diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,50 @@
1
+ from typing import TYPE_CHECKING
2
+
3
+ from ...utils import (
4
+ DIFFUSERS_SLOW_IMPORT,
5
+ OptionalDependencyNotAvailable,
6
+ _LazyModule,
7
+ get_objects_from_module,
8
+ is_torch_available,
9
+ is_transformers_available,
10
+ )
11
+
12
+
13
+ _dummy_objects = {}
14
+ _import_structure = {}
15
+
16
+ try:
17
+ if not (is_transformers_available() and is_torch_available()):
18
+ raise OptionalDependencyNotAvailable()
19
+ except OptionalDependencyNotAvailable:
20
+ from ...utils import dummy_torch_and_transformers_objects # noqa F403
21
+
22
+ _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
23
+ else:
24
+ _import_structure["marigold_image_processing"] = ["MarigoldImageProcessor"]
25
+ _import_structure["pipeline_marigold_depth"] = ["MarigoldDepthOutput", "MarigoldDepthPipeline"]
26
+ _import_structure["pipeline_marigold_normals"] = ["MarigoldNormalsOutput", "MarigoldNormalsPipeline"]
27
+
28
+ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
29
+ try:
30
+ if not (is_transformers_available() and is_torch_available()):
31
+ raise OptionalDependencyNotAvailable()
32
+
33
+ except OptionalDependencyNotAvailable:
34
+ from ...utils.dummy_torch_and_transformers_objects import *
35
+ else:
36
+ from .marigold_image_processing import MarigoldImageProcessor
37
+ from .pipeline_marigold_depth import MarigoldDepthOutput, MarigoldDepthPipeline
38
+ from .pipeline_marigold_normals import MarigoldNormalsOutput, MarigoldNormalsPipeline
39
+
40
+ else:
41
+ import sys
42
+
43
+ sys.modules[__name__] = _LazyModule(
44
+ __name__,
45
+ globals()["__file__"],
46
+ _import_structure,
47
+ module_spec=__spec__,
48
+ )
49
+ for name, value in _dummy_objects.items():
50
+ setattr(sys.modules[__name__], name, value)
@@ -0,0 +1,576 @@
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import numpy as np
4
+ import PIL
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from PIL import Image
8
+
9
+ from ... import ConfigMixin
10
+ from ...configuration_utils import register_to_config
11
+ from ...image_processor import PipelineImageInput
12
+ from ...utils import CONFIG_NAME, logging
13
+ from ...utils.import_utils import is_matplotlib_available
14
+
15
+
16
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
17
+
18
+
19
+ class MarigoldImageProcessor(ConfigMixin):
20
+ config_name = CONFIG_NAME
21
+
22
+ @register_to_config
23
+ def __init__(
24
+ self,
25
+ vae_scale_factor: int = 8,
26
+ do_normalize: bool = True,
27
+ do_range_check: bool = True,
28
+ ):
29
+ super().__init__()
30
+
31
+ @staticmethod
32
+ def expand_tensor_or_array(images: Union[torch.Tensor, np.ndarray]) -> Union[torch.Tensor, np.ndarray]:
33
+ """
34
+ Expand a tensor or array to a specified number of images.
35
+ """
36
+ if isinstance(images, np.ndarray):
37
+ if images.ndim == 2: # [H,W] -> [1,H,W,1]
38
+ images = images[None, ..., None]
39
+ if images.ndim == 3: # [H,W,C] -> [1,H,W,C]
40
+ images = images[None]
41
+ elif isinstance(images, torch.Tensor):
42
+ if images.ndim == 2: # [H,W] -> [1,1,H,W]
43
+ images = images[None, None]
44
+ elif images.ndim == 3: # [1,H,W] -> [1,1,H,W]
45
+ images = images[None]
46
+ else:
47
+ raise ValueError(f"Unexpected input type: {type(images)}")
48
+ return images
49
+
50
+ @staticmethod
51
+ def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
52
+ """
53
+ Convert a PyTorch tensor to a NumPy image.
54
+ """
55
+ images = images.cpu().permute(0, 2, 3, 1).float().numpy()
56
+ return images
57
+
58
+ @staticmethod
59
+ def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
60
+ """
61
+ Convert a NumPy image to a PyTorch tensor.
