diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,50 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_torch_available,
|
9
|
+
is_transformers_available,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
_dummy_objects = {}
|
14
|
+
_import_structure = {}
|
15
|
+
|
16
|
+
try:
|
17
|
+
if not (is_transformers_available() and is_torch_available()):
|
18
|
+
raise OptionalDependencyNotAvailable()
|
19
|
+
except OptionalDependencyNotAvailable:
|
20
|
+
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
21
|
+
|
22
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
23
|
+
else:
|
24
|
+
_import_structure["marigold_image_processing"] = ["MarigoldImageProcessor"]
|
25
|
+
_import_structure["pipeline_marigold_depth"] = ["MarigoldDepthOutput", "MarigoldDepthPipeline"]
|
26
|
+
_import_structure["pipeline_marigold_normals"] = ["MarigoldNormalsOutput", "MarigoldNormalsPipeline"]
|
27
|
+
|
28
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
29
|
+
try:
|
30
|
+
if not (is_transformers_available() and is_torch_available()):
|
31
|
+
raise OptionalDependencyNotAvailable()
|
32
|
+
|
33
|
+
except OptionalDependencyNotAvailable:
|
34
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
35
|
+
else:
|
36
|
+
from .marigold_image_processing import MarigoldImageProcessor
|
37
|
+
from .pipeline_marigold_depth import MarigoldDepthOutput, MarigoldDepthPipeline
|
38
|
+
from .pipeline_marigold_normals import MarigoldNormalsOutput, MarigoldNormalsPipeline
|
39
|
+
|
40
|
+
else:
|
41
|
+
import sys
|
42
|
+
|
43
|
+
sys.modules[__name__] = _LazyModule(
|
44
|
+
__name__,
|
45
|
+
globals()["__file__"],
|
46
|
+
_import_structure,
|
47
|
+
module_spec=__spec__,
|
48
|
+
)
|
49
|
+
for name, value in _dummy_objects.items():
|
50
|
+
setattr(sys.modules[__name__], name, value)
|
@@ -0,0 +1,576 @@
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import numpy as np
|
4
|
+
import PIL
|
5
|
+
import torch
|
6
|
+
import torch.nn.functional as F
|
7
|
+
from PIL import Image
|
8
|
+
|
9
|
+
from ... import ConfigMixin
|
10
|
+
from ...configuration_utils import register_to_config
|
11
|
+
from ...image_processor import PipelineImageInput
|
12
|
+
from ...utils import CONFIG_NAME, logging
|
13
|
+
from ...utils.import_utils import is_matplotlib_available
|
14
|
+
|
15
|
+
|
16
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
17
|
+
|
18
|
+
|
19
|
+
class MarigoldImageProcessor(ConfigMixin):
|
20
|
+
config_name = CONFIG_NAME
|
21
|
+
|
22
|
+
@register_to_config
|
23
|
+
def __init__(
|
24
|
+
self,
|
25
|
+
vae_scale_factor: int = 8,
|
26
|
+
do_normalize: bool = True,
|
27
|
+
do_range_check: bool = True,
|
28
|
+
):
|
29
|
+
super().__init__()
|
30
|
+
|
31
|
+
@staticmethod
|
32
|
+
def expand_tensor_or_array(images: Union[torch.Tensor, np.ndarray]) -> Union[torch.Tensor, np.ndarray]:
|
33
|
+
"""
|
34
|
+
Expand a tensor or array to a specified number of images.
|
35
|
+
"""
|
36
|
+
if isinstance(images, np.ndarray):
|
37
|
+
if images.ndim == 2: # [H,W] -> [1,H,W,1]
|
38
|
+
images = images[None, ..., None]
|
39
|
+
if images.ndim == 3: # [H,W,C] -> [1,H,W,C]
|
40
|
+
images = images[None]
|
41
|
+
elif isinstance(images, torch.Tensor):
|
42
|
+
if images.ndim == 2: # [H,W] -> [1,1,H,W]
|
43
|
+
images = images[None, None]
|
44
|
+
elif images.ndim == 3: # [1,H,W] -> [1,1,H,W]
|
45
|
+
images = images[None]
|
46
|
+
else:
|
47
|
+
raise ValueError(f"Unexpected input type: {type(images)}")
|
48
|
+
return images
|
49
|
+
|
50
|
+
@staticmethod
|
51
|
+
def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
|
52
|
+
"""
|
53
|
+
Convert a PyTorch tensor to a NumPy image.
