diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,8 +22,6 @@ from ...models import AutoencoderKL, UNet2DConditionModel
22
22
  from ...models.attention_processor import (
23
23
  AttnProcessor2_0,
24
24
  FusedAttnProcessor2_0,
25
- LoRAAttnProcessor2_0,
26
- LoRAXFormersAttnProcessor,
27
25
  XFormersAttnProcessor,
28
26
  )
29
27
  from ...models.lora import adjust_lora_scale_text_encoder
@@ -312,9 +310,21 @@ def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_s
312
310
 
313
311
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
314
312
  def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
315
- """
316
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
317
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
313
+ r"""
314
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
315
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
316
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
317
+
318
+ Args:
319
+ noise_cfg (`torch.Tensor`):
320
+ The predicted noise tensor for the guided diffusion process.
321
+ noise_pred_text (`torch.Tensor`):
322
+ The predicted noise tensor for the text-guided diffusion process.
323
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
324
+ A rescale factor applied to the noise predictions.
325
+
326
+ Returns:
327
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
318
328
  """
319
329
  std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
320
330
  std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
@@ -411,14 +421,6 @@ class TextToVideoZeroSDXLPipeline(
411
421
  else:
412
422
  self.watermark = None
413
423
 
414
- processor = (
415
- CrossFrameAttnProcessor2_0(batch_size=2)
416
- if hasattr(F, "scaled_dot_product_attention")
417
- else CrossFrameAttnProcessor(batch_size=2)
418
- )
419
-
420
- self.unet.set_attn_processor(processor)
421
-
422
424
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
423
425
  def prepare_extra_step_kwargs(self, generator, eta):
424
426
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
@@ -446,8 +448,6 @@ class TextToVideoZeroSDXLPipeline(
446
448
  (
447
449
  AttnProcessor2_0,
448
450
  XFormersAttnProcessor,
449
- LoRAXFormersAttnProcessor,
450
- LoRAAttnProcessor2_0,
451
451
  FusedAttnProcessor2_0,
452
452
  ),
453
453
  )
@@ -479,7 +479,12 @@ class TextToVideoZeroSDXLPipeline(
479
479
 