62
+ """
63
+ if np.issubdtype(images.dtype, np.integer) and not np.issubdtype(images.dtype, np.unsignedinteger):
64
+ raise ValueError(f"Input image dtype={images.dtype} cannot be a signed integer.")
65
+ if np.issubdtype(images.dtype, np.complexfloating):
66
+ raise ValueError(f"Input image dtype={images.dtype} cannot be complex.")
67
+ if np.issubdtype(images.dtype, bool):
68
+ raise ValueError(f"Input image dtype={images.dtype} cannot be boolean.")
69
+
70
+ images = torch.from_numpy(images.transpose(0, 3, 1, 2))
71
+ return images
72
+
73
+ @staticmethod
74
+ def resize_antialias(
75
+ image: torch.Tensor, size: Tuple[int, int], mode: str, is_aa: Optional[bool] = None
76
+ ) -> torch.Tensor:
77
+ if not torch.is_tensor(image):
78
+ raise ValueError(f"Invalid input type={type(image)}.")
79
+ if not torch.is_floating_point(image):
80
+ raise ValueError(f"Invalid input dtype={image.dtype}.")
81
+ if image.dim() != 4:
82
+ raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
83
+
84
+ antialias = is_aa and mode in ("bilinear", "bicubic")
85
+ image = F.interpolate(image, size, mode=mode, antialias=antialias)
86
+
87
+ return image
88
+
89
+ @staticmethod
90
+ def resize_to_max_edge(image: torch.Tensor, max_edge_sz: int, mode: str) -> torch.Tensor:
91
+ if not torch.is_tensor(image):
92
+ raise ValueError(f"Invalid input type={type(image)}.")
93
+ if not torch.is_floating_point(image):
94
+ raise ValueError(f"Invalid input dtype={image.dtype}.")
95
+ if image.dim() != 4:
96
+ raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
97
+
98
+ h, w = image.shape[-2:]
99
+ max_orig = max(h, w)
100
+ new_h = h * max_edge_sz // max_orig
101
+ new_w = w * max_edge_sz // max_orig
102
+
103
+ if new_h == 0 or new_w == 0:
104
+ raise ValueError(f"Extreme aspect ratio of the input image: [{w} x {h}]")
105
+
106
+ image = MarigoldImageProcessor.resize_antialias(image, (new_h, new_w), mode, is_aa=True)
107
+
108
+ return image
109
+
110
+ @staticmethod
111
+ def pad_image(image: torch.Tensor, align: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
112
+ if not torch.is_tensor(image):
113
+ raise ValueError(f"Invalid input type={type(image)}.")
114
+ if not torch.is_floating_point(image):
115
+ raise ValueError(f"Invalid input dtype={image.dtype}.")
116
+ if image.dim() != 4:
117
+ raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
118
+
119
+ h, w = image.shape[-2:]
120
+ ph, pw = -h % align, -w % align
121
+
122
+ image = F.pad(image, (0, pw, 0, ph), mode="replicate")
123
+
124
+ return image, (ph, pw)
125
+
126
+ @staticmethod
127
+ def unpad_image(image: torch.Tensor, padding: Tuple[int, int]) -> torch.Tensor:
128
+ if not torch.is_tensor(image):
129
+ raise ValueError(f"Invalid input type={type(image)}.")
130
+ if not torch.is_floating_point(image):
131
+ raise ValueError(f"Invalid input dtype={image.dtype}.")
132
+ if image.dim() != 4:
133
+ raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
134
+
135
+ ph, pw = padding
136
+ uh = None if ph == 0 else -ph
137
+ uw = None if pw == 0 else -pw
138
+
139
+ image = image[:, :, :uh, :uw]
140
+
141
+ return image
142
+
143
+ @staticmethod
144
+ def load_image_canonical(
145
+ image: Union[torch.Tensor, np.ndarray, Image.Image],
146
+ device: torch.device = torch.device("cpu"),
147
+ dtype: torch.dtype = torch.float32,
148
+ ) -> Tuple[torch.Tensor, int]:
149
+ if isinstance(image, Image.Image):
150
+ image = np.array(image)
151
+
152
+ image_dtype_max = None
153
+ if isinstance(image, (np.ndarray, torch.Tensor)):
154
+ image = MarigoldImageProcessor.expand_tensor_or_array(image)
155
+ if image.ndim != 4:
156
+ raise ValueError("Input image is not 2-, 3-, or 4-dimensional.")
