diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1328 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
24
+
25
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
26
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
27
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
28
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
29
+ from ...models.lora import adjust_lora_scale_text_encoder
30
+ from ...schedulers import KarrasDiffusionSchedulers
31
+ from ...utils import (
32
+ USE_PEFT_BACKEND,
33
+ logging,
34
+ replace_example_docstring,
35
+ scale_lora_layers,
36
+ unscale_lora_layers,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
41
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
42
+ from .pag_utils import PAGMixin
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+
48
+ EXAMPLE_DOC_STRING = """
49
+ Examples:
50
+ ```py
51
+ >>> # !pip install opencv-python transformers accelerate
52
+ >>> from diffusers import AutoPipelineForText2Image, ControlNetModel, UniPCMultistepScheduler
53
+ >>> from diffusers.utils import load_image
54
+ >>> import numpy as np
55
+ >>> import torch
56
+
57
+ >>> import cv2
58
+ >>> from PIL import Image
59
+
60
+ >>> # download an image
61
+ >>> image = load_image(
62
+ ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
63
+ ... )
64
+ >>> image = np.array(image)
65
+
66
+ >>> # get canny image
67
+ >>> image = cv2.Canny(image, 100, 200)
68
+ >>> image = image[:, :, None]
69
+ >>> image = np.concatenate([image, image, image], axis=2)
70
+ >>> canny_image = Image.fromarray(image)
71
+
72
+ >>> # load control net and stable diffusion v1-5
73
+ >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
74
+ >>> pipe = AutoPipelineForText2Image.from_pretrained(
75
+ ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, enable_pag=True
76
+ ... )
77
+
78
+ >>> # speed up diffusion process with faster scheduler and memory optimization
79
+ >>> # remove following line if xformers is not installed
80
+ >>> pipe.enable_xformers_memory_efficient_attention()
81
+
82
+ >>> pipe.enable_model_cpu_offload()
83
+
84
+ >>> # generate image
85
+ >>> generator = torch.manual_seed(0)
86
+ >>> image = pipe(
87
+ ... "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting",
88
+ ... guidance_scale=7.5,
89
+ ... generator=generator,
90
+ ... image=canny_image,
91
+ ... pag_scale=10,
92
+ ... ).images[0]
93
+ ```
94
+ """
95
+
96
+
97
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
98
+ def retrieve_timesteps(
99
+ scheduler,
100
+ num_inference_steps: Optional[int] = None,
101
+ device: Optional[Union[str, torch.device]] = None,
102
+ timesteps: Optional[List[int]] = None,
103
+ sigmas: Optional[List[float]] = None,
104
+ **kwargs,
105
+ ):
106
+ r"""
107
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
108
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
109
+
110
+ Args:
111
+ scheduler (`SchedulerMixin`):
112
+ The scheduler to get timesteps from.
113
+ num_inference_steps (`int`):
114
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
115
+ must be `None`.
116
+ device (`str` or `torch.device`, *optional*):
117
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
118
+ timesteps (`List[int]`, *optional*):
119
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
120
+ `num_inference_steps` and `sigmas` must be `None`.
121
+ sigmas (`List[float]`, *optional*):
122
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
123
+ `num_inference_steps` and `timesteps` must be `None`.
124
+
125
+ Returns:
126
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
127
+ second element is the number of inference steps.
128
+ """
129
+ if timesteps is not None and sigmas is not None:
130
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
131
+ if timesteps is not None:
132
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
133
+ if not accepts_timesteps:
134
+ raise ValueError(
135
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
136
+ f" timestep schedules. Please check whether you are using the correct scheduler."
137
+ )
138
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ num_inference_steps = len(timesteps)
141
+ elif sigmas is not None:
142
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
143
+ if not accept_sigmas:
144
+ raise ValueError(
145
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
146
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
147
+ )
148
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
149
+ timesteps = scheduler.timesteps
150
+ num_inference_steps = len(timesteps)
151
+ else:
152
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
153
+ timesteps = scheduler.timesteps
154
+ return timesteps, num_inference_steps
155
+
156
+
157
+ class StableDiffusionControlNetPAGPipeline(
158
+ DiffusionPipeline,
159
+ StableDiffusionMixin,
160
+ TextualInversionLoaderMixin,
161
+ StableDiffusionLoraLoaderMixin,
162
+ IPAdapterMixin,
163
+ FromSingleFileMixin,
164
+ PAGMixin,
165
+ ):
166
+ r"""
167
+ Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
168
+
169
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
170
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
171
+
172
+ The pipeline also inherits the following loading methods:
173
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
174
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
175
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
176
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
177
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
178
+
179
+ Args:
180
+ vae ([`AutoencoderKL`]):
181
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
182
+ text_encoder ([`~transformers.CLIPTextModel`]):
183
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
184
+ tokenizer ([`~transformers.CLIPTokenizer`]):
185
+ A `CLIPTokenizer` to tokenize text.
186
+ unet ([`UNet2DConditionModel`]):
187
+ A `UNet2DConditionModel` to denoise the encoded image latents.
188
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
189
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
190
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
191
+ additional conditioning.