480
480
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
481
481
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
482
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
482
+ shape = (
483
+ batch_size,
484
+ num_channels_latents,
485
+ int(height) // self.vae_scale_factor,
486
+ int(width) // self.vae_scale_factor,
487
+ )
483
488
  if isinstance(generator, list) and len(generator) != batch_size:
484
489
  raise ValueError(
485
490
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -584,10 +589,10 @@ class TextToVideoZeroSDXLPipeline(
584
589
  do_classifier_free_guidance: bool = True,
585
590
  negative_prompt: Optional[str] = None,
586
591
  negative_prompt_2: Optional[str] = None,
587
- prompt_embeds: Optional[torch.FloatTensor] = None,
588
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
589
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
590
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
592
+ prompt_embeds: Optional[torch.Tensor] = None,
593
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
594
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
595
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
591
596
  lora_scale: Optional[float] = None,
592
597
  clip_skip: Optional[int] = None,
593
598
  ):
@@ -613,17 +618,17 @@ class TextToVideoZeroSDXLPipeline(
613
618
  negative_prompt_2 (`str` or `List[str]`, *optional*):
614
619
  The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
615
620
  `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
616
- prompt_embeds (`torch.FloatTensor`, *optional*):
621
+ prompt_embeds (`torch.Tensor`, *optional*):
617
622
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
618
623
  provided, text embeddings will be generated from `prompt` input argument.
619
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
624
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
620
625
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
621
626
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
622
627
  argument.
623
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
628
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
624
629
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
625
630
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
626
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
631
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
627
632
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
628
633
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
629
634
  input argument.
@@ -864,7 +869,7 @@ class TextToVideoZeroSDXLPipeline(
864
869
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
865
870
  callback (`Callable`, *optional*):
866
871
  A function that calls every `callback_steps` steps during inference. The function is called with the
867
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
872
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
868
873
  callback_steps (`int`, *optional*, defaults to 1):
869
874
  The frequency at which the `callback` function is called. If not specified, the callback is called at
870
875
  every step.
@@ -936,16 +941,16 @@ class TextToVideoZeroSDXLPipeline(
936
941
  eta: float = 0.0,
937
942
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
938
943
  frame_ids: Optional[List[int]] = None,
939
- prompt_embeds: Optional[torch.FloatTensor] = None,
940
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
941
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
942
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
943
- latents: Optional[torch.FloatTensor] = None,
944
+ prompt_embeds: Optional[torch.Tensor] = None,
945
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
946
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
947
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
948
+ latents: Optional[torch.Tensor] = None,
944
949
  motion_field_strength_x: float = 12,
945
950
  motion_field_strength_y: float = 12,
946
951
  output_type: Optional[str] = "tensor",
947
952
  return_dict: bool = True,
948
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
953
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
949
954
  callback_steps: int = 1,
950
955
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
951
956
  guidance_rescale: float = 0.0,
@@ -1005,21 +1010,21 @@ class TextToVideoZeroSDXLPipeline(
1005
1010
  frame_ids (`List[int]`, *optional*):
1006
1011
  Indexes of the frames that are being generated. This is used when generating longer videos
1007
1012
  chunk-by-chunk.
1008
- prompt_embeds (`torch.FloatTensor`, *optional*):
1013
+ prompt_embeds (`torch.Tensor`, *optional*):
1009
1014
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1010
1015
  provided, text embeddings will be generated from `prompt` input argument.
1011
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
1016
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1012
1017
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1013
1018
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1014
1019
  argument.
1015
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
1020
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1016
1021
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1017
1022
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
1018
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
1023
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1019
1024
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1020
1025
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1021
1026
  input argument.
1022
- latents (`torch.FloatTensor`, *optional*):
1027
+ latents (`torch.Tensor`, *optional*):
1023
1028
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1024
1029
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1025
1030
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -1037,7 +1042,7 @@ class TextToVideoZeroSDXLPipeline(
1037
1042
  of a plain tuple.
1038
1043
  callback (`Callable`, *optional*):
1039
1044
  A function that will be called every `callback_steps` steps during inference. The function will be
1040
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
1045
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
1041
1046
  callback_steps (`int`, *optional*, defaults to 1):
1042
1047
  The frequency at which the `callback` function will be called. If not specified, the callback will be
1043
1048
  called at every step.
@@ -1084,6 +1089,15 @@ class TextToVideoZeroSDXLPipeline(
1084
1089
 
1085
1090
  assert num_videos_per_prompt == 1
1086
1091
 
1092
+ # set the processor
1093
+ original_attn_proc = self.unet.attn_processors
1094
+ processor = (
1095
+ CrossFrameAttnProcessor2_0(batch_size=2)
1096
+ if hasattr(F, "scaled_dot_product_attention")
1097
+ else CrossFrameAttnProcessor(batch_size=2)
1098
+ )
1099
+ self.unet.set_attn_processor(processor)
1100
+
1087
1101
  if isinstance(prompt, str):
1088
1102
  prompt = [prompt]
1089
1103
  if isinstance(negative_prompt, str):
@@ -1305,9 +1319,9 @@ class TextToVideoZeroSDXLPipeline(
1305
1319
 
1306
1320
  image = self.image_processor.postprocess(image, output_type=output_type)
1307
1321
 
1308
- # Offload last model to CPU manually for max memory savings
1309
- if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1310
- self.final_offload_hook.offload()
1322
+ self.maybe_free_model_hooks()
1323
+ # make sure to set the original attention processors back
1324
+ self.unet.set_attn_processor(original_attn_proc)
1311
1325
 