157
+ if isinstance(image, np.ndarray):
158
+ if np.issubdtype(image.dtype, np.integer) and not np.issubdtype(image.dtype, np.unsignedinteger):
159
+ raise ValueError(f"Input image dtype={image.dtype} cannot be a signed integer.")
160
+ if np.issubdtype(image.dtype, np.complexfloating):
161
+ raise ValueError(f"Input image dtype={image.dtype} cannot be complex.")
162
+ if np.issubdtype(image.dtype, bool):
163
+ raise ValueError(f"Input image dtype={image.dtype} cannot be boolean.")
164
+ if np.issubdtype(image.dtype, np.unsignedinteger):
165
+ image_dtype_max = np.iinfo(image.dtype).max
166
+ image = image.astype(np.float32) # because torch does not have unsigned dtypes beyond torch.uint8
167
+ image = MarigoldImageProcessor.numpy_to_pt(image)
168
+
169
+ if torch.is_tensor(image) and not torch.is_floating_point(image) and image_dtype_max is None:
170
+ if image.dtype != torch.uint8:
171
+ raise ValueError(f"Image dtype={image.dtype} is not supported.")
172
+ image_dtype_max = 255
173
+
174
+ if not torch.is_tensor(image):
175
+ raise ValueError(f"Input type unsupported: {type(image)}.")
176
+
177
+ if image.shape[1] == 1:
178
+ image = image.repeat(1, 3, 1, 1) # [N,1,H,W] -> [N,3,H,W]
179
+ if image.shape[1] != 3:
180
+ raise ValueError(f"Input image is not 1- or 3-channel: {image.shape}.")
181
+
182
+ image = image.to(device=device, dtype=dtype)
183
+
184
+ if image_dtype_max is not None:
185
+ image = image / image_dtype_max
186
+
187
+ return image
188
+
189
+ @staticmethod
190
+ def check_image_values_range(image: torch.Tensor) -> None:
191
+ if not torch.is_tensor(image):
192
+ raise ValueError(f"Invalid input type={type(image)}.")
193
+ if not torch.is_floating_point(image):
194
+ raise ValueError(f"Invalid input dtype={image.dtype}.")
195
+ if image.min().item() < 0.0 or image.max().item() > 1.0:
196
+ raise ValueError("Input image data is partially outside of the [0,1] range.")
197
+
198
+ def preprocess(
199
+ self,
200
+ image: PipelineImageInput,
201
+ processing_resolution: Optional[int] = None,
202
+ resample_method_input: str = "bilinear",
203
+ device: torch.device = torch.device("cpu"),
204
+ dtype: torch.dtype = torch.float32,
205
+ ):
206
+ if isinstance(image, list):
207
+ images = None
208
+ for i, img in enumerate(image):
209
+ img = self.load_image_canonical(img, device, dtype) # [N,3,H,W]
210
+ if images is None:
211
+ images = img
212
+ else:
213
+ if images.shape[2:] != img.shape[2:]:
214
+ raise ValueError(
215
+ f"Input image[{i}] has incompatible dimensions {img.shape[2:]} with the previous images "
216
+ f"{images.shape[2:]}"
217
+ )
218
+ images = torch.cat((images, img), dim=0)
219
+ image = images
220
+ del images
221
+ else:
222
+ image = self.load_image_canonical(image, device, dtype) # [N,3,H,W]
223
+
224
+ original_resolution = image.shape[2:]
225
+
226
+ if self.config.do_range_check:
227
+ self.check_image_values_range(image)
228
+
229
+ if self.config.do_normalize:
230
+ image = image * 2.0 - 1.0
231
+
232
+ if processing_resolution is not None and processing_resolution > 0:
233
+ image = self.resize_to_max_edge(image, processing_resolution, resample_method_input) # [N,3,PH,PW]
234
+
235
+ image, padding = self.pad_image(image, self.config.vae_scale_factor) # [N,3,PPH,PPW]
236
+
237
+ return image, padding, original_resolution
238
+
239
+ @staticmethod
240
+ def colormap(
241
+ image: Union[np.ndarray, torch.Tensor],
242
+ cmap: str = "Spectral",
243
+ bytes: bool = False,
244
+ _force_method: Optional[str] = None,
245
+ ) -> Union[np.ndarray, torch.Tensor]:
246
+ """
247
+ Converts a monochrome image into an RGB image by applying the specified colormap. This function mimics the
248
+ behavior of matplotlib.colormaps, but allows the user to use the most discriminative color maps ("Spectral",
249
+ "binary") without having to install or import matplotlib. For all other cases, the function will attempt to use
250
+ the native implementation.
