diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,756 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ T5EncoderModel,
21
+ T5Tokenizer,
22
+ T5TokenizerFast,
23
+ )
24
+
25
+ from ...models import AutoencoderOobleck, StableAudioDiTModel
26
+ from ...models.embeddings import get_1d_rotary_pos_embed
27
+ from ...schedulers import EDMDPMSolverMultistepScheduler
28
+ from ...utils import (
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ )
33
+ from ...utils.torch_utils import randn_tensor
34
+ from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
35
+ from .modeling_stable_audio import StableAudioProjectionModel
36
+
37
+
38
+ if is_torch_xla_available():
39
+ import torch_xla.core.xla_model as xm
40
+
41
+ XLA_AVAILABLE = True
42
+ else:
43
+ XLA_AVAILABLE = False
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+ EXAMPLE_DOC_STRING = """
48
+ Examples:
49
+ ```py
50
+ >>> import scipy
51
+ >>> import torch
52
+ >>> import soundfile as sf
53
+ >>> from diffusers import StableAudioPipeline
54
+
55
+ >>> repo_id = "stabilityai/stable-audio-open-1.0"
56
+ >>> pipe = StableAudioPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
57
+ >>> pipe = pipe.to("cuda")
58
+
59
+ >>> # define the prompts
60
+ >>> prompt = "The sound of a hammer hitting a wooden surface."
61
+ >>> negative_prompt = "Low quality."
62
+
63
+ >>> # set the seed for generator
64
+ >>> generator = torch.Generator("cuda").manual_seed(0)
65
+
66
+ >>> # run the generation
67
+ >>> audio = pipe(
68
+ ... prompt,
69
+ ... negative_prompt=negative_prompt,
70
+ ... num_inference_steps=200,
71
+ ... audio_end_in_s=10.0,
72
+ ... num_waveforms_per_prompt=3,
73
+ ... generator=generator,
74
+ ... ).audios
75
+
76
+ >>> output = audio[0].T.float().cpu().numpy()
77
+ >>> sf.write("hammer.wav", output, pipe.vae.sampling_rate)
78
+ ```
79
+ """
80
+
81
+
82
+ class StableAudioPipeline(DiffusionPipeline):
83
+ r"""
84
+ Pipeline for text-to-audio generation using StableAudio.
85
+
86
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
87
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
88
+
89
+ Args:
90
+ vae ([`AutoencoderOobleck`]):
91
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
92
+ text_encoder ([`~transformers.T5EncoderModel`]):
93
+ Frozen text-encoder. StableAudio uses the encoder of
94
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
95
+ [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) variant.
96
+ projection_model ([`StableAudioProjectionModel`]):
97
+ A trained model used to linearly project the hidden-states from the text encoder model and the start and
98
+ end seconds. The projected hidden-states from the encoder and the conditional seconds are concatenated to
99
+ give the input to the transformer model.
100
+ tokenizer ([`~transformers.T5Tokenizer`]):
101
+ Tokenizer to tokenize text for the frozen text-encoder.
102
+ transformer ([`StableAudioDiTModel`]):
103
+ A `StableAudioDiTModel` to denoise the encoded audio latents.
104
+ scheduler ([`EDMDPMSolverMultistepScheduler`]):
105
+ A scheduler to be used in combination with `transformer` to denoise the encoded audio latents.
106
+ """
107
+
108
+ model_cpu_offload_seq = "text_encoder->projection_model->transformer->vae"
109
+
110
+ def __init__(
111
+ self,
112
+ vae: AutoencoderOobleck,
113
+ text_encoder: T5EncoderModel,
114
+ projection_model: StableAudioProjectionModel,
115
+ tokenizer: Union[T5Tokenizer, T5TokenizerFast],
116
+ transformer: StableAudioDiTModel,
117
+ scheduler: EDMDPMSolverMultistepScheduler,
118
+ ):
119
+ super().__init__()
120
+
121
+ self.register_modules(
122
+ vae=vae,
123
+ text_encoder=text_encoder,
124
+ projection_model=projection_model,
125
+ tokenizer=tokenizer,
126
+ transformer=transformer,
127
+ scheduler=scheduler,
128
+ )
129
+ self.rotary_embed_dim = self.transformer.config.attention_head_dim // 2
130
+
131
+ # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing
132
+ def enable_vae_slicing(self):
133
+ r"""
134
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
135
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
136
+ """
137
+ self.vae.enable_slicing()
138
+
139
+ # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing
140
+ def disable_vae_slicing(self):
141
+ r"""
142
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
143
+ computing decoding in one step.