192
+ scheduler ([`SchedulerMixin`]):
193
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
194
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
195
+ safety_checker ([`StableDiffusionSafetyChecker`]):
196
+ Classification module that estimates whether generated images could be considered offensive or harmful.
197
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
198
+ about a model's potential harms.
199
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
200
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
201
+ """
202
+
203
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
204
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
205
+ _exclude_from_cpu_offload = ["safety_checker"]
206
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
207
+
208
+ def __init__(
209
+ self,
210
+ vae: AutoencoderKL,
211
+ text_encoder: CLIPTextModel,
212
+ tokenizer: CLIPTokenizer,
213
+ unet: UNet2DConditionModel,
214
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
215
+ scheduler: KarrasDiffusionSchedulers,
216
+ safety_checker: StableDiffusionSafetyChecker,
217
+ feature_extractor: CLIPImageProcessor,
218
+ image_encoder: CLIPVisionModelWithProjection = None,
219
+ requires_safety_checker: bool = True,
220
+ pag_applied_layers: Union[str, List[str]] = "mid",
221
+ ):
222
+ super().__init__()
223
+
224
+ if safety_checker is None and requires_safety_checker:
225
+ logger.warning(
226
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
227
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
228
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
229
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
230
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
231
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
232
+ )
233
+
234
+ if safety_checker is not None and feature_extractor is None:
235
+ raise ValueError(
236
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
237
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
238
+ )
239
+
240
+ if isinstance(controlnet, (list, tuple)):
241
+ controlnet = MultiControlNetModel(controlnet)
242
+
243
+ self.register_modules(
244
+ vae=vae,
245
+ text_encoder=text_encoder,
246
+ tokenizer=tokenizer,
247
+ unet=unet,
248
+ controlnet=controlnet,
249
+ scheduler=scheduler,
250
+ safety_checker=safety_checker,
251
+ feature_extractor=feature_extractor,
252
+ image_encoder=image_encoder,
253
+ )
254
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
255
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
256
+ self.control_image_processor = VaeImageProcessor(
257
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
258
+ )
259
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
260
+
261
+ self.set_pag_applied_layers(pag_applied_layers)
262
+
263
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
264
+ def encode_prompt(
265
+ self,
266
+ prompt,
267
+ device,
268
+ num_images_per_prompt,
269
+ do_classifier_free_guidance,
270
+ negative_prompt=None,
271
+ prompt_embeds: Optional[torch.Tensor] = None,
272
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
273
+ lora_scale: Optional[float] = None,
274
+ clip_skip: Optional[int] = None,
275
+ ):
276
+ r"""
277
+ Encodes the prompt into text encoder hidden states.
278
+
279
+ Args:
280
+ prompt (`str` or `List[str]`, *optional*):
281
+ prompt to be encoded
282
+ device: (`torch.device`):
283
+ torch device
284
+ num_images_per_prompt (`int`):
285
+ number of images that should be generated per prompt
286
+ do_classifier_free_guidance (`bool`):
287
+ whether to use classifier free guidance or not
288
+ negative_prompt (`str` or `List[str]`, *optional*):
289
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
290
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
291
+ less than `1`).
292
+ prompt_embeds (`torch.Tensor`, *optional*):
293
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
294
+ provided, text embeddings will be generated from `prompt` input argument.
295
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
296
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
297
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
298
+ argument.
299
+ lora_scale (`float`, *optional*):
300
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
301
+ clip_skip (`int`, *optional*):
302
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
303
+ the output of the pre-final layer will be used for computing the prompt embeddings.
304
+ """
305
+ # set lora scale so that monkey patched LoRA
306
+ # function of text encoder can correctly access it
307
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
308
+ self._lora_scale = lora_scale
309
+
310
+ # dynamically adjust the LoRA scale
311
+ if not USE_PEFT_BACKEND:
312
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
313
+ else:
314
+ scale_lora_layers(self.text_encoder, lora_scale)
315
+
316
+ if prompt is not None and isinstance(prompt, str):
317
+ batch_size = 1
318
+ elif prompt is not None and isinstance(prompt, list):
319
+ batch_size = len(prompt)
320
+ else:
321
+ batch_size = prompt_embeds.shape[0]
322
+
323
+ if prompt_embeds is None:
324
+ # textual inversion: process multi-vector tokens if necessary
325
+ if isinstance(self, TextualInversionLoaderMixin):
326
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
327
+
328
+ text_inputs = self.tokenizer(
329
+ prompt,
330
+ padding="max_length",
331
+ max_length=self.tokenizer.model_max_length,
332
+ truncation=True,
333
+ return_tensors="pt",
334
+ )
335
+ text_input_ids = text_inputs.input_ids
336
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
337
+
338
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
339
+ text_input_ids, untruncated_ids
340
+ ):
341
+ removed_text = self.tokenizer.batch_decode(
342
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
343
+ )
344
+ logger.warning(
345
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
346
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
347
+ )
348
+
349
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
350
+ attention_mask = text_inputs.attention_mask.to(device)
351
+ else:
352
+ attention_mask = None
353
+
354
+ if clip_skip is None:
355
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
356
+ prompt_embeds = prompt_embeds[0]
357
+ else:
358
+ prompt_embeds = self.text_encoder(
359
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
360
+ )
361
+ # Access the `hidden_states` first, that contains a tuple of
362
+ # all the hidden states from the encoder layers. Then index into
363
+ # the tuple to access the hidden states from the desired layer.