251
+
252
+ Args:
253
+ image: 2D tensor of values between 0 and 1, either as np.ndarray or torch.Tensor.
254
+ cmap: Colormap name.
255
+ bytes: Whether to return the output as uint8 or floating point image.
256
+ _force_method:
257
+ Can be used to specify whether to use the native implementation (`"matplotlib"`), the efficient custom
258
+ implementation of the select color maps (`"custom"`), or rely on autodetection (`None`, default).
259
+
260
+ Returns:
261
+ An RGB-colorized tensor corresponding to the input image.
262
+ """
263
+ if not (torch.is_tensor(image) or isinstance(image, np.ndarray)):
264
+ raise ValueError("Argument must be a numpy array or torch tensor.")
265
+ if _force_method not in (None, "matplotlib", "custom"):
266
+ raise ValueError("_force_method must be either `None`, `'matplotlib'` or `'custom'`.")
267
+
268
+ supported_cmaps = {
269
+ "binary": [
270
+ (1.0, 1.0, 1.0),
271
+ (0.0, 0.0, 0.0),
272
+ ],
273
+ "Spectral": [ # Taken from matplotlib/_cm.py
274
+ (0.61960784313725492, 0.003921568627450980, 0.25882352941176473), # 0.0 -> [0]
275
+ (0.83529411764705885, 0.24313725490196078, 0.30980392156862746),
276
+ (0.95686274509803926, 0.42745098039215684, 0.2627450980392157),
277
+ (0.99215686274509807, 0.68235294117647061, 0.38039215686274508),
278
+ (0.99607843137254903, 0.8784313725490196, 0.54509803921568623),
279
+ (1.0, 1.0, 0.74901960784313726),
280
+ (0.90196078431372551, 0.96078431372549022, 0.59607843137254901),
281
+ (0.6705882352941176, 0.8666666666666667, 0.64313725490196083),
282
+ (0.4, 0.76078431372549016, 0.6470588235294118),
283
+ (0.19607843137254902, 0.53333333333333333, 0.74117647058823533),
284
+ (0.36862745098039218, 0.30980392156862746, 0.63529411764705879), # 1.0 -> [K-1]
285
+ ],
286
+ }
287
+
288
+ def method_matplotlib(image, cmap, bytes=False):
289
+ if is_matplotlib_available():
290
+ import matplotlib
291
+ else:
292
+ return None
293
+
294
+ arg_is_pt, device = torch.is_tensor(image), None
295
+ if arg_is_pt:
296
+ image, device = image.cpu().numpy(), image.device
297
+
298
+ if cmap not in matplotlib.colormaps:
299
+ raise ValueError(
300
+ f"Unexpected color map {cmap}; available options are: {', '.join(list(matplotlib.colormaps.keys()))}"
301
+ )
302
+
303
+ cmap = matplotlib.colormaps[cmap]
304
+ out = cmap(image, bytes=bytes) # [?,4]
305
+ out = out[..., :3] # [?,3]
306
+
307
+ if arg_is_pt:
308
+ out = torch.tensor(out, device=device)
309
+
310
+ return out
311
+
312
+ def method_custom(image, cmap, bytes=False):
313
+ arg_is_np = isinstance(image, np.ndarray)
314
+ if arg_is_np:
315
+ image = torch.tensor(image)
316
+ if image.dtype == torch.uint8:
317
+ image = image.float() / 255
318
+ else:
319
+ image = image.float()
320
+
321
+ is_cmap_reversed = cmap.endswith("_r")
322
+ if is_cmap_reversed:
323
+ cmap = cmap[:-2]
324
+
325
+ if cmap not in supported_cmaps:
326
+ raise ValueError(
327
+ f"Only {list(supported_cmaps.keys())} color maps are available without installing matplotlib."