144
+ """
145
+ self.vae.disable_slicing()
146
+
147
+ def encode_prompt(
148
+ self,
149
+ prompt,
150
+ device,
151
+ do_classifier_free_guidance,
152
+ negative_prompt=None,
153
+ prompt_embeds: Optional[torch.Tensor] = None,
154
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
155
+ attention_mask: Optional[torch.LongTensor] = None,
156
+ negative_attention_mask: Optional[torch.LongTensor] = None,
157
+ ):
158
+ if prompt is not None and isinstance(prompt, str):
159
+ batch_size = 1
160
+ elif prompt is not None and isinstance(prompt, list):
161
+ batch_size = len(prompt)
162
+ else:
163
+ batch_size = prompt_embeds.shape[0]
164
+
165
+ if prompt_embeds is None:
166
+ # 1. Tokenize text
167
+ text_inputs = self.tokenizer(
168
+ prompt,
169
+ padding="max_length",
170
+ max_length=self.tokenizer.model_max_length,
171
+ truncation=True,
172
+ return_tensors="pt",
173
+ )
174
+ text_input_ids = text_inputs.input_ids
175
+ attention_mask = text_inputs.attention_mask
176
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
177
+
178
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
179
+ text_input_ids, untruncated_ids
180
+ ):
181
+ removed_text = self.tokenizer.batch_decode(
182
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
183
+ )
184
+ logger.warning(
185
+ f"The following part of your input was truncated because {self.text_encoder.config.model_type} can "
186
+ f"only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}"
187
+ )
188
+
189
+ text_input_ids = text_input_ids.to(device)
190
+ attention_mask = attention_mask.to(device)
191
+
192
+ # 2. Text encoder forward
193
+ self.text_encoder.eval()
194
+ prompt_embeds = self.text_encoder(
195
+ text_input_ids,
196
+ attention_mask=attention_mask,
197
+ )
198
+ prompt_embeds = prompt_embeds[0]
199
+
200
+ if do_classifier_free_guidance and negative_prompt is not None:
201
+ uncond_tokens: List[str]
202
+ if type(prompt) is not type(negative_prompt):
203
+ raise TypeError(
204
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
205
+ f" {type(prompt)}."
206
+ )
207
+ elif isinstance(negative_prompt, str):
208
+ uncond_tokens = [negative_prompt]
209
+ elif batch_size != len(negative_prompt):
210
+ raise ValueError(
211
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
212
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
213
+ " the batch size of `prompt`."
214
+ )
215
+ else:
216
+ uncond_tokens = negative_prompt
217
+
218
+ # 1. Tokenize text
219
+ uncond_input = self.tokenizer(
220
+ uncond_tokens,
221
+ padding="max_length",
222
+ max_length=self.tokenizer.model_max_length,
223
+ truncation=True,
224
+ return_tensors="pt",
225
+ )
226
+
227
+ uncond_input_ids = uncond_input.input_ids.to(device)
228
+ negative_attention_mask = uncond_input.attention_mask.to(device)
229
+
230
+ # 2. Text encoder forward
231
+ self.text_encoder.eval()
232
+ negative_prompt_embeds = self.text_encoder(
233
+ uncond_input_ids,
234
+ attention_mask=negative_attention_mask,
235
+ )
236
+ negative_prompt_embeds = negative_prompt_embeds[0]
237
+
238
+ if negative_attention_mask is not None:
239
+ # set the masked tokens to the null embed
240
+ negative_prompt_embeds = torch.where(
241
+ negative_attention_mask.to(torch.bool).unsqueeze(2), negative_prompt_embeds, 0.0
242
+ )
243
+
244
+ # 3. Project prompt_embeds and negative_prompt_embeds
245
+ if do_classifier_free_guidance and negative_prompt_embeds is not None:
246
+ # For classifier free guidance, we need to do two forward passes.