364
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
365
+ # We also need to apply the final LayerNorm here to not mess with the
366
+ # representations. The `last_hidden_states` that we typically use for
367
+ # obtaining the final prompt representations passes through the LayerNorm
368
+ # layer.
369
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
370
+
371
+ if self.text_encoder is not None:
372
+ prompt_embeds_dtype = self.text_encoder.dtype
373
+ elif self.unet is not None:
374
+ prompt_embeds_dtype = self.unet.dtype
375
+ else:
376
+ prompt_embeds_dtype = prompt_embeds.dtype
377
+
378
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
379
+
380
+ bs_embed, seq_len, _ = prompt_embeds.shape
381
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
382
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
383
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
384
+
385
+ # get unconditional embeddings for classifier free guidance
386
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
387
+ uncond_tokens: List[str]
388
+ if negative_prompt is None:
389
+ uncond_tokens = [""] * batch_size
390
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
391
+ raise TypeError(
392
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
393
+ f" {type(prompt)}."
394
+ )
395
+ elif isinstance(negative_prompt, str):
396
+ uncond_tokens = [negative_prompt]
397
+ elif batch_size != len(negative_prompt):
398
+ raise ValueError(
399
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
400
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
401
+ " the batch size of `prompt`."
402
+ )
403
+ else:
404
+ uncond_tokens = negative_prompt
405
+
406
+ # textual inversion: process multi-vector tokens if necessary
407
+ if isinstance(self, TextualInversionLoaderMixin):
408
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
409
+
410
+ max_length = prompt_embeds.shape[1]
411
+ uncond_input = self.tokenizer(
412
+ uncond_tokens,
413
+ padding="max_length",
414
+ max_length=max_length,
415
+ truncation=True,
416
+ return_tensors="pt",
417
+ )
418
+
419
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
420
+ attention_mask = uncond_input.attention_mask.to(device)
421
+ else:
422
+ attention_mask = None
423
+
424
+ negative_prompt_embeds = self.text_encoder(
425
+ uncond_input.input_ids.to(device),
426
+ attention_mask=attention_mask,
427
+ )
428
+ negative_prompt_embeds = negative_prompt_embeds[0]
429
+
430
+ if do_classifier_free_guidance:
431
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
432
+ seq_len = negative_prompt_embeds.shape[1]
433
+
434
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
435
+
436
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
437
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
438
+
439
+ if self.text_encoder is not None:
440
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
441
+ # Retrieve the original scale by scaling back the LoRA layers
442
+ unscale_lora_layers(self.text_encoder, lora_scale)
443
+
444
+ return prompt_embeds, negative_prompt_embeds
445
+
446
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
447
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
448
+ dtype = next(self.image_encoder.parameters()).dtype
449
+
450
+ if not isinstance(image, torch.Tensor):
451
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
452
+
453
+ image = image.to(device=device, dtype=dtype)
454
+ if output_hidden_states:
455
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
456
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
457
+ uncond_image_enc_hidden_states = self.image_encoder(
458
+ torch.zeros_like(image), output_hidden_states=True
459
+ ).hidden_states[-2]
460
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
461
+ num_images_per_prompt, dim=0
462
+ )
463
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
464
+ else:
465
+ image_embeds = self.image_encoder(image).image_embeds
466
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
467
+ uncond_image_embeds = torch.zeros_like(image_embeds)
468
+
469
+ return image_embeds, uncond_image_embeds
470
+
471
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
472
+ def prepare_ip_adapter_image_embeds(
473
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
474
+ ):
475
+ image_embeds = []
476
+ if do_classifier_free_guidance:
477
+ negative_image_embeds = []
478
+ if ip_adapter_image_embeds is None:
479
+ if not isinstance(ip_adapter_image, list):
480
+ ip_adapter_image = [ip_adapter_image]
481
+
482
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
483
+ raise ValueError(
484
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
485
+ )
486
+
487
+ for single_ip_adapter_image, image_proj_layer in zip(
488
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
489
+ ):
490
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
491
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
492
+ single_ip_adapter_image, device, 1, output_hidden_state
493
+ )
494
+
495
+ image_embeds.append(single_image_embeds[None, :])
496
+ if do_classifier_free_guidance:
497
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
498
+ else:
499
+ for single_image_embeds in ip_adapter_image_embeds:
500
+ if do_classifier_free_guidance:
501
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
502
+ negative_image_embeds.append(single_negative_image_embeds)
503
+ image_embeds.append(single_image_embeds)
504
+
505
+ ip_adapter_image_embeds = []
506
+ for i, single_image_embeds in enumerate(image_embeds):
507