|
54
|
+
"""
|
55
|
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
56
|
+
return images
|
57
|
+
|
58
|
+
@staticmethod
|
59
|
+
def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
|
60
|
+
"""
|
61
|
+
Convert a NumPy image to a PyTorch tensor.
|
62
|
+
"""
|
63
|
+
if np.issubdtype(images.dtype, np.integer) and not np.issubdtype(images.dtype, np.unsignedinteger):
|
64
|
+
raise ValueError(f"Input image dtype={images.dtype} cannot be a signed integer.")
|
65
|
+
if np.issubdtype(images.dtype, np.complexfloating):
|
66
|
+
raise ValueError(f"Input image dtype={images.dtype} cannot be complex.")
|
67
|
+
if np.issubdtype(images.dtype, bool):
|
68
|
+
raise ValueError(f"Input image dtype={images.dtype} cannot be boolean.")
|
69
|
+
|
70
|
+
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
71
|
+
return images
|
72
|
+
|
73
|
+
@staticmethod
|
74
|
+
def resize_antialias(
|
75
|
+
image: torch.Tensor, size: Tuple[int, int], mode: str, is_aa: Optional[bool] = None
|
76
|
+
) -> torch.Tensor:
|
77
|
+
if not torch.is_tensor(image):
|
78
|
+
raise ValueError(f"Invalid input type={type(image)}.")
|
79
|
+
if not torch.is_floating_point(image):
|
80
|
+
raise ValueError(f"Invalid input dtype={image.dtype}.")
|
81
|
+
if image.dim() != 4:
|
82
|
+
raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
|
83
|
+
|
84
|
+
antialias = is_aa and mode in ("bilinear", "bicubic")
|
85
|
+
image = F.interpolate(image, size, mode=mode, antialias=antialias)
|
86
|
+
|
87
|
+
return image
|
88
|
+
|
89
|
+
@staticmethod
|
90
|
+
def resize_to_max_edge(image: torch.Tensor, max_edge_sz: int, mode: str) -> torch.Tensor:
|
91
|
+
if not torch.is_tensor(image):
|
92
|
+
raise ValueError(f"Invalid input type={type(image)}.")
|
93
|
+
if not torch.is_floating_point(image):
|
94
|
+
raise ValueError(f"Invalid input dtype={image.dtype}.")
|
95
|
+
if image.dim() != 4:
|
96
|
+
raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
|
97
|
+
|
98
|
+
h, w = image.shape[-2:]
|
99
|
+
max_orig = max(h, w)
|
100
|
+
new_h = h * max_edge_sz // max_orig
|
101
|
+
new_w = w * max_edge_sz // max_orig
|
102
|
+
|
103
|
+
if new_h == 0 or new_w == 0:
|
104
|
+
raise ValueError(f"Extreme aspect ratio of the input image: [{w} x {h}]")
|
105
|
+
|
106
|
+
image = MarigoldImageProcessor.resize_antialias(image, (new_h, new_w), mode, is_aa=True)
|
107
|
+
|
108
|
+
return image
|
109
|
+
|
110
|
+
@staticmethod
|
111
|
+
def pad_image(image: torch.Tensor, align: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
112
|
+
if not torch.is_tensor(image):
|
113
|
+
raise ValueError(f"Invalid input type={type(image)}.")
|
114
|
+
if not torch.is_floating_point(image):
|
115
|
+
raise ValueError(f"Invalid input dtype={image.dtype}.")
|
116
|
+
if image.dim() != 4:
|
117
|
+
raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
|
118
|
+
|
119
|
+
h, w = image.shape[-2:]
|
120
|
+
ph, pw = -h % align, -w % align
|
121
|
+
|
122
|
+
image = F.pad(image, (0, pw, 0, ph), mode="replicate")
|
123
|
+
|
124
|
+
return image, (ph, pw)
|
125
|
+
|
126
|
+
@staticmethod
|
127
|
+
def unpad_image(image: torch.Tensor, padding: Tuple[int, int]) -> torch.Tensor:
|
128
|
+
if not torch.is_tensor(image):
|
129
|
+
raise ValueError(f"Invalid input type={type(image)}.")
|
130
|
+
if not torch.is_floating_point(image):
|
131
|
+
raise ValueError(f"Invalid input dtype={image.dtype}.")
|
132
|
+
if image.dim() != 4:
|
133
|
+
raise ValueError(f"Invalid input dimensions; shape={image.shape}.")