247
+ # Here we concatenate the negative and text embeddings into a single batch
248
+ # to avoid doing two forward passes
249
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
250
+ if attention_mask is not None and negative_attention_mask is None:
251
+ negative_attention_mask = torch.ones_like(attention_mask)
252
+ elif attention_mask is None and negative_attention_mask is not None:
253
+ attention_mask = torch.ones_like(negative_attention_mask)
254
+
255
+ if attention_mask is not None:
256
+ attention_mask = torch.cat([negative_attention_mask, attention_mask])
257
+
258
+ prompt_embeds = self.projection_model(
259
+ text_hidden_states=prompt_embeds,
260
+ ).text_hidden_states
261
+ if attention_mask is not None:
262
+ prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
263
+ prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
264
+
265
+ return prompt_embeds
266
+
267
+ def encode_duration(
268
+ self,
269
+ audio_start_in_s,
270
+ audio_end_in_s,
271
+ device,
272
+ do_classifier_free_guidance,
273
+ batch_size,
274
+ ):
275
+ audio_start_in_s = audio_start_in_s if isinstance(audio_start_in_s, list) else [audio_start_in_s]
276
+ audio_end_in_s = audio_end_in_s if isinstance(audio_end_in_s, list) else [audio_end_in_s]
277
+
278
+ if len(audio_start_in_s) == 1:
279
+ audio_start_in_s = audio_start_in_s * batch_size
280
+ if len(audio_end_in_s) == 1:
281
+ audio_end_in_s = audio_end_in_s * batch_size
282
+
283
+ # Cast the inputs to floats
284
+ audio_start_in_s = [float(x) for x in audio_start_in_s]
285
+ audio_start_in_s = torch.tensor(audio_start_in_s).to(device)
286
+
287
+ audio_end_in_s = [float(x) for x in audio_end_in_s]
288
+ audio_end_in_s = torch.tensor(audio_end_in_s).to(device)
289
+
290
+ projection_output = self.projection_model(
291
+ start_seconds=audio_start_in_s,
292
+ end_seconds=audio_end_in_s,
293
+ )
294
+ seconds_start_hidden_states = projection_output.seconds_start_hidden_states
295
+ seconds_end_hidden_states = projection_output.seconds_end_hidden_states
296
+
297
+ # For classifier free guidance, we need to do two forward passes.
298
+ # Here we repeat the audio hidden states to avoid doing two forward passes
299
+ if do_classifier_free_guidance:
300
+ seconds_start_hidden_states = torch.cat([seconds_start_hidden_states, seconds_start_hidden_states], dim=0)
301
+ seconds_end_hidden_states = torch.cat([seconds_end_hidden_states, seconds_end_hidden_states], dim=0)
302
+
303
+ return seconds_start_hidden_states, seconds_end_hidden_states
304
+
305
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
306
+ def prepare_extra_step_kwargs(self, generator, eta):
307
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
308
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
309
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
310
+ # and should be between [0, 1]
311
+
312
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
313
+ extra_step_kwargs = {}
314
+ if accepts_eta:
315
+ extra_step_kwargs["eta"] = eta
316
+
317
+ # check if the scheduler accepts generator
318
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
319
+ if accepts_generator:
320
+ extra_step_kwargs["generator"] = generator
321
+ return extra_step_kwargs
322
+
323
+ def check_inputs(
324
+ self,
325
+ prompt,
326
+ audio_start_in_s,
327
+ audio_end_in_s,
328
+ callback_steps,
329
+ negative_prompt=None,
330
+ prompt_embeds=None,
331
+ negative_prompt_embeds=None,
332
+ attention_mask=None,
333
+ negative_attention_mask=None,
334
+ initial_audio_waveforms=None,
335
+ initial_audio_sampling_rate=None,
336
+ ):
337
+ if audio_end_in_s < audio_start_in_s:
338
+ raise ValueError(
339
+ f"`audio_end_in_s={audio_end_in_s}' must be higher than 'audio_start_in_s={audio_start_in_s}` but "
340
+ )
341
+
342
+ if (
343
+ audio_start_in_s < self.projection_model.config.min_value
344
+ or audio_start_in_s > self.projection_model.config.max_value
345
+ ):
346
+ raise ValueError(
347
+ f"`audio_start_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but "
348
+ f"is {audio_start_in_s}."