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
508
+ if do_classifier_free_guidance:
509
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
510
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
511
+
512
+ single_image_embeds = single_image_embeds.to(device=device)
513
+ ip_adapter_image_embeds.append(single_image_embeds)
514
+
515
+ return ip_adapter_image_embeds
516
+
517
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
518
+ def run_safety_checker(self, image, device, dtype):
519
+ if self.safety_checker is None:
520
+ has_nsfw_concept = None
521
+ else:
522
+ if torch.is_tensor(image):
523
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
524
+ else:
525
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
526
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
527
+ image, has_nsfw_concept = self.safety_checker(
528
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
529
+ )
530
+ return image, has_nsfw_concept
531
+
532
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
533
+ def prepare_extra_step_kwargs(self, generator, eta):
534
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
535
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
536
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
537
+ # and should be between [0, 1]
538
+
539
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
540
+ extra_step_kwargs = {}
541
+ if accepts_eta:
542
+ extra_step_kwargs["eta"] = eta
543
+
544
+ # check if the scheduler accepts generator
545
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
546
+ if accepts_generator:
547
+ extra_step_kwargs["generator"] = generator
548
+ return extra_step_kwargs
549
+
550
+ def check_inputs(
551
+ self,
552
+ prompt,
553
+ image,
554
+ negative_prompt=None,
555
+ prompt_embeds=None,
556
+ negative_prompt_embeds=None,
557
+ ip_adapter_image=None,
558
+ ip_adapter_image_embeds=None,
559
+ controlnet_conditioning_scale=1.0,
560
+ control_guidance_start=0.0,
561
+ control_guidance_end=1.0,
562
+ callback_on_step_end_tensor_inputs=None,
563
+ ):
564
+ if callback_on_step_end_tensor_inputs is not None and not all(
565
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
566
+ ):
567
+ raise ValueError(
568
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
569
+ )
570
+
571
+ if prompt is not None and prompt_embeds is not None:
572
+ raise ValueError(
573
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
574
+ " only forward one of the two."
575
+ )
576
+ elif prompt is None and prompt_embeds is None:
577
+ raise ValueError(
578
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
579
+ )
580
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
581
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
582
+
583
+ if negative_prompt is not None and negative_prompt_embeds is not None:
584
+ raise ValueError(
585
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
586
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
587
+ )
588
+
589
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
590
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
591
+ raise ValueError(
592
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
593
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
594
+ f" {negative_prompt_embeds.shape}."
595
+ )
596
+
597
+ # Check `image`
598
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
599
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
600
+ )
601
+ if (
602
+ isinstance(self.controlnet, ControlNetModel)
603
+ or is_compiled
604
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
605
+ ):
606
+ self.check_image(image, prompt, prompt_embeds)
607
+ elif (
608
+ isinstance(self.controlnet, MultiControlNetModel)
609
+ or is_compiled
610
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
611
+ ):
612
+ if not isinstance(image, list):
613
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
614
+
615
+ # When `image` is a nested list:
616
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
617
+ elif any(isinstance(i, list) for i in image):
618
+ transposed_image = [list(t) for t in zip(*image)]
619
+ if len(transposed_image) != len(self.controlnet.nets):
620
+ raise ValueError(
621
+ f"For multiple controlnets: if you pass`image` as a list of list, each sublist must have the same length as the number of controlnets, but the sublists in `image` got {len(transposed_image)} images and {len(self.controlnet.nets)} ControlNets."
622
+ )
623
+ for image_ in transposed_image:
624
+ self.check_image(image_, prompt, prompt_embeds)
625
+ elif len(image) != len(self.controlnet.nets):
626
+ raise ValueError(
627
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
628
+ )
629
+ else:
630
+ for image_ in image:
631
+ self.check_image(image_, prompt, prompt_embeds)
632
+ else:
633
+ assert False
634
+
635
+ # Check `controlnet_conditioning_scale`
636
+ if (
637
+ isinstance(self.controlnet, ControlNetModel)
638
+ or is_compiled
639
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
640
+ ):
641
+ if not isinstance(controlnet_conditioning_scale, float):
642
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
643
+ elif (
644
+ isinstance(self.controlnet, MultiControlNetModel)
645
+ or is_compiled
646
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
647
+ ):
648
+ if isinstance(controlnet_conditioning_scale, list):
649
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
650
+ raise ValueError(
651
+ "A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. "
652
+ "The conditioning scale must be fixed across the batch."