|
134
|
+
|
135
|
+
ph, pw = padding
|
136
|
+
uh = None if ph == 0 else -ph
|
137
|
+
uw = None if pw == 0 else -pw
|
138
|
+
|
139
|
+
image = image[:, :, :uh, :uw]
|
140
|
+
|
141
|
+
return image
|
142
|
+
|
143
|
+
@staticmethod
|
144
|
+
def load_image_canonical(
|
145
|
+
image: Union[torch.Tensor, np.ndarray, Image.Image],
|
146
|
+
device: torch.device = torch.device("cpu"),
|
147
|
+
dtype: torch.dtype = torch.float32,
|
148
|
+
) -> Tuple[torch.Tensor, int]:
|
149
|
+
if isinstance(image, Image.Image):
|
150
|
+
image = np.array(image)
|
151
|
+
|
152
|
+
image_dtype_max = None
|
153
|
+
if isinstance(image, (np.ndarray, torch.Tensor)):
|
154
|
+
image = MarigoldImageProcessor.expand_tensor_or_array(image)
|
155
|
+
if image.ndim != 4:
|
156
|
+
raise ValueError("Input image is not 2-, 3-, or 4-dimensional.")
|
157
|
+
if isinstance(image, np.ndarray):
|
158
|
+
if np.issubdtype(image.dtype, np.integer) and not np.issubdtype(image.dtype, np.unsignedinteger):
|
159
|
+
raise ValueError(f"Input image dtype={image.dtype} cannot be a signed integer.")
|
160
|
+
if np.issubdtype(image.dtype, np.complexfloating):
|
161
|
+
raise ValueError(f"Input image dtype={image.dtype} cannot be complex.")
|
162
|
+
if np.issubdtype(image.dtype, bool):
|
163
|
+
raise ValueError(f"Input image dtype={image.dtype} cannot be boolean.")
|
164
|
+
if np.issubdtype(image.dtype, np.unsignedinteger):
|
165
|
+
image_dtype_max = np.iinfo(image.dtype).max
|
166
|
+
image = image.astype(np.float32) # because torch does not have unsigned dtypes beyond torch.uint8
|
167
|
+
image = MarigoldImageProcessor.numpy_to_pt(image)
|
168
|
+
|
169
|
+
if torch.is_tensor(image) and not torch.is_floating_point(image) and image_dtype_max is None:
|
170
|
+
if image.dtype != torch.uint8:
|
171
|
+
raise ValueError(f"Image dtype={image.dtype} is not supported.")
|
172
|
+
image_dtype_max = 255
|
173
|
+
|
174
|
+
if not torch.is_tensor(image):
|
175
|
+
raise ValueError(f"Input type unsupported: {type(image)}.")
|
176
|
+
|
177
|
+
if image.shape[1] == 1:
|
178
|
+
image = image.repeat(1, 3, 1, 1) # [N,1,H,W] -> [N,3,H,W]
|
179
|
+
if image.shape[1] != 3:
|
180
|
+
raise ValueError(f"Input image is not 1- or 3-channel: {image.shape}.")
|
181
|
+
|
182
|
+
image = image.to(device=device, dtype=dtype)
|
183
|
+
|
184
|
+
if image_dtype_max is not None:
|
185
|
+
image = image / image_dtype_max
|
186
|
+
|
187
|
+
return image
|
188
|
+
|
189
|
+
@staticmethod
|
190
|
+
def check_image_values_range(image: torch.Tensor) -> None:
|
191
|
+
if not torch.is_tensor(image):
|
192
|
+
raise ValueError(f"Invalid input type={type(image)}.")
|
193
|
+
if not torch.is_floating_point(image):
|
194
|
+
raise ValueError(f"Invalid input dtype={image.dtype}.")
|
195
|
+
if image.min().item() < 0.0 or image.max().item() > 1.0:
|
196
|
+
raise ValueError("Input image data is partially outside of the [0,1] range.")
