diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,8 +22,6 @@ from ...models import AutoencoderKL, UNet2DConditionModel
|
|
22
22
|
from ...models.attention_processor import (
|
23
23
|
AttnProcessor2_0,
|
24
24
|
FusedAttnProcessor2_0,
|
25
|
-
LoRAAttnProcessor2_0,
|
26
|
-
LoRAXFormersAttnProcessor,
|
27
25
|
XFormersAttnProcessor,
|
28
26
|
)
|
29
27
|
from ...models.lora import adjust_lora_scale_text_encoder
|
@@ -312,9 +310,21 @@ def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_s
|
|
312
310
|
|
313
311
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
314
312
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
315
|
-
"""
|
316
|
-
|
317
|
-
|
313
|
+
r"""
|
314
|
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
315
|
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
316
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
317
|
+
|
318
|
+
Args:
|
319
|
+
noise_cfg (`torch.Tensor`):
|
320
|
+
The predicted noise tensor for the guided diffusion process.
|
321
|
+
noise_pred_text (`torch.Tensor`):
|
322
|
+
The predicted noise tensor for the text-guided diffusion process.
|
323
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
324
|
+
A rescale factor applied to the noise predictions.
|
325
|
+
|
326
|
+
Returns:
|
327
|
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
318
328
|
"""
|
319
329
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
320
330
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -411,14 +421,6 @@ class TextToVideoZeroSDXLPipeline(
|
|
411
421
|
else:
|
412
422
|
self.watermark = None
|
413
423
|
|
414
|
-
processor = (
|
415
|
-
CrossFrameAttnProcessor2_0(batch_size=2)
|
416
|
-
if hasattr(F, "scaled_dot_product_attention")
|
417
|
-
else CrossFrameAttnProcessor(batch_size=2)
|
418
|
-
)
|
419
|
-
|
420
|
-
self.unet.set_attn_processor(processor)
|
421
|
-
|
422
424
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
423
425
|
def prepare_extra_step_kwargs(self, generator, eta):
|
424
426
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
@@ -446,8 +448,6 @@ class TextToVideoZeroSDXLPipeline(
|
|
446
448
|
(
|
447
449
|
AttnProcessor2_0,
|
448
450
|
XFormersAttnProcessor,
|
449
|
-
LoRAXFormersAttnProcessor,
|
450
|
-
LoRAAttnProcessor2_0,
|
451
451
|
FusedAttnProcessor2_0,
|
452
452
|
),
|
453
453
|
)
|
@@ -479,7 +479,12 @@ class TextToVideoZeroSDXLPipeline(
|
|
479
479
|
|
480
480
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
481
481
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
482
|
-
shape = (
|
482
|
+
shape = (
|
483
|
+
batch_size,
|
484
|
+
num_channels_latents,
|
485
|
+
int(height) // self.vae_scale_factor,
|
486
|
+
int(width) // self.vae_scale_factor,
|
487
|
+
)
|
483
488
|
if isinstance(generator, list) and len(generator) != batch_size:
|
484
489
|
raise ValueError(
|
485
490
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -584,10 +589,10 @@ class TextToVideoZeroSDXLPipeline(
|
|
584
589
|
do_classifier_free_guidance: bool = True,
|
585
590
|
negative_prompt: Optional[str] = None,
|
586
591
|
negative_prompt_2: Optional[str] = None,
|
587
|
-
prompt_embeds: Optional[torch.
|
588
|
-
negative_prompt_embeds: Optional[torch.
|
589
|
-
pooled_prompt_embeds: Optional[torch.
|
590
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
592
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
593
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
594
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
595
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
591
596
|
lora_scale: Optional[float] = None,
|
592
597
|
clip_skip: Optional[int] = None,
|
593
598
|
):
|
@@ -613,17 +618,17 @@ class TextToVideoZeroSDXLPipeline(
|
|
613
618
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
614
619
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
615
620
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
616
|
-
prompt_embeds (`torch.
|
621
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
617
622
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
618
623
|
provided, text embeddings will be generated from `prompt` input argument.