653
+ )
654
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
655
+ self.controlnet.nets
656
+ ):
657
+ raise ValueError(
658
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
659
+ " the same length as the number of controlnets"
660
+ )
661
+ else:
662
+ assert False
663
+
664
+ if not isinstance(control_guidance_start, (tuple, list)):
665
+ control_guidance_start = [control_guidance_start]
666
+
667
+ if not isinstance(control_guidance_end, (tuple, list)):
668
+ control_guidance_end = [control_guidance_end]
669
+
670
+ if len(control_guidance_start) != len(control_guidance_end):
671
+ raise ValueError(
672
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
673
+ )
674
+
675
+ if isinstance(self.controlnet, MultiControlNetModel):
676
+ if len(control_guidance_start) != len(self.controlnet.nets):
677
+ raise ValueError(
678
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
679
+ )
680
+
681
+ for start, end in zip(control_guidance_start, control_guidance_end):
682
+ if start >= end:
683
+ raise ValueError(
684
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
685
+ )
686
+ if start < 0.0:
687
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
688
+ if end > 1.0:
689
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
690
+
691
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
692
+ raise ValueError(
693
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
694
+ )
695
+
696
+ if ip_adapter_image_embeds is not None:
697
+ if not isinstance(ip_adapter_image_embeds, list):
698
+ raise ValueError(
699
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
700
+ )
701
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
702
+ raise ValueError(
703
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
704
+ )
705
+
706
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
707
+ def check_image(self, image, prompt, prompt_embeds):
708
+ image_is_pil = isinstance(image, PIL.Image.Image)
709
+ image_is_tensor = isinstance(image, torch.Tensor)
710
+ image_is_np = isinstance(image, np.ndarray)
711
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
712
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
713
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
714
+
715
+ if (
716
+ not image_is_pil
717
+ and not image_is_tensor
718
+ and not image_is_np
719
+ and not image_is_pil_list
720
+ and not image_is_tensor_list
721
+ and not image_is_np_list
722
+ ):
723
+ raise TypeError(
724
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
725
+ )
726
+
727
+ if image_is_pil:
728
+ image_batch_size = 1
729
+ else:
730
+ image_batch_size = len(image)
731
+
732
+ if prompt is not None and isinstance(prompt, str):
733
+ prompt_batch_size = 1
734
+ elif prompt is not None and isinstance(prompt, list):
735
+ prompt_batch_size = len(prompt)
736
+ elif prompt_embeds is not None:
737
+ prompt_batch_size = prompt_embeds.shape[0]
738
+
739
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
740
+ raise ValueError(
741
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
742
+ )
743
+
744
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
745
+ def prepare_image(
746
+ self,
747
+ image,
748
+ width,
749
+ height,
750
+ batch_size,
751
+ num_images_per_prompt,
752
+ device,
753
+ dtype,
754
+ do_classifier_free_guidance=False,
755
+ guess_mode=False,
756
+ ):
757
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
758
+ image_batch_size = image.shape[0]
759
+
760
+ if image_batch_size == 1:
761
+ repeat_by = batch_size
762
+ else:
763
+ # image batch size is the same as prompt batch size
764
+ repeat_by = num_images_per_prompt
765
+
766
+ image = image.repeat_interleave(repeat_by, dim=0)
767
+
768
+ image = image.to(device=device, dtype=dtype)
769
+
770
+ if do_classifier_free_guidance and not guess_mode:
771
+ image = torch.cat([image] * 2)
772
+
773
+ return image
774
+
775
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
776
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
777
+ shape = (
778
+ batch_size,
779
+ num_channels_latents,
780
+ int(height) // self.vae_scale_factor,
781
+ int(width) // self.vae_scale_factor,
782
+ )
783
+ if isinstance(generator, list) and len(generator) != batch_size:
784
+ raise ValueError(
785
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
786
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
787
+ )
788
+
789
+ if latents is None:
790
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
791
+ else:
792
+ latents = latents.to(device)
793
+
794
+ # scale the initial noise by the standard deviation required by the scheduler
795
+ latents = latents * self.scheduler.init_noise_sigma
796
+ return latents
797
+
798
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
799
+ def get_guidance_scale_embedding(
800
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
801
+ ) -> torch.Tensor:
802
+ """
803
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
804
+
805
+ Args:
806
+ w (`torch.Tensor`):
807
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
808
+ embedding_dim (`int`, *optional*, defaults to 512):
809
+ Dimension of the embeddings to generate.
810
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
811
+ Data type of the generated embeddings.
812
+
813
+ Returns:
814
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
815
+ """
816
+ assert len(w.shape) == 1
817
+ w = w * 1000.0
818
+
819
+ half_dim = embedding_dim // 2
820
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
821
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
822
+ emb = w.to(dtype)[:, None] * emb[None, :]
823
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
824
+ if embedding_dim % 2 == 1: # zero pad
825
+ emb = torch.nn.functional.pad(emb, (0, 1))
826
+ assert emb.shape == (w.shape[0], embedding_dim)
827
+ return emb
828
+
829
+ @property
830
+ def guidance_scale(self):
831
+ return self._guidance_scale
832
+
833
+ @property
834
+ def clip_skip(self):
835
+ return self._clip_skip
836
+
837
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
838
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
839
+ # corresponds to doing no classifier free guidance.