1312
1326
  if not return_dict:
1313
1327
  return (image,)
@@ -217,9 +217,9 @@ class UnCLIPPipeline(DiffusionPipeline):
217
217
  decoder_num_inference_steps: int = 25,
218
218
  super_res_num_inference_steps: int = 7,
219
219
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
220
- prior_latents: Optional[torch.FloatTensor] = None,
221
- decoder_latents: Optional[torch.FloatTensor] = None,
222
- super_res_latents: Optional[torch.FloatTensor] = None,
220
+ prior_latents: Optional[torch.Tensor] = None,
221
+ decoder_latents: Optional[torch.Tensor] = None,
222
+ super_res_latents: Optional[torch.Tensor] = None,
223
223
  text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
224
224
  text_attention_mask: Optional[torch.Tensor] = None,
225
225
  prior_guidance_scale: float = 4.0,
@@ -248,11 +248,11 @@ class UnCLIPPipeline(DiffusionPipeline):
248
248
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
249
249
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
250
250
  generation deterministic.
251
- prior_latents (`torch.FloatTensor` of shape (batch size, embeddings dimension), *optional*):
251
+ prior_latents (`torch.Tensor` of shape (batch size, embeddings dimension), *optional*):
252
252
  Pre-generated noisy latents to be used as inputs for the prior.
253
- decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
253
+ decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*):
254
254
  Pre-generated noisy latents to be used as inputs for the decoder.
255
- super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
255
+ super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*):
256
256
  Pre-generated noisy latents to be used as inputs for the decoder.
257
257
  prior_guidance_scale (`float`, *optional*, defaults to 4.0):
258
258
  A higher guidance scale value encourages the model to generate images closely linked to the text
@@ -199,13 +199,13 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
199
199
  @torch.no_grad()
200
200
  def __call__(
201
201
  self,
202
- image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]] = None,
202
+ image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor]] = None,
203
203
  num_images_per_prompt: int = 1,
204
204
  decoder_num_inference_steps: int = 25,
205
205
  super_res_num_inference_steps: int = 7,
206
206
  generator: Optional[torch.Generator] = None,
207
- decoder_latents: Optional[torch.FloatTensor] = None,
208
- super_res_latents: Optional[torch.FloatTensor] = None,
207
+ decoder_latents: Optional[torch.Tensor] = None,
208
+ super_res_latents: Optional[torch.Tensor] = None,
209
209
  image_embeddings: Optional[torch.Tensor] = None,
210
210
  decoder_guidance_scale: float = 8.0,
211
211
  output_type: Optional[str] = "pil",
@@ -215,7 +215,7 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
215
215
  The call function to the pipeline for generation.
216
216
 
217
217
  Args:
218
- image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
218
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
219
219
  `Image` or tensor representing an image batch to be used as the starting point. If you provide a
220
220
  tensor, it needs to be compatible with the [`CLIPImageProcessor`]
221
221
  [configuration](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
@@ -231,9 +231,9 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
231
231
  generator (`torch.Generator`, *optional*):
232
232
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
233
233
  generation deterministic.
234
- decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
234
+ decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*):
235
235
  Pre-generated noisy latents to be used as inputs for the decoder.
236
- super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
236
+ super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*):
237
237
  Pre-generated noisy latents to be used as inputs for the decoder.
238
238
  decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
239
239
  A higher guidance scale value encourages the model to generate images closely linked to the text
@@ -220,7 +220,7 @@ class UniDiffuserTextDecoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
220
220
  input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
221
221
  Tokenizer indices of input sequence tokens in the vocabulary. One of `input_ids` and `input_embeds`
222
222
  must be supplied.
223
- input_embeds (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
223
+ input_embeds (`torch.Tensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
224
224
  An embedded representation to directly pass to the transformer as a prefix for beam search. One of
225
225
  `input_ids` and `input_embeds` must be supplied.
226
226
  device:
@@ -9,8 +9,8 @@ from ...models import ModelMixin
9
9
  from ...models.attention import FeedForward
10
10
  from ...models.attention_processor import Attention
11
11
  from ...models.embeddings import TimestepEmbedding, Timesteps, get_2d_sincos_pos_embed
12
+ from ...models.modeling_outputs import Transformer2DModelOutput
12
13
  from ...models.normalization import AdaLayerNorm
13
- from ...models.transformers.transformer_2d import Transformer2DModelOutput
14
14
  from ...utils import logging
15
15
 