|
197
|
+
|
198
|
+
def preprocess(
|
199
|
+
self,
|
200
|
+
image: PipelineImageInput,
|
201
|
+
processing_resolution: Optional[int] = None,
|
202
|
+
resample_method_input: str = "bilinear",
|
203
|
+
device: torch.device = torch.device("cpu"),
|
204
|
+
dtype: torch.dtype = torch.float32,
|
205
|
+
):
|
206
|
+
if isinstance(image, list):
|
207
|
+
images = None
|
208
|
+
for i, img in enumerate(image):
|
209
|
+
img = self.load_image_canonical(img, device, dtype) # [N,3,H,W]
|
210
|
+
if images is None:
|
211
|
+
images = img
|
212
|
+
else:
|
213
|
+
if images.shape[2:] != img.shape[2:]:
|
214
|
+
raise ValueError(
|
215
|
+
f"Input image[{i}] has incompatible dimensions {img.shape[2:]} with the previous images "
|
216
|
+
f"{images.shape[2:]}"
|
217
|
+
)
|
218
|
+
images = torch.cat((images, img), dim=0)
|
219
|
+
image = images
|
220
|
+
del images
|
221
|
+
else:
|
222
|
+
image = self.load_image_canonical(image, device, dtype) # [N,3,H,W]
|
223
|
+
|
224
|
+
original_resolution = image.shape[2:]
|
225
|
+
|
226
|
+
if self.config.do_range_check:
|
227
|
+
self.check_image_values_range(image)
|
228
|
+
|
229
|
+
if self.config.do_normalize:
|
230
|
+
image = image * 2.0 - 1.0
|
231
|
+
|
232
|
+
if processing_resolution is not None and processing_resolution > 0:
|
233
|
+
image = self.resize_to_max_edge(image, processing_resolution, resample_method_input) # [N,3,PH,PW]
|
234
|
+
|
235
|
+
image, padding = self.pad_image(image, self.config.vae_scale_factor) # [N,3,PPH,PPW]
|
236
|
+
|
237
|
+
return image, padding, original_resolution
|
238
|
+
|
239
|
+
@staticmethod
|
240
|
+
def colormap(
|
241
|
+
image: Union[np.ndarray, torch.Tensor],
|
242
|
+
cmap: str = "Spectral",
|
243
|
+
bytes: bool = False,
|
244
|
+
_force_method: Optional[str] = None,
|
245
|
+
) -> Union[np.ndarray, torch.Tensor]:
|
246
|
+
"""
|
247
|
+
Converts a monochrome image into an RGB image by applying the specified colormap. This function mimics the
|
248
|
+
behavior of matplotlib.colormaps, but allows the user to use the most discriminative color maps ("Spectral",
|
249
|
+
"binary") without having to install or import matplotlib. For all other cases, the function will attempt to use
|
250
|
+
the native implementation.
|
251
|
+
|
252
|
+
Args:
|
253
|
+
image: 2D tensor of values between 0 and 1, either as np.ndarray or torch.Tensor.
|
254
|
+
cmap: Colormap name.
|
255
|
+
bytes: Whether to return the output as uint8 or floating point image.
|
256
|
+
_force_method:
|
257
|
+
Can be used to specify whether to use the native implementation (`"matplotlib"`), the efficient custom
|
258
|
+
implementation of the select color maps (`"custom"`), or rely on autodetection (`None`, default).
|
259
|
+
|
260
|
+
Returns:
|
261
|
+
An RGB-colorized tensor corresponding to the input image.
|
262
|
+
"""
|
263
|
+
if not (torch.is_tensor(image) or isinstance(image, np.ndarray)):
|
264
|
+
raise ValueError("Argument must be a numpy array or torch tensor.")
|
265
|
+
if _force_method not in (None, "matplotlib", "custom"):
|
266
|
+
raise ValueError("_force_method must be either `None`, `'matplotlib'` or `'custom'`.")