840
+ @property
841
+ def do_classifier_free_guidance(self):
842
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
843
+
844
+ @property
845
+ def cross_attention_kwargs(self):
846
+ return self._cross_attention_kwargs
847
+
848
+ @property
849
+ def num_timesteps(self):
850
+ return self._num_timesteps
851
+
852
+ @torch.no_grad()
853
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
854
+ def __call__(
855
+ self,
856
+ prompt: Union[str, List[str]] = None,
857
+ image: PipelineImageInput = None,
858
+ height: Optional[int] = None,
859
+ width: Optional[int] = None,
860
+ num_inference_steps: int = 50,
861
+ timesteps: List[int] = None,
862
+ sigmas: List[float] = None,
863
+ guidance_scale: float = 7.5,
864
+ negative_prompt: Optional[Union[str, List[str]]] = None,
865
+ num_images_per_prompt: Optional[int] = 1,
866
+ eta: float = 0.0,
867
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
868
+ latents: Optional[torch.Tensor] = None,
869
+ prompt_embeds: Optional[torch.Tensor] = None,
870
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
871
+ ip_adapter_image: Optional[PipelineImageInput] = None,
872
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
873
+ output_type: Optional[str] = "pil",
874
+ return_dict: bool = True,
875
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
876
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
877
+ guess_mode: bool = False,
878
+ control_guidance_start: Union[float, List[float]] = 0.0,
879
+ control_guidance_end: Union[float, List[float]] = 1.0,
880
+ clip_skip: Optional[int] = None,
881
+ callback_on_step_end: Optional[
882
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
883
+ ] = None,
884
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
885
+ pag_scale: float = 3.0,
886
+ pag_adaptive_scale: float = 0.0,
887
+ ):
888
+ r"""
889
+ The call function to the pipeline for generation.
890
+
891
+ Args:
892
+ prompt (`str` or `List[str]`, *optional*):
893
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
894
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
895
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
896
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
897
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
898
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
899
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
900
+ images must be passed as a list such that each element of the list can be correctly batched for input
901
+ to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
902
+ ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
903
+ ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
904
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
905
+ The height in pixels of the generated image.
906
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
907
+ The width in pixels of the generated image.
908
+ num_inference_steps (`int`, *optional*, defaults to 50):
909
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
910
+ expense of slower inference.
911
+ timesteps (`List[int]`, *optional*):
912
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
913
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
914
+ passed will be used. Must be in descending order.
915
+ sigmas (`List[float]`, *optional*):
916
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
917
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
918
+ will be used.
919
+ guidance_scale (`float`, *optional*, defaults to 7.5):
920
+ A higher guidance scale value encourages the model to generate images closely linked to the text
921
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
922
+ negative_prompt (`str` or `List[str]`, *optional*):
923
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
924
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
925
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
926
+ The number of images to generate per prompt.
927
+ eta (`float`, *optional*, defaults to 0.0):
928
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
929
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
930
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
931
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
932
+ generation deterministic.
933
+ latents (`torch.Tensor`, *optional*):
934
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
935
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
936
+ tensor is generated by sampling using the supplied random `generator`.
937
+ prompt_embeds (`torch.Tensor`, *optional*):
938
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
939
+ provided, text embeddings are generated from the `prompt` input argument.
940
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
941
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
942
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
943
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
944
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
945
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
946
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
947
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
948
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
949
+ output_type (`str`, *optional*, defaults to `"pil"`):
950
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
951
+ return_dict (`bool`, *optional*, defaults to `True`):
952
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
953
+ plain tuple.
954
+ cross_attention_kwargs (`dict`, *optional*):
955
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
956
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
957
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
958
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
959
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
960
+ the corresponding scale as a list.
961
+ guess_mode (`bool`, *optional*, defaults to `False`):
962
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
963
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
964
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
965
+ The percentage of total steps at which the ControlNet starts applying.
966
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
967
+ The percentage of total steps at which the ControlNet stops applying.
968
+ clip_skip (`int`, *optional*):
969
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
970
+ the output of the pre-final layer will be used for computing the prompt embeddings.
971
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
972
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
973
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
974
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
975
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
976
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
977
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
978
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
979
+ `._callback_tensor_inputs` attribute of your pipeline class.
980
+ pag_scale (`float`, *optional*, defaults to 3.0):
981
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
982
+ guidance will not be used.
983
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
984
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
985
+ used.
986
+
987
+ Examples:
988
+
989
+ Returns:
990
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
991
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
992
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
993
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
994
+ "not-safe-for-work" (nsfw) content.
995
+ """
996
+
997
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
998
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
999
+
1000
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1001
+
1002
+ # align format for control guidance
1003
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1004
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1005
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1006
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1007
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1008
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1009
+ control_guidance_start, control_guidance_end = (
1010
+ mult * [control_guidance_start],
1011
+ mult * [control_guidance_end],
1012
+ )
1013
+
1014
+ # 1. Check inputs. Raise error if not correct
1015
+ self.check_inputs(
1016
+ prompt,
1017
+ image,
1018
+ negative_prompt,
1019
+ prompt_embeds,
1020
+ negative_prompt_embeds,
1021
+ ip_adapter_image,
1022
+ ip_adapter_image_embeds,
1023
+ controlnet_conditioning_scale,
1024
+ control_guidance_start,
1025
+ control_guidance_end,
1026
+ callback_on_step_end_tensor_inputs,
1027
+ )
1028
+
1029
+ self._guidance_scale = guidance_scale
1030
+ self._clip_skip = clip_skip
1031
+ self._cross_attention_kwargs = cross_attention_kwargs
1032
+ self._pag_scale = pag_scale
1033
+ self._pag_adaptive_scale = pag_adaptive_scale
1034
+
1035
+ # 2. Define call parameters
1036
+ if prompt is not None and isinstance(prompt, str):
1037
+ batch_size = 1
1038
+ elif prompt is not None and isinstance(prompt, list):
1039
+ batch_size = len(prompt)
1040
+ else:
1041
+ batch_size = prompt_embeds.shape[0]
1042
+
1043
+ device = self._execution_device
1044
+
1045
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1046
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1047
+
1048
+ global_pool_conditions = (
1049
+ controlnet.config.global_pool_conditions
1050
+ if isinstance(controlnet, ControlNetModel)
1051
+ else controlnet.nets[0].config.global_pool_conditions
1052
+ )
1053
+ guess_mode = guess_mode or global_pool_conditions
1054
+
1055
+ # 3. Encode input prompt
1056
+ text_encoder_lora_scale = (
1057
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1058
+ )
1059
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1060
+ prompt,
1061
+ device,
1062
+ num_images_per_prompt,
1063
+ self.do_classifier_free_guidance,
1064
+ negative_prompt,
1065
+ prompt_embeds=prompt_embeds,
1066
+ negative_prompt_embeds=negative_prompt_embeds,
1067
+ lora_scale=text_encoder_lora_scale,
1068
+ clip_skip=self.clip_skip,
1069
+ )
1070
+ # For classifier free guidance, we need to do two forward passes.