349
+ )
350
+
351
+ if (
352
+ audio_end_in_s < self.projection_model.config.min_value
353
+ or audio_end_in_s > self.projection_model.config.max_value
354
+ ):
355
+ raise ValueError(
356
+ f"`audio_end_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but "
357
+ f"is {audio_end_in_s}."
358
+ )
359
+
360
+ if (callback_steps is None) or (
361
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
362
+ ):
363
+ raise ValueError(
364
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
365
+ f" {type(callback_steps)}."
366
+ )
367
+
368
+ if prompt is not None and prompt_embeds is not None:
369
+ raise ValueError(
370
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
371
+ " only forward one of the two."
372
+ )
373
+ elif prompt is None and (prompt_embeds is None):
374
+ raise ValueError(
375
+ "Provide either `prompt`, or `prompt_embeds`. Cannot leave"
376
+ "`prompt` undefined without specifying `prompt_embeds`."
377
+ )
378
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
379
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
380
+
381
+ if negative_prompt is not None and negative_prompt_embeds is not None:
382
+ raise ValueError(
383
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
384
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
385
+ )
386
+
387
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
388
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
389
+ raise ValueError(
390
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
391
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
392
+ f" {negative_prompt_embeds.shape}."
393
+ )
394
+ if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
395
+ raise ValueError(
396
+ "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
397
+ f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
398
+ )
399
+
400
+ if initial_audio_sampling_rate is None and initial_audio_waveforms is not None:
401
+ raise ValueError(
402
+ "`initial_audio_waveforms' is provided but the sampling rate is not. Make sure to pass `initial_audio_sampling_rate`."
403
+ )
404
+
405
+ if initial_audio_sampling_rate is not None and initial_audio_sampling_rate != self.vae.sampling_rate:
406
+ raise ValueError(
407
+ f"`initial_audio_sampling_rate` must be {self.vae.hop_length}' but is `{initial_audio_sampling_rate}`."
408
+ "Make sure to resample the `initial_audio_waveforms` and to correct the sampling rate. "
409
+ )
410
+
411
+ def prepare_latents(
412
+ self,
413
+ batch_size,
414
+ num_channels_vae,
415
+ sample_size,
416
+ dtype,
417
+ device,
418
+ generator,
419
+ latents=None,
420
+ initial_audio_waveforms=None,
421
+ num_waveforms_per_prompt=None,
422
+ audio_channels=None,
423
+ ):
424
+ shape = (batch_size, num_channels_vae, sample_size)
425
+ if isinstance(generator, list) and len(generator) != batch_size:
426
+ raise ValueError(
427
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
428
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
429
+ )
430
+
431
+ if latents is None:
432
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
433
+ else:
434
+ latents = latents.to(device)
435
+
436
+ # scale the initial noise by the standard deviation required by the scheduler
437
+ latents = latents * self.scheduler.init_noise_sigma
438
+
439
+ # encode the initial audio for use by the model
440
+ if initial_audio_waveforms is not None:
441
+ # check dimension
442
+ if initial_audio_waveforms.ndim == 2:
443
+ initial_audio_waveforms = initial_audio_waveforms.unsqueeze(1)
444
+ elif initial_audio_waveforms.ndim != 3:
445
+ raise ValueError(
446
+ f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but has `{initial_audio_waveforms.ndim}` dimensions"
447
+ )
448
+
449
+ audio_vae_length = int(self.transformer.config.sample_size) * self.vae.hop_length
450
+ audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
451
+
452
+ # check num_channels
453
+ if initial_audio_waveforms.shape[1] == 1 and audio_channels == 2:
454
+ initial_audio_waveforms = initial_audio_waveforms.repeat(1, 2, 1)
455
+ elif initial_audio_waveforms.shape[1] == 2 and audio_channels == 1:
456
+ initial_audio_waveforms = initial_audio_waveforms.mean(1, keepdim=True)
457
+
458
+ if initial_audio_waveforms.shape[:2] != audio_shape[:2]:
459
+ raise ValueError(
460
+ f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but is of shape `{initial_audio_waveforms.shape}`"
461
+ )
462
+
463
+ # crop or pad
464
+ audio_length = initial_audio_waveforms.shape[-1]
465
+ if audio_length < audio_vae_length:
466
+ logger.warning(
467
+ f"The provided input waveform is shorter ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be padded."