|
267
|
+
|
268
|
+
supported_cmaps = {
|
269
|
+
"binary": [
|
270
|
+
(1.0, 1.0, 1.0),
|
271
|
+
(0.0, 0.0, 0.0),
|
272
|
+
],
|
273
|
+
"Spectral": [ # Taken from matplotlib/_cm.py
|
274
|
+
(0.61960784313725492, 0.003921568627450980, 0.25882352941176473), # 0.0 -> [0]
|
275
|
+
(0.83529411764705885, 0.24313725490196078, 0.30980392156862746),
|
276
|
+
(0.95686274509803926, 0.42745098039215684, 0.2627450980392157),
|
277
|
+
(0.99215686274509807, 0.68235294117647061, 0.38039215686274508),
|
278
|
+
(0.99607843137254903, 0.8784313725490196, 0.54509803921568623),
|
279
|
+
(1.0, 1.0, 0.74901960784313726),
|
280
|
+
(0.90196078431372551, 0.96078431372549022, 0.59607843137254901),
|
281
|
+
(0.6705882352941176, 0.8666666666666667, 0.64313725490196083),
|
282
|
+
(0.4, 0.76078431372549016, 0.6470588235294118),
|
283
|
+
(0.19607843137254902, 0.53333333333333333, 0.74117647058823533),
|
284
|
+
(0.36862745098039218, 0.30980392156862746, 0.63529411764705879), # 1.0 -> [K-1]
|
285
|
+
],
|
286
|
+
}
|
287
|
+
|
288
|
+
def method_matplotlib(image, cmap, bytes=False):
|
289
|
+
if is_matplotlib_available():
|
290
|
+
import matplotlib
|
291
|
+
else:
|
292
|
+
return None
|
293
|
+
|
294
|
+
arg_is_pt, device = torch.is_tensor(image), None
|
295
|
+
if arg_is_pt:
|
296
|
+
image, device = image.cpu().numpy(), image.device
|
297
|
+
|
298
|
+
if cmap not in matplotlib.colormaps:
|
299
|
+
raise ValueError(
|
300
|
+
f"Unexpected color map {cmap}; available options are: {', '.join(list(matplotlib.colormaps.keys()))}"
|
301
|
+
)
|
302
|
+
|
303
|
+
cmap = matplotlib.colormaps[cmap]
|
304
|
+
out = cmap(image, bytes=bytes) # [?,4]
|
305
|
+
out = out[..., :3] # [?,3]
|
306
|
+
|
307
|
+
if arg_is_pt:
|
308
|
+
out = torch.tensor(out, device=device)
|
309
|
+
|
310
|
+
return out
|
311
|
+
|
312
|
+
def method_custom(image, cmap, bytes=False):
|
313
|
+
arg_is_np = isinstance(image, np.ndarray)
|
314
|
+
if arg_is_np:
|
315
|
+
image = torch.tensor(image)
|
316
|
+
if image.dtype == torch.uint8:
|
317
|
+
image = image.float() / 255
|
318
|
+
else:
|
319
|
+
image = image.float()
|
320
|
+
|
321
|
+
is_cmap_reversed = cmap.endswith("_r")
|
322
|
+
if is_cmap_reversed:
|
323
|
+
cmap = cmap[:-2]
|
324
|
+
|
325
|
+
if cmap not in supported_cmaps:
|
326
|
+
raise ValueError(
|
327
|
+
f"Only {list(supported_cmaps.keys())} color maps are available without installing matplotlib."
|
328
|
+
)
|
329
|
+
|
330
|
+
cmap = supported_cmaps[cmap]
|
331
|
+
if is_cmap_reversed:
|
332
|
+
cmap = cmap[::-1]
|
333
|
+
cmap = torch.tensor(cmap, dtype=torch.float, device=image.device) # [K,3]
|
334
|
+
K = cmap.shape[0]
|
335
|
+
|
336
|
+
pos = image.clamp(min=0, max=1) * (K - 1)
|
337
|
+
left = pos.long()
|
338
|
+
right = (left + 1).clamp(max=K - 1)
|
339
|
+
|
340
|
+
d = (pos - left.float()).unsqueeze(-1)
|
341
|
+
left_colors = cmap[left]
|
342
|
+
right_colors = cmap[right]
|
343
|
+
|
344
|
+
out = (1 - d) * left_colors + d * right_colors
|
345
|
+
|
346
|
+
if bytes:
|
347
|
+
out = (out * 255).to(torch.uint8)
|
348
|
+
|
349
|
+
if arg_is_np:
|
350
|
+
out = out.numpy()
|
351
|
+
|
352
|
+
return out
|
353
|
+
|
354
|
+
if _force_method is None and torch.is_tensor(image) and cmap == "Spectral":
|
355
|
+
return method_custom(image, cmap, bytes)
|
356
|
+
|
357
|
+
out = None
|
358
|
+
if _force_method != "custom":
|
359
|
+
out = method_matplotlib(image, cmap, bytes)
|
360
|
+
|
361
|
+
if _force_method == "matplotlib" and out is None:
|
362
|
+
raise ImportError("Make sure to install matplotlib if you want to use a color map other than 'Spectral'.")