328
+ )
329
+
330
+ cmap = supported_cmaps[cmap]
331
+ if is_cmap_reversed:
332
+ cmap = cmap[::-1]
333
+ cmap = torch.tensor(cmap, dtype=torch.float, device=image.device) # [K,3]
334
+ K = cmap.shape[0]
335
+
336
+ pos = image.clamp(min=0, max=1) * (K - 1)
337
+ left = pos.long()
338
+ right = (left + 1).clamp(max=K - 1)
339
+
340
+ d = (pos - left.float()).unsqueeze(-1)
341
+ left_colors = cmap[left]
342
+ right_colors = cmap[right]
343
+
344
+ out = (1 - d) * left_colors + d * right_colors
345
+
346
+ if bytes:
347
+ out = (out * 255).to(torch.uint8)
348
+
349
+ if arg_is_np:
350
+ out = out.numpy()
351
+
352
+ return out
353
+
354
+ if _force_method is None and torch.is_tensor(image) and cmap == "Spectral":
355
+ return method_custom(image, cmap, bytes)
356
+
357
+ out = None
358
+ if _force_method != "custom":
359
+ out = method_matplotlib(image, cmap, bytes)
360
+
361
+ if _force_method == "matplotlib" and out is None:
362
+ raise ImportError("Make sure to install matplotlib if you want to use a color map other than 'Spectral'.")
363
+
364
+ if out is None:
365
+ out = method_custom(image, cmap, bytes)
366
+
367
+ return out
368
+
369
+ @staticmethod
370
+ def visualize_depth(
371
+ depth: Union[
372
+ PIL.Image.Image,
373
+ np.ndarray,
374
+ torch.Tensor,
375
+ List[PIL.Image.Image],
376
+ List[np.ndarray],
377
+ List[torch.Tensor],
378
+ ],
379
+ val_min: float = 0.0,
380
+ val_max: float = 1.0,
381
+ color_map: str = "Spectral",
382
+ ) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
383
+ """
384
+ Visualizes depth maps, such as predictions of the `MarigoldDepthPipeline`.
385
+
386
+ Args:
387
+ depth (`Union[PIL.Image.Image, np.ndarray, torch.Tensor, List[PIL.Image.Image], List[np.ndarray],
388
+ List[torch.Tensor]]`): Depth maps.
389
+ val_min (`float`, *optional*, defaults to `0.0`): Minimum value of the visualized depth range.
390
+ val_max (`float`, *optional*, defaults to `1.0`): Maximum value of the visualized depth range.
391
+ color_map (`str`, *optional*, defaults to `"Spectral"`): Color map used to convert a single-channel
392
+ depth prediction into colored representation.
393
+
394
+ Returns: `PIL.Image.Image` or `List[PIL.Image.Image]` with depth maps visualization.
395
+ """
396
+ if val_max <= val_min:
397
+ raise ValueError(f"Invalid values range: [{val_min}, {val_max}].")
398
+
399
+ def visualize_depth_one(img, idx=None):
400
+ prefix = "Depth" + (f"[{idx}]" if idx else "")
401
+ if isinstance(img, PIL.Image.Image):
402
+ if img.mode != "I;16":
403
+ raise ValueError(f"{prefix}: invalid PIL mode={img.mode}.")
404
+ img = np.array(img).astype(np.float32) / (2**16 - 1)
405
+ if isinstance(img, np.ndarray) or torch.is_tensor(img):
406
+ if img.ndim != 2:
407
+ raise ValueError(f"{prefix}: unexpected shape={img.shape}.")
408
+ if isinstance(img, np.ndarray):
409
+ img = torch.from_numpy(img)
410
+ if not torch.is_floating_point(img):
411
+ raise ValueError(f"{prefix}: unexected dtype={img.dtype}.")
412
+ else:
413
+ raise ValueError(f"{prefix}: unexpected type={type(img)}.")