468
+ )
469
+ elif audio_length > audio_vae_length:
470
+ logger.warning(
471
+ f"The provided input waveform is longer ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be cropped."
472
+ )
473
+
474
+ audio = initial_audio_waveforms.new_zeros(audio_shape)
475
+ audio[:, :, : min(audio_length, audio_vae_length)] = initial_audio_waveforms[:, :, :audio_vae_length]
476
+
477
+ encoded_audio = self.vae.encode(audio).latent_dist.sample(generator)
478
+ encoded_audio = encoded_audio.repeat((num_waveforms_per_prompt, 1, 1))
479
+ latents = encoded_audio + latents
480
+ return latents
481
+
482
+ @torch.no_grad()
483
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
484
+ def __call__(
485
+ self,
486
+ prompt: Union[str, List[str]] = None,
487
+ audio_end_in_s: Optional[float] = None,
488
+ audio_start_in_s: Optional[float] = 0.0,
489
+ num_inference_steps: int = 100,
490
+ guidance_scale: float = 7.0,
491
+ negative_prompt: Optional[Union[str, List[str]]] = None,
492
+ num_waveforms_per_prompt: Optional[int] = 1,
493
+ eta: float = 0.0,
494
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
495
+ latents: Optional[torch.Tensor] = None,
496
+ initial_audio_waveforms: Optional[torch.Tensor] = None,
497
+ initial_audio_sampling_rate: Optional[torch.Tensor] = None,
498
+ prompt_embeds: Optional[torch.Tensor] = None,
499
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
500
+ attention_mask: Optional[torch.LongTensor] = None,
501
+ negative_attention_mask: Optional[torch.LongTensor] = None,
502
+ return_dict: bool = True,
503
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
504
+ callback_steps: Optional[int] = 1,
505
+ output_type: Optional[str] = "pt",
506
+ ):
507
+ r"""
508
+ The call function to the pipeline for generation.
509
+
510
+ Args:
511
+ prompt (`str` or `List[str]`, *optional*):
512
+ The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
513
+ audio_end_in_s (`float`, *optional*, defaults to 47.55):
514
+ Audio end index in seconds.
515
+ audio_start_in_s (`float`, *optional*, defaults to 0):
516
+ Audio start index in seconds.
517
+ num_inference_steps (`int`, *optional*, defaults to 100):
518
+ The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
519
+ expense of slower inference.
520
+ guidance_scale (`float`, *optional*, defaults to 7.0):
521
+ A higher guidance scale value encourages the model to generate audio that is closely linked to the text
522
+ `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
523
+ negative_prompt (`str` or `List[str]`, *optional*):
524
+ The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
525
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
526
+ num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
527
+ The number of waveforms to generate per prompt.
528
+ eta (`float`, *optional*, defaults to 0.0):
529
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
530
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
531
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
532
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
533
+ generation deterministic.
534
+ latents (`torch.Tensor`, *optional*):
535
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for audio
536
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
537
+ tensor is generated by sampling using the supplied random `generator`.
538
+ initial_audio_waveforms (`torch.Tensor`, *optional*):
539
+ Optional initial audio waveforms to use as the initial audio waveform for generation. Must be of shape
540
+ `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)`, where `batch_size`
541
+ corresponds to the number of prompts passed to the model.
542
+ initial_audio_sampling_rate (`int`, *optional*):
543
+ Sampling rate of the `initial_audio_waveforms`, if they are provided. Must be the same as the model.
544
+ prompt_embeds (`torch.Tensor`, *optional*):
545
+ Pre-computed text embeddings from the text encoder model. Can be used to easily tweak text inputs,
546
+ *e.g.* prompt weighting. If not provided, text embeddings will be computed from `prompt` input
547
+ argument.