1071
+ # Here we concatenate the unconditional and text embeddings into a single batch
1072
+ # to avoid doing two forward passes
1073
+ if self.do_perturbed_attention_guidance:
1074
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
1075
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
1076
+ )
1077
+ elif self.do_classifier_free_guidance:
1078
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1079
+
1080
+ # 4. Prepare image
1081
+ if isinstance(controlnet, ControlNetModel):
1082
+ image = self.prepare_image(
1083
+ image=image,
1084
+ width=width,
1085
+ height=height,
1086
+ batch_size=batch_size * num_images_per_prompt,
1087
+ num_images_per_prompt=num_images_per_prompt,
1088
+ device=device,
1089
+ dtype=controlnet.dtype,
1090
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1091
+ guess_mode=guess_mode,
1092
+ )
1093
+ height, width = image.shape[-2:]
1094
+ elif isinstance(controlnet, MultiControlNetModel):
1095
+ images = []
1096
+
1097
+ # Nested lists as ControlNet condition
1098
+ if isinstance(image[0], list):
1099
+ # Transpose the nested image list
1100
+ image = [list(t) for t in zip(*image)]
1101
+
1102
+ for image_ in image:
1103
+ image_ = self.prepare_image(
1104
+ image=image_,
1105
+ width=width,
1106
+ height=height,
1107
+ batch_size=batch_size * num_images_per_prompt,
1108
+ num_images_per_prompt=num_images_per_prompt,
1109
+ device=device,
1110
+ dtype=controlnet.dtype,
1111
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1112
+ guess_mode=guess_mode,
1113
+ )
1114
+
1115
+ images.append(image_)
1116
+
1117
+ image = images
1118
+ height, width = image[0].shape[-2:]
1119
+ else:
1120
+ assert False
1121
+
1122
+ # 5. Prepare timesteps
1123
+ timesteps, num_inference_steps = retrieve_timesteps(
1124
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1125
+ )
1126
+ self._num_timesteps = len(timesteps)
1127
+
1128
+ # 6. Prepare latent variables
1129
+ num_channels_latents = self.unet.config.in_channels
1130
+ latents = self.prepare_latents(
1131
+ batch_size * num_images_per_prompt,
1132
+ num_channels_latents,
1133
+ height,
1134
+ width,
1135
+ prompt_embeds.dtype,
1136
+ device,
1137
+ generator,
1138
+ latents,
1139
+ )
1140
+
1141
+ # 6.5 Optionally get Guidance Scale Embedding
1142
+ timestep_cond = None
1143
+ if self.unet.config.time_cond_proj_dim is not None:
1144
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1145
+ timestep_cond = self.get_guidance_scale_embedding(
1146
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1147
+ ).to(device=device, dtype=latents.dtype)
1148
+
1149
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1150
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1151
+
1152
+ # 7.1 Add image embeds for IP-Adapter
1153
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1154
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1155
+ ip_adapter_image,
1156
+ ip_adapter_image_embeds,
1157
+ device,
1158
+ batch_size * num_images_per_prompt,
1159
+ self.do_classifier_free_guidance,
1160
+ )
1161
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
1162
+ negative_image_embeds = None
1163
+ if self.do_classifier_free_guidance:
1164
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
1165
+
1166
+ if self.do_perturbed_attention_guidance:
1167
+ image_embeds = self._prepare_perturbed_attention_guidance(
1168
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
1169
+ )
1170
+ elif self.do_classifier_free_guidance:
1171
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
1172
+ image_embeds = image_embeds.to(device)
1173
+ ip_adapter_image_embeds[i] = image_embeds
1174
+
1175
+ added_cond_kwargs = (
1176
+ {"image_embeds": ip_adapter_image_embeds}
1177
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1178
+ else None
1179
+ )
1180
+
1181
+ controlnet_prompt_embeds = prompt_embeds
1182
+
1183
+ # 7.2 Create tensor stating which controlnets to keep
1184
+ controlnet_keep = []
1185
+ for i in range(len(timesteps)):
1186
+ keeps = [
1187
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1188
+ for s, e in zip(control_guidance_start, control_guidance_end)
1189
+ ]
1190
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1191
+
1192
+ images = image if isinstance(image, list) else [image]
1193
+ for i, single_image in enumerate(images):
1194
+ if self.do_classifier_free_guidance:
1195
+ single_image = single_image.chunk(2)[0]
1196
+
1197
+ if self.do_perturbed_attention_guidance:
1198
+ single_image = self._prepare_perturbed_attention_guidance(
1199
+ single_image, single_image, self.do_classifier_free_guidance
1200
+ )
1201
+ elif self.do_classifier_free_guidance:
1202
+ single_image = torch.cat([single_image] * 2)
1203
+ single_image = single_image.to(device)
1204