|
619
|
-
negative_prompt_embeds (`torch.
|
624
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
620
625
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
621
626
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
622
627
|
argument.
|
623
|
-
pooled_prompt_embeds (`torch.
|
628
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
624
629
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
625
630
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
626
|
-
negative_pooled_prompt_embeds (`torch.
|
631
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
627
632
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
628
633
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
629
634
|
input argument.
|
@@ -864,7 +869,7 @@ class TextToVideoZeroSDXLPipeline(
|
|
864
869
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
865
870
|
callback (`Callable`, *optional*):
|
866
871
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
867
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
872
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
868
873
|
callback_steps (`int`, *optional*, defaults to 1):
|
869
874
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
870
875
|
every step.
|
@@ -936,16 +941,16 @@ class TextToVideoZeroSDXLPipeline(
|
|
936
941
|
eta: float = 0.0,
|
937
942
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
938
943
|
frame_ids: Optional[List[int]] = None,
|
939
|
-
prompt_embeds: Optional[torch.
|
940
|
-
negative_prompt_embeds: Optional[torch.
|
941
|
-
pooled_prompt_embeds: Optional[torch.
|
942
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
943
|
-
latents: Optional[torch.
|
944
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
945
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
946
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
947
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
948
|
+
latents: Optional[torch.Tensor] = None,
|
944
949
|
motion_field_strength_x: float = 12,
|
945
950
|
motion_field_strength_y: float = 12,
|
946
951
|
output_type: Optional[str] = "tensor",
|
947
952
|
return_dict: bool = True,
|
948
|
-
callback: Optional[Callable[[int, int, torch.
|
953
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
949
954
|
callback_steps: int = 1,
|
950
955
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
951
956
|
guidance_rescale: float = 0.0,
|
@@ -1005,21 +1010,21 @@ class TextToVideoZeroSDXLPipeline(
|
|
1005
1010
|
frame_ids (`List[int]`, *optional*):
|
1006
1011
|
Indexes of the frames that are being generated. This is used when generating longer videos
|
1007
1012
|
chunk-by-chunk.
|
1008
|
-
prompt_embeds (`torch.
|
1013
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1009
1014
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1010
1015
|
provided, text embeddings will be generated from `prompt` input argument.
|
1011
|
-
negative_prompt_embeds (`torch.
|
1016
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1012
1017
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1013
1018
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1014
1019
|
argument.
|
1015
|
-
pooled_prompt_embeds (`torch.
|
1020
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1016
1021
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1017
1022
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1018
|
-
negative_pooled_prompt_embeds (`torch.
|
1023
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1019
1024
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1020
1025
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1021
1026
|
input argument.
|
1022
|
-
latents (`torch.
|
1027
|
+
latents (`torch.Tensor`, *optional*):
|
1023
1028
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1024
1029
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1025
1030
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -1037,7 +1042,7 @@ class TextToVideoZeroSDXLPipeline(
|
|
1037
1042
|
of a plain tuple.
|
1038
1043
|
callback (`Callable`, *optional*):
|
1039
1044
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
1040
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
1045
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
1041
1046
|
callback_steps (`int`, *optional*, defaults to 1):
|
1042
1047
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1043
1048
|
called at every step.