|
363
|
+
|
364
|
+
if out is None:
|
365
|
+
out = method_custom(image, cmap, bytes)
|
366
|
+
|
367
|
+
return out
|
368
|
+
|
369
|
+
@staticmethod
|
370
|
+
def visualize_depth(
|
371
|
+
depth: Union[
|
372
|
+
PIL.Image.Image,
|
373
|
+
np.ndarray,
|
374
|
+
torch.Tensor,
|
375
|
+
List[PIL.Image.Image],
|
376
|
+
List[np.ndarray],
|
377
|
+
List[torch.Tensor],
|
378
|
+
],
|
379
|
+
val_min: float = 0.0,
|
380
|
+
val_max: float = 1.0,
|
381
|
+
color_map: str = "Spectral",
|
382
|
+
) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
|
383
|
+
"""
|
384
|
+
Visualizes depth maps, such as predictions of the `MarigoldDepthPipeline`.
|
385
|
+
|
386
|
+
Args:
|
387
|
+
depth (`Union[PIL.Image.Image, np.ndarray, torch.Tensor, List[PIL.Image.Image], List[np.ndarray],
|
388
|
+
List[torch.Tensor]]`): Depth maps.
|
389
|
+
val_min (`float`, *optional*, defaults to `0.0`): Minimum value of the visualized depth range.
|
390
|
+
val_max (`float`, *optional*, defaults to `1.0`): Maximum value of the visualized depth range.
|
391
|
+
color_map (`str`, *optional*, defaults to `"Spectral"`): Color map used to convert a single-channel
|
392
|
+
depth prediction into colored representation.
|
393
|
+
|
394
|
+
Returns: `PIL.Image.Image` or `List[PIL.Image.Image]` with depth maps visualization.
|
395
|
+
"""
|
396
|
+
if val_max <= val_min:
|
397
|
+
raise ValueError(f"Invalid values range: [{val_min}, {val_max}].")
|
398
|
+
|
399
|
+
def visualize_depth_one(img, idx=None):
|
400
|
+
prefix = "Depth" + (f"[{idx}]" if idx else "")
|
401
|
+
if isinstance(img, PIL.Image.Image):
|
402
|
+
if img.mode != "I;16":
|
403
|
+
raise ValueError(f"{prefix}: invalid PIL mode={img.mode}.")
|
404
|
+
img = np.array(img).astype(np.float32) / (2**16 - 1)
|
405
|
+
if isinstance(img, np.ndarray) or torch.is_tensor(img):
|
406
|
+
if img.ndim != 2:
|
407
|
+
raise ValueError(f"{prefix}: unexpected shape={img.shape}.")
|
408
|
+
if isinstance(img, np.ndarray):
|
409
|
+
img = torch.from_numpy(img)
|
410
|
+
if not torch.is_floating_point(img):
|
411
|
+
raise ValueError(f"{prefix}: unexected dtype={img.dtype}.")
|
412
|
+
else:
|
413
|
+
raise ValueError(f"{prefix}: unexpected type={type(img)}.")
|
414
|
+
if val_min != 0.0 or val_max != 1.0:
|
415
|
+
img = (img - val_min) / (val_max - val_min)
|
416
|
+
img = MarigoldImageProcessor.colormap(img, cmap=color_map, bytes=True) # [H,W,3]
|
417
|
+
img = PIL.Image.fromarray(img.cpu().numpy())
|
418
|
+
return img
|
419
|
+
|
420
|
+
if depth is None or isinstance(depth, list) and any(o is None for o in depth):
|
421
|
+
raise ValueError("Input depth is `None`")
|
422
|
+
if isinstance(depth, (np.ndarray, torch.Tensor)):
|
423
|
+
depth = MarigoldImageProcessor.expand_tensor_or_array(depth)
|
424
|
+
if isinstance(depth, np.ndarray):
|
425
|
+
depth = MarigoldImageProcessor.numpy_to_pt(depth) # [N,H,W,1] -> [N,1,H,W]
|
426
|
+
if not (depth.ndim == 4 and depth.shape[1] == 1): # [N,1,H,W]
|
427
|
+
raise ValueError(f"Unexpected input shape={depth.shape}, expecting [N,1,H,W].")
|
428
|
+
return [visualize_depth_one(img[0], idx) for idx, img in enumerate(depth)]
|
429
|
+
elif isinstance(depth, list):
|
430
|
+
return [visualize_depth_one(img, idx) for idx, img in enumerate(depth)]
|
431
|
+
else:
|
432
|
+
raise ValueError(f"Unexpected input type: {type(depth)}")
|
433
|
+
|
434
|
+
@staticmethod
|
435
|
+
def export_depth_to_16bit_png(
|
436
|
+
depth: Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]],
|
437
|
+
val_min: float = 0.0,
|
438
|
+
val_max: float = 1.0,
|
439
|
+
) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
|
440
|
+
def export_depth_to_16bit_png_one(img, idx=None):
|
441
|
+
prefix = "Depth" + (f"[{idx}]" if idx else "")
|
442
|
+
if not isinstance(img, np.ndarray) and not torch.is_tensor(img):
|
443
|
+
raise ValueError(f"{prefix}: unexpected type={type(img)}.")