16
16
 
@@ -104,8 +104,8 @@ class PatchEmbed(nn.Module):
104
104
 
105
105
  self.use_pos_embed = use_pos_embed
106
106
  if self.use_pos_embed:
107
- pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5))
108
- self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
107
+ pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5), output_type="pt")
108
+ self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=False)
109
109
 
110
110
  def forward(self, latent):
111
111
  latent = self.proj(latent)
@@ -739,8 +739,7 @@ class UTransformer2DModel(ModelMixin, ConfigMixin):
739
739
  """
740
740
  Args:
741
741
  hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
742
- When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
743
- hidden_states
742
+ When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states
744
743
  encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
745
744
  Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
746
745
  self-attention.
@@ -752,7 +751,8 @@ class UTransformer2DModel(ModelMixin, ConfigMixin):
752
751
  cross_attention_kwargs (*optional*):
753
752
  Keyword arguments to supply to the cross attention layers, if used.
754
753
  return_dict (`bool`, *optional*, defaults to `True`):
755
- Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
754
+ Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
755
+ tuple.
756
756
  hidden_states_is_embedding (`bool`, *optional*, defaults to `False`):
757
757
  Whether or not hidden_states is an embedding directly usable by the transformer. In this case we will
758
758
  ignore input handling (e.g. continuous, vectorized, etc.) and directly feed hidden_states into the
@@ -1037,9 +1037,9 @@ class UniDiffuserModel(ModelMixin, ConfigMixin):
1037
1037
 
1038
1038
  def forward(
1039
1039
  self,
1040
- latent_image_embeds: torch.FloatTensor,
1041
- image_embeds: torch.FloatTensor,
1042
- prompt_embeds: torch.FloatTensor,
1040
+ latent_image_embeds: torch.Tensor,
1041
+ image_embeds: torch.Tensor,
1042
+ prompt_embeds: torch.Tensor,
1043
1043
  timestep_img: Union[torch.Tensor, float, int],
1044
1044
  timestep_text: Union[torch.Tensor, float, int],
1045
1045
  data_type: Optional[Union[torch.Tensor, float, int]] = 1,
@@ -1048,11 +1048,11 @@ class UniDiffuserModel(ModelMixin, ConfigMixin):
1048
1048
  ):
1049
1049
  """
1050
1050
  Args:
1051
- latent_image_embeds (`torch.FloatTensor` of shape `(batch size, latent channels, height, width)`):
1051
+ latent_image_embeds (`torch.Tensor` of shape `(batch size, latent channels, height, width)`):
1052
1052
  Latent image representation from the VAE encoder.
1053
- image_embeds (`torch.FloatTensor` of shape `(batch size, 1, clip_img_dim)`):
1053
+ image_embeds (`torch.Tensor` of shape `(batch size, 1, clip_img_dim)`):
1054
1054
  CLIP-embedded image representation (unsqueezed in the first dimension).
1055
- prompt_embeds (`torch.FloatTensor` of shape `(batch size, seq_len, text_dim)`):
1055
+ prompt_embeds (`torch.Tensor` of shape `(batch size, seq_len, text_dim)`):
1056
1056
  CLIP-embedded text representation.
1057
1057
  timestep_img (`torch.long` or `float` or `int`):
1058
1058
  Current denoising step for the image.
@@ -14,7 +14,7 @@ from transformers import (
14
14
  )
15
15
 