414
+ if val_min != 0.0 or val_max != 1.0:
415
+ img = (img - val_min) / (val_max - val_min)
416
+ img = MarigoldImageProcessor.colormap(img, cmap=color_map, bytes=True) # [H,W,3]
417
+ img = PIL.Image.fromarray(img.cpu().numpy())
418
+ return img
419
+
420
+ if depth is None or isinstance(depth, list) and any(o is None for o in depth):
421
+ raise ValueError("Input depth is `None`")
422
+ if isinstance(depth, (np.ndarray, torch.Tensor)):
423
+ depth = MarigoldImageProcessor.expand_tensor_or_array(depth)
424
+ if isinstance(depth, np.ndarray):
425
+ depth = MarigoldImageProcessor.numpy_to_pt(depth) # [N,H,W,1] -> [N,1,H,W]
426
+ if not (depth.ndim == 4 and depth.shape[1] == 1): # [N,1,H,W]
427
+ raise ValueError(f"Unexpected input shape={depth.shape}, expecting [N,1,H,W].")
428
+ return [visualize_depth_one(img[0], idx) for idx, img in enumerate(depth)]
429
+ elif isinstance(depth, list):
430
+ return [visualize_depth_one(img, idx) for idx, img in enumerate(depth)]
431
+ else:
432
+ raise ValueError(f"Unexpected input type: {type(depth)}")
433
+
434
+ @staticmethod
435
+ def export_depth_to_16bit_png(
436
+ depth: Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]],
437
+ val_min: float = 0.0,
438
+ val_max: float = 1.0,
439
+ ) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
440
+ def export_depth_to_16bit_png_one(img, idx=None):
441
+ prefix = "Depth" + (f"[{idx}]" if idx else "")
442
+ if not isinstance(img, np.ndarray) and not torch.is_tensor(img):
443
+ raise ValueError(f"{prefix}: unexpected type={type(img)}.")
444
+ if img.ndim != 2:
445
+ raise ValueError(f"{prefix}: unexpected shape={img.shape}.")
446
+ if torch.is_tensor(img):
447
+ img = img.cpu().numpy()
448
+ if not np.issubdtype(img.dtype, np.floating):
449
+ raise ValueError(f"{prefix}: unexected dtype={img.dtype}.")
450
+ if val_min != 0.0 or val_max != 1.0:
451
+ img = (img - val_min) / (val_max - val_min)
452
+ img = (img * (2**16 - 1)).astype(np.uint16)
453
+ img = PIL.Image.fromarray(img, mode="I;16")
454
+ return img
455
+
456
+ if depth is None or isinstance(depth, list) and any(o is None for o in depth):
457
+ raise ValueError("Input depth is `None`")
458
+ if isinstance(depth, (np.ndarray, torch.Tensor)):
459
+ depth = MarigoldImageProcessor.expand_tensor_or_array(depth)
460
+ if isinstance(depth, np.ndarray):
461
+ depth = MarigoldImageProcessor.numpy_to_pt(depth) # [N,H,W,1] -> [N,1,H,W]
462
+ if not (depth.ndim == 4 and depth.shape[1] == 1):
463
+ raise ValueError(f"Unexpected input shape={depth.shape}, expecting [N,1,H,W].")
464
+ return [export_depth_to_16bit_png_one(img[0], idx) for idx, img in enumerate(depth)]
465
+ elif isinstance(depth, list):
466
+ return [export_depth_to_16bit_png_one(img, idx) for idx, img in enumerate(depth)]
467
+ else:
468
+ raise ValueError(f"Unexpected input type: {type(depth)}")
469
+
470
+ @staticmethod
471
+ def visualize_normals(
472
+ normals: Union[
473
+ np.ndarray,
474
+ torch.Tensor,
475
+ List[np.ndarray],
476
+ List[torch.Tensor],
477
+ ],
478
+ flip_x: bool = False,
479
+ flip_y: bool = False,
480
+ flip_z: bool = False,
481
+ ) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
482
+ """
483
+ Visualizes surface normals, such as predictions of the `MarigoldNormalsPipeline`.
484
+
485
+ Args:
486
+ normals (`Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]]`):
487
+ Surface normals.
488
+ flip_x (`bool`, *optional*, defaults to `False`): Flips the X axis of the normals frame of reference.
489
+ Default direction is right.
490
+ flip_y (`bool`, *optional*, defaults to `False`): Flips the Y axis of the normals frame of reference.
491
+ Default direction is top.
492
+ flip_z (`bool`, *optional*, defaults to `False`): Flips the Z axis of the normals frame of reference.
493
+ Default direction is facing the observer.
494
+
495
+ Returns: `PIL.Image.Image` or `List[PIL.Image.Image]` with surface normals visualization.