|
444
|
+
if img.ndim != 2:
|
445
|
+
raise ValueError(f"{prefix}: unexpected shape={img.shape}.")
|
446
|
+
if torch.is_tensor(img):
|
447
|
+
img = img.cpu().numpy()
|
448
|
+
if not np.issubdtype(img.dtype, np.floating):
|
449
|
+
raise ValueError(f"{prefix}: unexected dtype={img.dtype}.")
|
450
|
+
if val_min != 0.0 or val_max != 1.0:
|
451
|
+
img = (img - val_min) / (val_max - val_min)
|
452
|
+
img = (img * (2**16 - 1)).astype(np.uint16)
|
453
|
+
img = PIL.Image.fromarray(img, mode="I;16")
|
454
|
+
return img
|
455
|
+
|
456
|
+
if depth is None or isinstance(depth, list) and any(o is None for o in depth):
|
457
|
+
raise ValueError("Input depth is `None`")
|
458
|
+
if isinstance(depth, (np.ndarray, torch.Tensor)):
|
459
|
+
depth = MarigoldImageProcessor.expand_tensor_or_array(depth)
|
460
|
+
if isinstance(depth, np.ndarray):
|
461
|
+
depth = MarigoldImageProcessor.numpy_to_pt(depth) # [N,H,W,1] -> [N,1,H,W]
|
462
|
+
if not (depth.ndim == 4 and depth.shape[1] == 1):
|
463
|
+
raise ValueError(f"Unexpected input shape={depth.shape}, expecting [N,1,H,W].")
|
464
|
+
return [export_depth_to_16bit_png_one(img[0], idx) for idx, img in enumerate(depth)]
|
465
|
+
elif isinstance(depth, list):
|
466
|
+
return [export_depth_to_16bit_png_one(img, idx) for idx, img in enumerate(depth)]
|
467
|
+
else:
|
468
|
+
raise ValueError(f"Unexpected input type: {type(depth)}")
|
469
|
+
|
470
|
+
@staticmethod
|
471
|
+
def visualize_normals(
|
472
|
+
normals: Union[
|
473
|
+
np.ndarray,
|
474
|
+
torch.Tensor,
|
475
|
+
List[np.ndarray],
|
476
|
+
List[torch.Tensor],
|
477
|
+
],
|
478
|
+
flip_x: bool = False,
|
479
|
+
flip_y: bool = False,
|
480
|
+
flip_z: bool = False,
|
481
|
+
) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
|
482
|
+
"""
|
483
|
+
Visualizes surface normals, such as predictions of the `MarigoldNormalsPipeline`.
|
484
|
+
|
485
|
+
Args:
|
486
|
+
normals (`Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]]`):
|
487
|
+
Surface normals.
|
488
|
+
flip_x (`bool`, *optional*, defaults to `False`): Flips the X axis of the normals frame of reference.
|
489
|
+
Default direction is right.
|
490
|
+
flip_y (`bool`, *optional*, defaults to `False`): Flips the Y axis of the normals frame of reference.
|
491
|
+
Default direction is top.
|
492
|
+
flip_z (`bool`, *optional*, defaults to `False`): Flips the Z axis of the normals frame of reference.
|
493
|
+
Default direction is facing the observer.
|
494
|
+
|
495
|
+
Returns: `PIL.Image.Image` or `List[PIL.Image.Image]` with surface normals visualization.