16
16
  from ...image_processor import VaeImageProcessor
17
- from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
17
+ from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
18
18
  from ...models import AutoencoderKL
19
19
  from ...models.lora import adjust_lora_scale_text_encoder
20
20
  from ...schedulers import KarrasDiffusionSchedulers
@@ -304,7 +304,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
304
304
  if isinstance(image, PIL.Image.Image):
305
305
  batch_size = 1
306
306
  else:
307
- # Image must be available and type either PIL.Image.Image or torch.FloatTensor.
307
+ # Image must be available and type either PIL.Image.Image or torch.Tensor.
308
308
  # Not currently supporting something like image_embeds.
309
309
  batch_size = image.shape[0]
310
310
  multiplier = num_prompts_per_image
@@ -353,8 +353,8 @@ class UniDiffuserPipeline(DiffusionPipeline):
353
353
  num_images_per_prompt,
354
354
  do_classifier_free_guidance,
355
355
  negative_prompt=None,
356
- prompt_embeds: Optional[torch.FloatTensor] = None,
357
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
356
+ prompt_embeds: Optional[torch.Tensor] = None,
357
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
358
358
  lora_scale: Optional[float] = None,
359
359
  **kwargs,
360
360
  ):
@@ -386,8 +386,8 @@ class UniDiffuserPipeline(DiffusionPipeline):
386
386
  num_images_per_prompt,
387
387
  do_classifier_free_guidance,
388
388
  negative_prompt=None,
389
- prompt_embeds: Optional[torch.FloatTensor] = None,
390
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
389
+ prompt_embeds: Optional[torch.Tensor] = None,
390
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
391
391
  lora_scale: Optional[float] = None,
392
392
  clip_skip: Optional[int] = None,
393
393
  ):
@@ -407,10 +407,10 @@ class UniDiffuserPipeline(DiffusionPipeline):
407
407
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
408
408
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
409
409
  less than `1`).
410
- prompt_embeds (`torch.FloatTensor`, *optional*):
410
+ prompt_embeds (`torch.Tensor`, *optional*):
411
411
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
412
412
  provided, text embeddings will be generated from `prompt` input argument.
413
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
413
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
414
414
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
415
415
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
416
416
  argument.
@@ -422,7 +422,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
422
422
  """
423
423
  # set lora scale so that monkey patched LoRA
424
424
  # function of text encoder can correctly access it
425
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
425
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
426
426
  self._lora_scale = lora_scale
427
427
 
428
428
  # dynamically adjust the LoRA scale
@@ -554,9 +554,10 @@ class UniDiffuserPipeline(DiffusionPipeline):
554
554
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
555
555
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
556
556
 
557
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
558
- # Retrieve the original scale by scaling back the LoRA layers
559
- unscale_lora_layers(self.text_encoder, lora_scale)
557
+ if self.text_encoder is not None:
558
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
559
+ # Retrieve the original scale by scaling back the LoRA layers
560
+ unscale_lora_layers(self.text_encoder, lora_scale)
560
561
 