496
+ """
497
+ flip_vec = None
498
+ if any((flip_x, flip_y, flip_z)):
499
+ flip_vec = torch.tensor(
500
+ [
501
+ (-1) ** flip_x,
502
+ (-1) ** flip_y,
503
+ (-1) ** flip_z,
504
+ ],
505
+ dtype=torch.float32,
506
+ )
507
+
508
+ def visualize_normals_one(img, idx=None):
509
+ img = img.permute(1, 2, 0)
510
+ if flip_vec is not None:
511
+ img *= flip_vec.to(img.device)
512
+ img = (img + 1.0) * 0.5
513
+ img = (img * 255).to(dtype=torch.uint8, device="cpu").numpy()
514
+ img = PIL.Image.fromarray(img)
515
+ return img
516
+
517
+ if normals is None or isinstance(normals, list) and any(o is None for o in normals):
518
+ raise ValueError("Input normals is `None`")
519
+ if isinstance(normals, (np.ndarray, torch.Tensor)):
520
+ normals = MarigoldImageProcessor.expand_tensor_or_array(normals)
521
+ if isinstance(normals, np.ndarray):
522
+ normals = MarigoldImageProcessor.numpy_to_pt(normals) # [N,3,H,W]
523
+ if not (normals.ndim == 4 and normals.shape[1] == 3):
524
+ raise ValueError(f"Unexpected input shape={normals.shape}, expecting [N,3,H,W].")
525
+ return [visualize_normals_one(img, idx) for idx, img in enumerate(normals)]
526
+ elif isinstance(normals, list):
527
+ return [visualize_normals_one(img, idx) for idx, img in enumerate(normals)]
528
+ else:
529
+ raise ValueError(f"Unexpected input type: {type(normals)}")
530
+
531
+ @staticmethod
532
+ def visualize_uncertainty(
533
+ uncertainty: Union[
534
+ np.ndarray,
535
+ torch.Tensor,
536
+ List[np.ndarray],
537
+ List[torch.Tensor],
538
+ ],
539
+ saturation_percentile=95,
540
+ ) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
541
+ """
542
+ Visualizes dense uncertainties, such as produced by `MarigoldDepthPipeline` or `MarigoldNormalsPipeline`.
543
+
544
+ Args:
545
+ uncertainty (`Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]]`):
546
+ Uncertainty maps.
547
+ saturation_percentile (`int`, *optional*, defaults to `95`):
548
+ Specifies the percentile uncertainty value visualized with maximum intensity.
549
+
550
+ Returns: `PIL.Image.Image` or `List[PIL.Image.Image]` with uncertainty visualization.
551
+ """
552
+
553
+ def visualize_uncertainty_one(img, idx=None):
554
+ prefix = "Uncertainty" + (f"[{idx}]" if idx else "")
555
+ if img.min() < 0:
556
+ raise ValueError(f"{prefix}: unexected data range, min={img.min()}.")
557
+ img = img.squeeze(0).cpu().numpy()
558
+ saturation_value = np.percentile(img, saturation_percentile)
559
+ img = np.clip(img * 255 / saturation_value, 0, 255)
560
+ img = img.astype(np.uint8)
561
+ img = PIL.Image.fromarray(img)
562
+ return img
563
+
564
+ if uncertainty is None or isinstance(uncertainty, list) and any(o is None for o in uncertainty):
565
+ raise ValueError("Input uncertainty is `None`")
566
+ if isinstance(uncertainty, (np.ndarray, torch.Tensor)):
567
+ uncertainty = MarigoldImageProcessor.expand_tensor_or_array(uncertainty)
568
+ if isinstance(uncertainty, np.ndarray):
569
+ uncertainty = MarigoldImageProcessor.numpy_to_pt(uncertainty) # [N,1,H,W]
570
+ if not (uncertainty.ndim == 4 and uncertainty.shape[1] == 1):
571
+ raise ValueError(f"Unexpected input shape={uncertainty.shape}, expecting [N,1,H,W].")
572
+ return [visualize_uncertainty_one(img, idx) for idx, img in enumerate(uncertainty)]
573
+ elif isinstance(uncertainty, list):
574
+ return [visualize_uncertainty_one(img, idx) for idx, img in enumerate(uncertainty)]
575
+ else:
576
+ raise ValueError(f"Unexpected input type: {type(uncertainty)}")