|
496
|
+
"""
|
497
|
+
flip_vec = None
|
498
|
+
if any((flip_x, flip_y, flip_z)):
|
499
|
+
flip_vec = torch.tensor(
|
500
|
+
[
|
501
|
+
(-1) ** flip_x,
|
502
|
+
(-1) ** flip_y,
|
503
|
+
(-1) ** flip_z,
|
504
|
+
],
|
505
|
+
dtype=torch.float32,
|
506
|
+
)
|
507
|
+
|
508
|
+
def visualize_normals_one(img, idx=None):
|
509
|
+
img = img.permute(1, 2, 0)
|
510
|
+
if flip_vec is not None:
|
511
|
+
img *= flip_vec.to(img.device)
|
512
|
+
img = (img + 1.0) * 0.5
|
513
|
+
img = (img * 255).to(dtype=torch.uint8, device="cpu").numpy()
|
514
|
+
img = PIL.Image.fromarray(img)
|
515
|
+
return img
|
516
|
+
|
517
|
+
if normals is None or isinstance(normals, list) and any(o is None for o in normals):
|
518
|
+
raise ValueError("Input normals is `None`")
|
519
|
+
if isinstance(normals, (np.ndarray, torch.Tensor)):
|
520
|
+
normals = MarigoldImageProcessor.expand_tensor_or_array(normals)
|
521
|
+
if isinstance(normals, np.ndarray):
|
522
|
+
normals = MarigoldImageProcessor.numpy_to_pt(normals) # [N,3,H,W]
|
523
|
+
if not (normals.ndim == 4 and normals.shape[1] == 3):
|
524
|
+
raise ValueError(f"Unexpected input shape={normals.shape}, expecting [N,3,H,W].")
|
525
|
+
return [visualize_normals_one(img, idx) for idx, img in enumerate(normals)]
|
526
|
+
elif isinstance(normals, list):
|
527
|
+
return [visualize_normals_one(img, idx) for idx, img in enumerate(normals)]
|
528
|
+
else:
|
529
|
+
raise ValueError(f"Unexpected input type: {type(normals)}")
|
530
|
+
|
531
|
+
@staticmethod
|
532
|
+
def visualize_uncertainty(
|
533
|
+
uncertainty: Union[
|
534
|
+
np.ndarray,
|
535
|
+
torch.Tensor,
|
536
|
+
List[np.ndarray],
|
537
|
+
List[torch.Tensor],
|
538
|
+
],
|
539
|
+
saturation_percentile=95,
|
540
|
+
) -> Union[PIL.Image.Image, List[PIL.Image.Image]]:
|
541
|
+
"""
|
542
|
+
Visualizes dense uncertainties, such as produced by `MarigoldDepthPipeline` or `MarigoldNormalsPipeline`.
|
543
|
+
|
544
|
+
Args:
|
545
|
+
uncertainty (`Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]]`):
|
546
|
+
Uncertainty maps.
|
547
|
+
saturation_percentile (`int`, *optional*, defaults to `95`):
|
548
|
+
Specifies the percentile uncertainty value visualized with maximum intensity.
|
549
|
+
|
550
|
+
Returns: `PIL.Image.Image` or `List[PIL.Image.Image]` with uncertainty visualization.
|
551
|
+
"""
|
552
|
+
|
553
|
+
def visualize_uncertainty_one(img, idx=None):
|
554
|
+
prefix = "Uncertainty" + (f"[{idx}]" if idx else "")
|
555
|
+
if img.min() < 0:
|
556
|
+
raise ValueError(f"{prefix}: unexected data range, min={img.min()}.")
|
557
|
+
img = img.squeeze(0).cpu().numpy()
|
558
|
+
saturation_value = np.percentile(img, saturation_percentile)
|
559
|
+
img = np.clip(img * 255 / saturation_value, 0, 255)
|
560
|
+
img = img.astype(np.uint8)
|
561
|
+
img = PIL.Image.fromarray(img)
|
562
|
+
return img
|
563
|
+
|
564
|
+
if uncertainty is None or isinstance(uncertainty, list) and any(o is None for o in uncertainty):
|
565
|
+
raise ValueError("Input uncertainty is `None`")
|
566
|
+
if isinstance(uncertainty, (np.ndarray, torch.Tensor)):
|
567
|
+
uncertainty = MarigoldImageProcessor.expand_tensor_or_array(uncertainty)
|
568
|
+
if isinstance(uncertainty, np.ndarray):
|
569
|
+
uncertainty = MarigoldImageProcessor.numpy_to_pt(uncertainty) # [N,1,H,W]
|
570
|
+
if not (uncertainty.ndim == 4 and uncertainty.shape[1] == 1):
|
571
|
+
raise ValueError(f"Unexpected input shape={uncertainty.shape}, expecting [N,1,H,W].")
|
572
|
+
return [visualize_uncertainty_one(img, idx) for idx, img in enumerate(uncertainty)]
|
573
|
+
elif isinstance(uncertainty, list):
|
574
|
+
return [visualize_uncertainty_one(img, idx) for idx, img in enumerate(uncertainty)]
|
575
|
+
else:
|
576
|
+
raise ValueError(f"Unexpected input type: {type(uncertainty)}")
|