561
562
  return prompt_embeds, negative_prompt_embeds
562
563
 
@@ -1080,7 +1081,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
1080
1081
  def __call__(
1081
1082
  self,
1082
1083
  prompt: Optional[Union[str, List[str]]] = None,
1083
- image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None,
1084
+ image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
1084
1085
  height: Optional[int] = None,
1085
1086
  width: Optional[int] = None,
1086
1087
  data_type: Optional[int] = 1,
@@ -1091,15 +1092,15 @@ class UniDiffuserPipeline(DiffusionPipeline):
1091
1092
  num_prompts_per_image: Optional[int] = 1,
1092
1093
  eta: float = 0.0,
1093
1094
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1094
- latents: Optional[torch.FloatTensor] = None,
1095
- prompt_latents: Optional[torch.FloatTensor] = None,
1096
- vae_latents: Optional[torch.FloatTensor] = None,
1097
- clip_latents: Optional[torch.FloatTensor] = None,
1098
- prompt_embeds: Optional[torch.FloatTensor] = None,
1099
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
1095
+ latents: Optional[torch.Tensor] = None,
1096
+ prompt_latents: Optional[torch.Tensor] = None,
1097
+ vae_latents: Optional[torch.Tensor] = None,
1098
+ clip_latents: Optional[torch.Tensor] = None,
1099
+ prompt_embeds: Optional[torch.Tensor] = None,
1100
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1100
1101
  output_type: Optional[str] = "pil",
1101
1102
  return_dict: bool = True,
1102
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
1103
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
1103
1104
  callback_steps: int = 1,
1104
1105
  ):
1105
1106
  r"""
@@ -1109,7 +1110,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
1109
1110
  prompt (`str` or `List[str]`, *optional*):
1110
1111
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1111
1112
  Required for text-conditioned image generation (`text2img`) mode.
1112
- image (`torch.FloatTensor` or `PIL.Image.Image`, *optional*):
1113
+ image (`torch.Tensor` or `PIL.Image.Image`, *optional*):
1113
1114
  `Image` or tensor representing an image batch. Required for image-conditioned text generation
1114
1115
  (`img2text`) mode.
1115
1116
  height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
@@ -1144,29 +1145,29 @@ class UniDiffuserPipeline(DiffusionPipeline):
1144
1145
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1145
1146
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1146
1147
  generation deterministic.
1147
- latents (`torch.FloatTensor`, *optional*):
1148
+ latents (`torch.Tensor`, *optional*):
1148
1149
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint
1149
1150
  image-text generation. Can be used to tweak the same generation with different prompts. If not
1150
1151
  provided, a latents tensor is generated by sampling using the supplied random `generator`. This assumes
1151
1152
  a full set of VAE, CLIP, and text latents, if supplied, overrides the value of `prompt_latents`,
1152
1153
  `vae_latents`, and `clip_latents`.
1153
- prompt_latents (`torch.FloatTensor`, *optional*):
1154
+ prompt_latents (`torch.Tensor`, *optional*):
1154
1155
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text
1155
1156
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1156
1157
  tensor is generated by sampling using the supplied random `generator`.
1157
- vae_latents (`torch.FloatTensor`, *optional*):
1158
+ vae_latents (`torch.Tensor`, *optional*):
1158
1159
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1159
1160
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1160
1161
  tensor is generated by sampling using the supplied random `generator`.
1161
- clip_latents (`torch.FloatTensor`, *optional*):
1162
+ clip_latents (`torch.Tensor`, *optional*):
1162
1163
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1163
1164
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1164
1165
  tensor is generated by sampling using the supplied random `generator`.
1165
- prompt_embeds (`torch.FloatTensor`, *optional*):
1166
+ prompt_embeds (`torch.Tensor`, *optional*):
1166
1167
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1167
1168
  provided, text embeddings are generated from the `prompt` input argument. Used in text-conditioned
1168
1169
  image generation (`text2img`) mode.
1169
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
1170
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1170
1171
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1171
1172
  not provided, `negative_prompt_embeds` are be generated from the `negative_prompt` input argument. Used
1172
1173
  in text-conditioned image generation (`text2img`) mode.
@@ -1176,7 +1177,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
1176
1177
  Whether or not to return a [`~pipelines.ImageTextPipelineOutput`] instead of a plain tuple.
1177
1178
  callback (`Callable`, *optional*):
1178
1179
  A function that calls every `callback_steps` steps during inference. The function is called with the
1179
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
1180
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
1180
1181
  callback_steps (`int`, *optional*, defaults to 1):
1181
1182
  The frequency at which the `callback` function is called. If not specified, the callback is called at
1182
1183
  every step.
@@ -130,7 +130,7 @@ class PaellaVQModel(ModelMixin, ConfigMixin):
130
130
  )
131
131
 
132
132
  @apply_forward_hook
133
- def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
133
+ def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput:
134
134
  h = self.in_block(x)
135
135
  h = self.down_blocks(h)
136
136
 
@@ -141,8 +141,8 @@ class PaellaVQModel(ModelMixin, ConfigMixin):
141
141
 
142
142
  @apply_forward_hook
143
143
  def decode(
144
- self, h: torch.FloatTensor, force_not_quantize: bool = True, return_dict: bool = True
145
- ) -> Union[DecoderOutput, torch.FloatTensor]:
144
+ self, h: torch.Tensor, force_not_quantize: bool = True, return_dict: bool = True
145
+ ) -> Union[DecoderOutput, torch.Tensor]:
146
146
  if not force_not_quantize:
147
147
  quant, _, _ = self.vquantizer(h)
148
148
  else:
@@ -155,10 +155,10 @@ class PaellaVQModel(ModelMixin, ConfigMixin):
155
155
 