548
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
549
+ Pre-computed negative text embeddings from the text encoder model. Can be used to easily tweak text
550
+ inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
551
+ `negative_prompt` input argument.
552
+ attention_mask (`torch.LongTensor`, *optional*):
553
+ Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
554
+ be computed from `prompt` input argument.
555
+ negative_attention_mask (`torch.LongTensor`, *optional*):
556
+ Pre-computed attention mask to be applied to the `negative_text_audio_duration_embeds`.
557
+ return_dict (`bool`, *optional*, defaults to `True`):
558
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
559
+ plain tuple.
560
+ callback (`Callable`, *optional*):
561
+ A function that calls every `callback_steps` steps during inference. The function is called with the
562
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
563
+ callback_steps (`int`, *optional*, defaults to 1):
564
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
565
+ every step.
566
+ output_type (`str`, *optional*, defaults to `"pt"`):
567
+ The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
568
+ `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
569
+ model (LDM) output.
570
+
571
+ Examples:
572
+
573
+ Returns:
574
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
575
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
576
+ otherwise a `tuple` is returned where the first element is a list with the generated audio.
577
+ """
578
+ # 0. Convert audio input length from seconds to latent length
579
+ downsample_ratio = self.vae.hop_length
580
+
581
+ max_audio_length_in_s = self.transformer.config.sample_size * downsample_ratio / self.vae.config.sampling_rate
582
+ if audio_end_in_s is None:
583
+ audio_end_in_s = max_audio_length_in_s
584
+
585
+ if audio_end_in_s - audio_start_in_s > max_audio_length_in_s:
586
+ raise ValueError(
587
+ f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer than the model maximum possible length ({max_audio_length_in_s}). Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'."
588
+ )
589
+
590
+ waveform_start = int(audio_start_in_s * self.vae.config.sampling_rate)
591
+ waveform_end = int(audio_end_in_s * self.vae.config.sampling_rate)
592
+ waveform_length = int(self.transformer.config.sample_size)
593
+
594
+ # 1. Check inputs. Raise error if not correct
595
+ self.check_inputs(
596
+ prompt,
597
+ audio_start_in_s,
598
+ audio_end_in_s,
599
+ callback_steps,
600
+ negative_prompt,
601
+ prompt_embeds,
602
+ negative_prompt_embeds,
603
+ attention_mask,
604
+ negative_attention_mask,
605
+ initial_audio_waveforms,
606
+ initial_audio_sampling_rate,
607
+ )
608
+
609
+ # 2. Define call parameters
610
+ if prompt is not None and isinstance(prompt, str):
611
+ batch_size = 1
612
+ elif prompt is not None and isinstance(prompt, list):
613
+ batch_size = len(prompt)
614
+ else:
615
+ batch_size = prompt_embeds.shape[0]
616
+
617
+ device = self._execution_device
618
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
619
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
620
+ # corresponds to doing no classifier free guidance.
