
  # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
533
534
  # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
534
- # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
535
+ # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
535
536
  self.encoder_hid_proj = TextImageProjection(
536
537
  text_embed_dim=encoder_hid_dim,
537
538
  image_embed_dim=cross_attention_dim,
@@ -545,7 +546,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
545
546
  )
546
547
  elif encoder_hid_dim_type is not None:
547
548
  raise ValueError(
548
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
549
+ f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj' or 'image_proj'."
549
550
  )
550
551
  else:
551
552
  self.encoder_hid_proj = None
@@ -591,7 +592,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
591
592
  elif addition_embed_type == "text_image":
592
593
  # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
593
594
  # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
594
- # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
595
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
595
596
  self.add_embedding = TextImageTimeEmbedding(
596
597
  text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
597
598
  )
@@ -816,7 +817,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
816
817
  positive_len = 768
817
818
  if isinstance(cross_attention_dim, int):
818
819
  positive_len = cross_attention_dim
819
- elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
820
+ elif isinstance(cross_attention_dim, (list, tuple)):
820
821
  positive_len = cross_attention_dim[0]
821
822
 
822
823
  feature_type = "text-only" if attention_type == "gated" else "text-image"
@@ -836,7 +837,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
836
837
 
837
838
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
838
839
  if hasattr(module, "get_processor"):
839
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
840
+ processors[f"{name}.processor"] = module.get_processor()
840
841
 
841
842
  for sub_name, child in module.named_children():
842
843
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -1000,8 +1001,8 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1000
1001
 
1001
1002
  def fuse_qkv_projections(self):
1002
1003
  """
1003
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
1004
- key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
1004
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
1005
+ are fused. For cross-attention modules, key and value projection matrices are fused.
1005
1006
 
1006
1007
  <Tip warning={true}>
1007
1008
 
@@ -1047,7 +1048,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1047
1048
 
1048
1049
  def forward(
1049
1050
  self,
1050
- sample: torch.FloatTensor,
1051
+ sample: torch.Tensor,
1051
1052
  timestep: Union[torch.Tensor, float, int],
1052
1053
  encoder_hidden_states: torch.Tensor,
1053
1054
  class_labels: Optional[torch.Tensor] = None,
@@ -1065,10 +1066,10 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1065
1066
  The [`UNetFlatConditionModel`] forward method.
1066
1067
 
1067
1068
  Args:
1068
- sample (`torch.FloatTensor`):
1069
+ sample (`torch.Tensor`):
1069
1070
  The noisy input tensor with the following shape `(batch, channel, height, width)`.
1070
- timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
1071
- encoder_hidden_states (`torch.FloatTensor`):
1071
+ timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
1072
+ encoder_hidden_states (`torch.Tensor`):
1072
1073
  The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
1073
1074
  class_labels (`torch.Tensor`, *optional*, defaults to `None`):
1074
1075
  Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
@@ -1112,8 +1113,8 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1112
1113
 
1113
1114
  Returns:
1114
1115
  [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
1115
- If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
1116
- a `tuple` is returned where the first element is the sample tensor.
1116
+ If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
1117
+ otherwise a `tuple` is returned where the first element is the sample tensor.
1117
1118
  """
1118
1119
  # By default samples have to be AT least a multiple of the overall upsampling factor.
1119
1120
  # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
@@ -1257,7 +1258,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1257
1258
  if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1258
1259
  encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1259
1260
  elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1260
- # Kadinsky 2.1 - style
1261
+ # Kandinsky 2.1 - style
1261
1262
  if "image_embeds" not in added_cond_kwargs:
1262
1263
  raise ValueError(
1263
1264
  f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
@@ -1589,12 +1590,12 @@ class DownBlockFlat(nn.Module):
1589
1590
  self.gradient_checkpointing = False
1590
1591
 
1591
1592
  def forward(
1592
- self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
1593
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
1593
+ self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None
1594
+ ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
1594
1595
  output_states = ()
1595
1596
 
1596
1597
  for resnet in self.resnets:
1597
- if self.training and self.gradient_checkpointing:
1598
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1598
1599
 