156
156
  return DecoderOutput(sample=dec)
157
157
 
158
- def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
158
+ def forward(self, sample: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
159
159
  r"""
160
160
  Args:
161
- sample (`torch.FloatTensor`): Input sample.
161
+ sample (`torch.Tensor`): Input sample.
162
162
  return_dict (`bool`, *optional*, defaults to `True`):
163
163
  Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
164
164
  """
@@ -17,8 +17,8 @@ class WuerstchenLayerNorm(nn.LayerNorm):
17
17
  class TimestepBlock(nn.Module):
18
18
  def __init__(self, c, c_timestep):
19
19
  super().__init__()
20
- linear_cls = nn.Linear
21
- self.mapper = linear_cls(c_timestep, c * 2)
20
+
21
+ self.mapper = nn.Linear(c_timestep, c * 2)
22
22
 
23
23
  def forward(self, x, t):
24
24
  a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1)
@@ -29,13 +29,10 @@ class ResBlock(nn.Module):
29
29
  def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0):
30
30
  super().__init__()
31
31
 
32
- conv_cls = nn.Conv2d
33
- linear_cls = nn.Linear
34
-
35
- self.depthwise = conv_cls(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
32
+ self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
36
33
  self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6)
37
34
  self.channelwise = nn.Sequential(
38
- linear_cls(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), linear_cls(c * 4, c)
35
+ nn.Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c)
39
36
  )
40
37
 
41
38
  def forward(self, x, x_skip=None):
@@ -64,12 +61,10 @@ class AttnBlock(nn.Module):
64
61
  def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
65
62
  super().__init__()
66
63
 
67
- linear_cls = nn.Linear
68
-
69
64
  self.self_attn = self_attn
70
65
  self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6)
71
66
  self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True)
72
- self.kv_mapper = nn.Sequential(nn.SiLU(), linear_cls(c_cond, c))
67
+ self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c))
73
68
 
74
69
  def forward(self, x, kv):
75
70
  kv = self.kv_mapper(kv)
@@ -40,15 +40,13 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
40
40
  @register_to_config
41
41
  def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, dropout=0.1):
42
42
  super().__init__()
43
- conv_cls = nn.Conv2d
44
- linear_cls = nn.Linear
45
43
 
46
44
  self.c_r = c_r
47
- self.projection = conv_cls(c_in, c, kernel_size=1)
45
+ self.projection = nn.Conv2d(c_in, c, kernel_size=1)
48
46
  self.cond_mapper = nn.Sequential(
49
- linear_cls(c_cond, c),
47
+ nn.Linear(c_cond, c),
50
48
  nn.LeakyReLU(0.2),
51
- linear_cls(c, c),
49
+ nn.Linear(c, c),
52
50
  )
53
51
 
54
52
  self.blocks = nn.ModuleList()
@@ -58,7 +56,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
58
56
  self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout))
59
57
  self.out = nn.Sequential(
60
58
  WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6),
61
- conv_cls(c, c_in * 2, kernel_size=1),
59
+ nn.Conv2d(c, c_in * 2, kernel_size=1),
62
60
  )
63
61
 
64
62
  self.gradient_checkpointing = False
@@ -77,7 +75,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
77
75
 
78
76
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
79
77
  if hasattr(module, "get_processor"):
80
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
78
+ processors[f"{name}.processor"] = module.get_processor()
81
79
 
82
80
  for sub_name, child in module.named_children():
83
81
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -160,7 +158,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
160
158
  c_embed = self.cond_mapper(c)
161
159
  r_embed = self.gen_r_embedding(r)
162
160
 
163
- if self.training and self.gradient_checkpointing:
161
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
164
162
 
165
163
  def create_custom_forward(module):
166
164
  def custom_forward(*inputs):