+ images[i] = single_image
1205
+
1206
+ image = images if isinstance(image, list) else images[0]
1207
+
1208
+ # 8. Denoising loop
1209
+ if self.do_perturbed_attention_guidance:
1210
+ original_attn_proc = self.unet.attn_processors
1211
+ self._set_pag_attn_processor(
1212
+ pag_applied_layers=self.pag_applied_layers,
1213
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1214
+ )
1215
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1216
+ is_unet_compiled = is_compiled_module(self.unet)
1217
+ is_controlnet_compiled = is_compiled_module(self.controlnet)
1218
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1219
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1220
+ for i, t in enumerate(timesteps):
1221
+ # Relevant thread:
1222
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1223
+ if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1224
+ torch._inductor.cudagraph_mark_step_begin()
1225
+ # expand the latents if we are doing classifier free guidance
1226
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1227
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1228
+
1229
+ # controlnet(s) inference
1230
+ control_model_input = latent_model_input
1231
+
1232
+ if isinstance(controlnet_keep[i], list):
1233
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1234
+ else:
1235
+ controlnet_cond_scale = controlnet_conditioning_scale
1236
+ if isinstance(controlnet_cond_scale, list):
1237
+ controlnet_cond_scale = controlnet_cond_scale[0]
1238
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1239
+
1240
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1241
+ control_model_input,
1242
+ t,
1243
+ encoder_hidden_states=controlnet_prompt_embeds,
1244
+ controlnet_cond=image,
1245
+ conditioning_scale=cond_scale,
1246
+ guess_mode=guess_mode,
1247
+ return_dict=False,
1248
+ )
1249
+
1250
+ if guess_mode and self.do_classifier_free_guidance:
1251
+ # Inferred ControlNet only for the conditional batch.
1252
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1253
+ # add 0 to the unconditional batch to keep it unchanged.
1254
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1255
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1256
+
1257
+ # predict the noise residual
1258
+ noise_pred = self.unet(
1259
+ latent_model_input,
1260
+ t,
1261
+ encoder_hidden_states=prompt_embeds,
1262
+ timestep_cond=timestep_cond,
1263
+ cross_attention_kwargs=self.cross_attention_kwargs,
1264
+ down_block_additional_residuals=down_block_res_samples,
1265
+ mid_block_additional_residual=mid_block_res_sample,
1266
+ added_cond_kwargs=added_cond_kwargs,
1267
+ return_dict=False,
1268
+ )[0]
1269
+
1270
+ # perform guidance
1271
+ if self.do_perturbed_attention_guidance:
1272
+ noise_pred = self._apply_perturbed_attention_guidance(
1273
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1274
+ )
1275
+ elif self.do_classifier_free_guidance:
1276
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1277
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1278
+
1279
+ # compute the previous noisy sample x_t -> x_t-1
1280
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1281
+
1282
+ if callback_on_step_end is not None:
1283
+ callback_kwargs = {}
1284
+ for k in callback_on_step_end_tensor_inputs:
1285
+ callback_kwargs[k] = locals()[k]
1286
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1287
+
1288
+ latents = callback_outputs.pop("latents", latents)
1289
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1290
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1291
+
1292
+ # call the callback, if provided
1293
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1294
+ progress_bar.update()
1295
+
1296
+ # If we do sequential model offloading, let's offload unet and controlnet
1297
+ # manually for max memory savings
1298
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1299
+ self.unet.to("cpu")
1300
+ self.controlnet.to("cpu")
1301
+ torch.cuda.empty_cache()
1302
+
1303
+ if not output_type == "latent":
1304
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1305
+ 0
1306
+ ]
1307
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1308
+ else:
1309
+ image = latents
1310
+ has_nsfw_concept = None
1311
+
1312
+ if has_nsfw_concept is None:
1313
+ do_denormalize = [True] * image.shape[0]
1314
+ else:
1315
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1316
+
1317
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1318
+
1319
+ # Offload all models
1320
+ self.maybe_free_model_hooks()
1321
+
1322
+ if self.do_perturbed_attention_guidance:
1323
+ self.unet.set_attn_processor(original_attn_proc)
1324
+
1325
+ if not return_dict:
1326
+ return (image, has_nsfw_concept)
1327
+
1328
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)