1599
1600
  def create_custom_forward(module):
1600
1601
  def custom_forward(*inputs):
@@ -1718,20 +1719,20 @@ class CrossAttnDownBlockFlat(nn.Module):
1718
1719
 
1719
1720
  def forward(
1720
1721
  self,
1721
- hidden_states: torch.FloatTensor,
1722
- temb: Optional[torch.FloatTensor] = None,
1723
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
1724
- attention_mask: Optional[torch.FloatTensor] = None,
1722
+ hidden_states: torch.Tensor,
1723
+ temb: Optional[torch.Tensor] = None,
1724
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1725
+ attention_mask: Optional[torch.Tensor] = None,
1725
1726
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1726
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
1727
- additional_residuals: Optional[torch.FloatTensor] = None,
1728
- ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
1727
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1728
+ additional_residuals: Optional[torch.Tensor] = None,
1729
+ ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
1729
1730
  output_states = ()
1730
1731
 
1731
1732
  blocks = list(zip(self.resnets, self.attentions))
1732
1733
 
1733
1734
  for i, (resnet, attn) in enumerate(blocks):
1734
- if self.training and self.gradient_checkpointing:
1735
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1735
1736
 
1736
1737
  def create_custom_forward(module, return_dict=None):
1737
1738
  def custom_forward(*inputs):
@@ -1836,13 +1837,13 @@ class UpBlockFlat(nn.Module):
1836
1837
 
1837
1838
  def forward(
1838
1839
  self,
1839
- hidden_states: torch.FloatTensor,
1840
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
1841
- temb: Optional[torch.FloatTensor] = None,
1840
+ hidden_states: torch.Tensor,
1841
+ res_hidden_states_tuple: Tuple[torch.Tensor, ...],
1842
+ temb: Optional[torch.Tensor] = None,
1842
1843
  upsample_size: Optional[int] = None,
1843
1844
  *args,
1844
1845
  **kwargs,
1845
- ) -> torch.FloatTensor:
1846
+ ) -> torch.Tensor:
1846
1847
  if len(args) > 0 or kwargs.get("scale", None) is not None:
1847
1848
  deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
1848
1849
  deprecate("scale", "1.0.0", deprecation_message)
@@ -1873,7 +1874,7 @@ class UpBlockFlat(nn.Module):
1873
1874
 
1874
1875
  hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
1875
1876
 
1876
- if self.training and self.gradient_checkpointing:
1877
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1877
1878
 
1878
1879
  def create_custom_forward(module):
1879
1880
  def custom_forward(*inputs):
@@ -1993,18 +1994,18 @@ class CrossAttnUpBlockFlat(nn.Module):
1993
1994
 
1994
1995
  def forward(
1995
1996
  self,
1996
- hidden_states: torch.FloatTensor,
1997
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
1998
- temb: Optional[torch.FloatTensor] = None,
1999
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
1997
+ hidden_states: torch.Tensor,
1998
+ res_hidden_states_tuple: Tuple[torch.Tensor, ...],
1999
+ temb: Optional[torch.Tensor] = None,
2000
+ encoder_hidden_states: Optional[torch.Tensor] = None,
2000
2001
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
2001
2002
  upsample_size: Optional[int] = None,
2002
- attention_mask: Optional[torch.FloatTensor] = None,
2003
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
2004
- ) -> torch.FloatTensor:
2003
+ attention_mask: Optional[torch.Tensor] = None,
2004
+ encoder_attention_mask: Optional[torch.Tensor] = None,
2005
+ ) -> torch.Tensor:
2005
2006
  if cross_attention_kwargs is not None:
2006
2007
  if cross_attention_kwargs.get("scale", None) is not None:
2007
- logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
2008
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
2008
2009
 
2009
2010
  is_freeu_enabled = (
2010
2011
  getattr(self, "s1", None)
@@ -2032,7 +2033,7 @@ class CrossAttnUpBlockFlat(nn.Module):
2032
2033
 
2033
2034
  hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
2034
2035
 
2035
- if self.training and self.gradient_checkpointing:
2036
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
2036
2037
 
2037
2038
  def create_custom_forward(module, return_dict=None):
2038
2039
  def custom_forward(*inputs):
@@ -2103,8 +2104,8 @@ class UNetMidBlockFlat(nn.Module):
2103
2104
  output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
2104
2105
 