|
@@ -1084,6 +1089,15 @@ class TextToVideoZeroSDXLPipeline(
|
|
1084
1089
|
|
1085
1090
|
assert num_videos_per_prompt == 1
|
1086
1091
|
|
1092
|
+
# set the processor
|
1093
|
+
original_attn_proc = self.unet.attn_processors
|
1094
|
+
processor = (
|
1095
|
+
CrossFrameAttnProcessor2_0(batch_size=2)
|
1096
|
+
if hasattr(F, "scaled_dot_product_attention")
|
1097
|
+
else CrossFrameAttnProcessor(batch_size=2)
|
1098
|
+
)
|
1099
|
+
self.unet.set_attn_processor(processor)
|
1100
|
+
|
1087
1101
|
if isinstance(prompt, str):
|
1088
1102
|
prompt = [prompt]
|
1089
1103
|
if isinstance(negative_prompt, str):
|
@@ -1305,9 +1319,9 @@ class TextToVideoZeroSDXLPipeline(
|
|
1305
1319
|
|
1306
1320
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
1307
1321
|
|
1308
|
-
|
1309
|
-
|
1310
|
-
|
1322
|
+
self.maybe_free_model_hooks()
|
1323
|
+
# make sure to set the original attention processors back
|
1324
|
+
self.unet.set_attn_processor(original_attn_proc)
|
1311
1325
|
|
1312
1326
|
if not return_dict:
|
1313
1327
|
return (image,)
|
@@ -217,9 +217,9 @@ class UnCLIPPipeline(DiffusionPipeline):
|
|
217
217
|
decoder_num_inference_steps: int = 25,
|
218
218
|
super_res_num_inference_steps: int = 7,
|
219
219
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
220
|
-
prior_latents: Optional[torch.
|
221
|
-
decoder_latents: Optional[torch.
|
222
|
-
super_res_latents: Optional[torch.
|
220
|
+
prior_latents: Optional[torch.Tensor] = None,
|
221
|
+
decoder_latents: Optional[torch.Tensor] = None,
|
222
|
+
super_res_latents: Optional[torch.Tensor] = None,
|
223
223
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
|
224
224
|
text_attention_mask: Optional[torch.Tensor] = None,
|
225
225
|
prior_guidance_scale: float = 4.0,
|
@@ -248,11 +248,11 @@ class UnCLIPPipeline(DiffusionPipeline):
|
|
248
248
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
249
249
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
250
250
|
generation deterministic.
|
251
|
-
prior_latents (`torch.
|
251
|
+
prior_latents (`torch.Tensor` of shape (batch size, embeddings dimension), *optional*):
|
252
252
|
Pre-generated noisy latents to be used as inputs for the prior.
|
253
|
-
decoder_latents (`torch.
|
253
|
+
decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*):
|
254
254
|
Pre-generated noisy latents to be used as inputs for the decoder.
|
255
|
-
super_res_latents (`torch.
|
255
|
+
super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*):
|
256
256
|
Pre-generated noisy latents to be used as inputs for the decoder.
|
257
257
|
prior_guidance_scale (`float`, *optional*, defaults to 4.0):
|
258
258
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
@@ -199,13 +199,13 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
|
|
199
199
|
@torch.no_grad()
|
200
200
|
def __call__(
|
201
201
|
self,
|
202
|
-
image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.
|
202
|
+
image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor]] = None,
|
203
203
|
num_images_per_prompt: int = 1,
|
204
204
|
decoder_num_inference_steps: int = 25,
|
205
205
|
super_res_num_inference_steps: int = 7,
|
206
206
|
generator: Optional[torch.Generator] = None,
|
207
|
-
decoder_latents: Optional[torch.
|
208
|
-
super_res_latents: Optional[torch.
|
207
|
+
decoder_latents: Optional[torch.Tensor] = None,
|
208
|
+
super_res_latents: Optional[torch.Tensor] = None,
|
209
209
|
image_embeddings: Optional[torch.Tensor] = None,
|
210
210
|
decoder_guidance_scale: float = 8.0,
|
211
211
|
output_type: Optional[str] = "pil",
|
@@ -215,7 +215,7 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
|
|
215
215
|
The call function to the pipeline for generation.
|
216
216
|
|
217
217
|
Args:
|
218
|
-
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.
|
218
|
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
|
219
219
|
`Image` or tensor representing an image batch to be used as the starting point. If you provide a
|
220
220
|
tensor, it needs to be compatible with the [`CLIPImageProcessor`]
|
221
221
|
[configuration](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
@@ -231,9 +231,9 @@ class UnCLIPImageVariationPipeline(DiffusionPipeline):
|
|
231
231
|
generator (`torch.Generator`, *optional*):
|
232
232
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
233
233
|
generation deterministic.
|
234
|
-
decoder_latents (`torch.
|
234
|
+
decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*):
|
235
235
|
Pre-generated noisy latents to be used as inputs for the decoder.