621
+ do_classifier_free_guidance = guidance_scale > 1.0
622
+
623
+ # 3. Encode input prompt
624
+ prompt_embeds = self.encode_prompt(
625
+ prompt,
626
+ device,
627
+ do_classifier_free_guidance,
628
+ negative_prompt,
629
+ prompt_embeds,
630
+ negative_prompt_embeds,
631
+ attention_mask,
632
+ negative_attention_mask,
633
+ )
634
+
635
+ # Encode duration
636
+ seconds_start_hidden_states, seconds_end_hidden_states = self.encode_duration(
637
+ audio_start_in_s,
638
+ audio_end_in_s,
639
+ device,
640
+ do_classifier_free_guidance and (negative_prompt is not None or negative_prompt_embeds is not None),
641
+ batch_size,
642
+ )
643
+
644
+ # Create text_audio_duration_embeds and audio_duration_embeds
645
+ text_audio_duration_embeds = torch.cat(
646
+ [prompt_embeds, seconds_start_hidden_states, seconds_end_hidden_states], dim=1
647
+ )
648
+
649
+ audio_duration_embeds = torch.cat([seconds_start_hidden_states, seconds_end_hidden_states], dim=2)
650
+
651
+ # In case of classifier free guidance without negative prompt, we need to create unconditional embeddings and
652
+ # to concatenate it to the embeddings
653
+ if do_classifier_free_guidance and negative_prompt_embeds is None and negative_prompt is None:
654
+ negative_text_audio_duration_embeds = torch.zeros_like(
655
+ text_audio_duration_embeds, device=text_audio_duration_embeds.device
656
+ )
657
+ text_audio_duration_embeds = torch.cat(
658
+ [negative_text_audio_duration_embeds, text_audio_duration_embeds], dim=0
659
+ )
660
+ audio_duration_embeds = torch.cat([audio_duration_embeds, audio_duration_embeds], dim=0)
661
+
662
+ bs_embed, seq_len, hidden_size = text_audio_duration_embeds.shape
663
+ # duplicate audio_duration_embeds and text_audio_duration_embeds for each generation per prompt, using mps friendly method
664
+ text_audio_duration_embeds = text_audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1)
665
+ text_audio_duration_embeds = text_audio_duration_embeds.view(
666
+ bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
667
+ )
668
+
669
+ audio_duration_embeds = audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1)
670
+ audio_duration_embeds = audio_duration_embeds.view(
671
+ bs_embed * num_waveforms_per_prompt, -1, audio_duration_embeds.shape[-1]
672
+ )
673
+
674
+ # 4. Prepare timesteps
675
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
676
+ timesteps = self.scheduler.timesteps
677
+
678
+ # 5. Prepare latent variables
679
+ num_channels_vae = self.transformer.config.in_channels
680
+ latents = self.prepare_latents(
681
+ batch_size * num_waveforms_per_prompt,
682
+ num_channels_vae,
683
+ waveform_length,
684
+ text_audio_duration_embeds.dtype,
685
+ device,
686
+ generator,
687
+ latents,
688
+ initial_audio_waveforms,
689
+ num_waveforms_per_prompt,
690
+ audio_channels=self.vae.config.audio_channels,
691
+ )
692
+
693
+ # 6. Prepare extra step kwargs
694
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
695
+
696
+ # 7. Prepare rotary positional embedding
697
+ rotary_embedding = get_1d_rotary_pos_embed(
698
+ self.rotary_embed_dim,
699
+ latents.shape[2] + audio_duration_embeds.shape[1],
700
+ use_real=True,
701
+ repeat_interleave_real=False,
702
+ )
703
+
704
+ # 8. Denoising loop
705
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
706
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
707
+ for i, t in enumerate(timesteps):
708
+ # expand the latents if we are doing classifier free guidance
709
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
710
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
711
+
712
+ # predict the noise residual
713
+ noise_pred = self.transformer(
714
+ latent_model_input,
715
+ t.unsqueeze(0),
716
+ encoder_hidden_states=text_audio_duration_embeds,
717
+ global_hidden_states=audio_duration_embeds,
718
+ rotary_embedding=rotary_embedding,
719
+ return_dict=False,
720
+ )[0]
721
+
722
+ # perform guidance
723
+ if do_classifier_free_guidance:
724
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
725
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
726
+
727
+ # compute the previous noisy sample x_t -> x_t-1
728
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
729
+
730
+ # call the callback, if provided
731
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
732
+ progress_bar.update()
733
+ if callback is not None and i % callback_steps == 0:
734
+ step_idx = i // getattr(self.scheduler, "order", 1)
735
+ callback(step_idx, t, latents)
736
+
737
+ if XLA_AVAILABLE:
738
+ xm.mark_step()
739
+
740
+ # 9. Post-processing
741
+ if not output_type == "latent":
742
+ audio = self.vae.decode(latents).sample
743
+ else:
744
+ return AudioPipelineOutput(audios=latents)
745
+
746
+ audio = audio[:, :, waveform_start:waveform_end]
747
+
748
+ if output_type == "np":
749
+ audio = audio.cpu().float().numpy()
750
+
751
+ self.maybe_free_model_hooks()
752
+
753
+ if not return_dict:
754
+ return (audio,)
755
+
756
+ return AudioPipelineOutput(audios=audio)