2105
2106
  Returns:
2106
- `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
2107
- in_channels, height, width)`.
2107
+ `torch.Tensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels,
2108
+ height, width)`.
2108
2109
 
2109
2110
  """
2110
2111
 
@@ -2222,12 +2223,35 @@ class UNetMidBlockFlat(nn.Module):
2222
2223
  self.attentions = nn.ModuleList(attentions)
2223
2224
  self.resnets = nn.ModuleList(resnets)
2224
2225
 
2225
- def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
2226
+ self.gradient_checkpointing = False
2227
+
2228
+ def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
2226
2229
  hidden_states = self.resnets[0](hidden_states, temb)
2227
2230
  for attn, resnet in zip(self.attentions, self.resnets[1:]):
2228
- if attn is not None:
2229
- hidden_states = attn(hidden_states, temb=temb)
2230
- hidden_states = resnet(hidden_states, temb)
2231
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
2232
+
2233
+ def create_custom_forward(module, return_dict=None):
2234
+ def custom_forward(*inputs):
2235
+ if return_dict is not None:
2236
+ return module(*inputs, return_dict=return_dict)
2237
+ else:
2238
+ return module(*inputs)
2239
+
2240
+ return custom_forward
2241
+
2242
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
2243
+ if attn is not None:
2244
+ hidden_states = attn(hidden_states, temb=temb)
2245
+ hidden_states = torch.utils.checkpoint.checkpoint(
2246
+ create_custom_forward(resnet),
2247
+ hidden_states,
2248
+ temb,
2249
+ **ckpt_kwargs,
2250
+ )
2251
+ else:
2252
+ if attn is not None:
2253
+ hidden_states = attn(hidden_states, temb=temb)
2254
+ hidden_states = resnet(hidden_states, temb)
2231
2255
 
2232
2256
  return hidden_states
2233
2257
 
@@ -2238,6 +2262,7 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2238
2262
  self,
2239
2263
  in_channels: int,
2240
2264
  temb_channels: int,
2265
+ out_channels: Optional[int] = None,
2241
2266
  dropout: float = 0.0,
2242
2267
  num_layers: int = 1,
2243
2268
  transformer_layers_per_block: Union[int, Tuple[int]] = 1,
@@ -2245,6 +2270,7 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2245
2270
  resnet_time_scale_shift: str = "default",
2246
2271
  resnet_act_fn: str = "swish",
2247
2272
  resnet_groups: int = 32,
2273
+ resnet_groups_out: Optional[int] = None,
2248
2274
  resnet_pre_norm: bool = True,
2249
2275
  num_attention_heads: int = 1,
2250
2276
  output_scale_factor: float = 1.0,
@@ -2256,6 +2282,10 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2256
2282
  ):
2257
2283
  super().__init__()
2258
2284
 
2285
+ out_channels = out_channels or in_channels
2286
+ self.in_channels = in_channels
2287
+ self.out_channels = out_channels
2288
+
2259
2289
  self.has_cross_attention = True
2260
2290
  self.num_attention_heads = num_attention_heads
2261
2291
  resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
@@ -2264,14 +2294,17 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2264
2294
  if isinstance(transformer_layers_per_block, int):
2265
2295
  transformer_layers_per_block = [transformer_layers_per_block] * num_layers
2266
2296
 
2297
+ resnet_groups_out = resnet_groups_out or resnet_groups
2298
+
2267
2299
  # there is always at least one resnet
2268
2300
  resnets = [
2269
2301
  ResnetBlockFlat(
2270
2302
  in_channels=in_channels,
2271
- out_channels=in_channels,
2303
+ out_channels=out_channels,
2272
2304
  temb_channels=temb_channels,
2273
2305
  eps=resnet_eps,
2274
2306
  groups=resnet_groups,
2307
+ groups_out=resnet_groups_out,
2275
2308
  dropout=dropout,
2276
2309
  time_embedding_norm=resnet_time_scale_shift,
2277
2310
  non_linearity=resnet_act_fn,
@@ -2286,11 +2319,11 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2286
2319
  attentions.append(
2287
2320
  Transformer2DModel(
2288
2321
  num_attention_heads,
2289
- in_channels // num_attention_heads,
2290
- in_channels=in_channels,
2322
+ out_channels // num_attention_heads,
2323
+ in_channels=out_channels,
2291
2324
  num_layers=transformer_layers_per_block[i],
2292
2325
  cross_attention_dim=cross_attention_dim,
2293
- norm_num_groups=resnet_groups,
2326
+ norm_num_groups=resnet_groups_out,
2294
2327
  use_linear_projection=use_linear_projection,
2295
2328
  upcast_attention=upcast_attention,
2296
2329
  attention_type=attention_type,
@@ -2300,8 +2333,8 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2300
2333
  attentions.append(
2301
2334
  DualTransformer2DModel(
2302
2335
  num_attention_heads,
2303
- in_channels // num_attention_heads,
2304
- in_channels=in_channels,
2336
+ out_channels // num_attention_heads,
2337
+ in_channels=out_channels,
2305
2338
  num_layers=1,
2306
2339
  cross_attention_dim=cross_attention_dim,
2307
2340
  norm_num_groups=resnet_groups,
@@ -2309,11 +2342,11 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2309
2342
  )
2310
2343
  resnets.append(
2311
2344
  ResnetBlockFlat(
2312
- in_channels=in_channels,
2313
- out_channels=in_channels,
2345
+ in_channels=out_channels,
2346
+ out_channels=out_channels,
2314
2347
  temb_channels=temb_channels,
2315
2348
  eps=resnet_eps,
2316
- groups=resnet_groups,
2349
+ groups=resnet_groups_out,
2317
2350
  dropout=dropout,
2318
2351
  time_embedding_norm=resnet_time_scale_shift,
2319
2352
  non_linearity=resnet_act_fn,
@@ -2329,20 +2362,20 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
2329
2362
 
2330
2363
  def forward(
2331
2364
  self,
2332
- hidden_states: torch.FloatTensor,
2333
- temb: Optional[torch.FloatTensor] = None,
2334
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
2335
- attention_mask: Optional[torch.FloatTensor] = None,
2365
+ hidden_states: torch.Tensor,
2366
+ temb: Optional[torch.Tensor] = None,
2367
+ encoder_hidden_states: Optional[torch.Tensor] = None,
2368
+ attention_mask: Optional[torch.Tensor] = None,
2336
2369
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
2337
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
2338
- ) -> torch.FloatTensor:
2370
+ encoder_attention_mask: Optional[torch.Tensor] = None,
2371
+ ) -> torch.Tensor:
2339
2372
  if cross_attention_kwargs is not None:
2340
2373
  if cross_attention_kwargs.get("scale", None) is not None:
2341
- logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
2374
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
2342
2375
 
2343
2376
  hidden_states = self.resnets[0](hidden_states, temb)
2344
2377
  for attn, resnet in zip(self.attentions, self.resnets[1:]):
2345
- if self.training and self.gradient_checkpointing:
2378
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
2346
2379
 
2347
2380
  def create_custom_forward(module, return_dict=None):
2348
2381
  def custom_forward(*inputs):
@@ -2470,16 +2503,16 @@ class UNetMidBlockFlatSimpleCrossAttn(nn.Module):
2470
2503
 
2471
2504
  def forward(
2472
2505
  self,
2473
- hidden_states: torch.FloatTensor,
2474
- temb: Optional[torch.FloatTensor] = None,
2475
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
2476
- attention_mask: Optional[torch.FloatTensor] = None,
2506
+ hidden_states: torch.Tensor,
2507
+ temb: Optional[torch.Tensor] = None,
2508
+ encoder_hidden_states: Optional[torch.Tensor] = None,
2509
+ attention_mask: Optional[torch.Tensor] = None,
2477
2510
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
2478
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
2479
- ) -> torch.FloatTensor:
2511
+ encoder_attention_mask: Optional[torch.Tensor] = None,
2512
+ ) -> torch.Tensor:
2480
2513
  cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2481
2514
  if cross_attention_kwargs.get("scale", None) is not None:
2482
- logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
2515
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
2483
2516
 
2484
2517
  if attention_mask is None:
2485
2518
  # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.