|
236
|
-
super_res_latents (`torch.
|
236
|
+
super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*):
|
237
237
|
Pre-generated noisy latents to be used as inputs for the decoder.
|
238
238
|
decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
|
239
239
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
@@ -220,7 +220,7 @@ class UniDiffuserTextDecoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
|
|
220
220
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
221
221
|
Tokenizer indices of input sequence tokens in the vocabulary. One of `input_ids` and `input_embeds`
|
222
222
|
must be supplied.
|
223
|
-
input_embeds (`torch.
|
223
|
+
input_embeds (`torch.Tensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
|
224
224
|
An embedded representation to directly pass to the transformer as a prefix for beam search. One of
|
225
225
|
`input_ids` and `input_embeds` must be supplied.
|
226
226
|
device:
|
@@ -9,8 +9,8 @@ from ...models import ModelMixin
|
|
9
9
|
from ...models.attention import FeedForward
|
10
10
|
from ...models.attention_processor import Attention
|
11
11
|
from ...models.embeddings import TimestepEmbedding, Timesteps, get_2d_sincos_pos_embed
|
12
|
+
from ...models.modeling_outputs import Transformer2DModelOutput
|
12
13
|
from ...models.normalization import AdaLayerNorm
|
13
|
-
from ...models.transformers.transformer_2d import Transformer2DModelOutput
|
14
14
|
from ...utils import logging
|
15
15
|
|
16
16
|
|
@@ -104,8 +104,8 @@ class PatchEmbed(nn.Module):
|
|
104
104
|
|
105
105
|
self.use_pos_embed = use_pos_embed
|
106
106
|
if self.use_pos_embed:
|
107
|
-
pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5))
|
108
|
-
self.register_buffer("pos_embed",
|
107
|
+
pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5), output_type="pt")
|
108
|
+
self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=False)
|
109
109
|
|
110
110
|
def forward(self, latent):
|
111
111
|
latent = self.proj(latent)
|
@@ -739,8 +739,7 @@ class UTransformer2DModel(ModelMixin, ConfigMixin):
|
|
739
739
|
"""
|
740
740
|
Args:
|
741
741
|
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
742
|
-
When continuous, `torch.
|
743
|
-
hidden_states
|
742
|
+
When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states
|
744
743
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
745
744
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
746
745
|
self-attention.
|
@@ -752,7 +751,8 @@ class UTransformer2DModel(ModelMixin, ConfigMixin):
|
|
752
751
|
cross_attention_kwargs (*optional*):
|
753
752
|
Keyword arguments to supply to the cross attention layers, if used.
|
754
753
|
return_dict (`bool`, *optional*, defaults to `True`):
|
755
|
-
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
754
|
+
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
755
|
+
tuple.
|
756
756
|
hidden_states_is_embedding (`bool`, *optional*, defaults to `False`):
|
757
757
|
Whether or not hidden_states is an embedding directly usable by the transformer. In this case we will
|
758
758
|
ignore input handling (e.g. continuous, vectorized, etc.) and directly feed hidden_states into the
|
@@ -1037,9 +1037,9 @@ class UniDiffuserModel(ModelMixin, ConfigMixin):
|
|
1037
1037
|
|
1038
1038
|
def forward(
|
1039
1039
|
self,
|
1040
|
-
latent_image_embeds: torch.
|
1041
|
-
image_embeds: torch.
|
1042
|
-
prompt_embeds: torch.
|
1040
|
+
latent_image_embeds: torch.Tensor,
|
1041
|
+
image_embeds: torch.Tensor,
|
1042
|
+
prompt_embeds: torch.Tensor,
|
1043
1043
|
timestep_img: Union[torch.Tensor, float, int],
|
1044
1044
|
timestep_text: Union[torch.Tensor, float, int],
|
1045
1045
|
data_type: Optional[Union[torch.Tensor, float, int]] = 1,
|
@@ -1048,11 +1048,11 @@ class UniDiffuserModel(ModelMixin, ConfigMixin):
|
|
1048
1048
|
):
|
1049
1049
|
"""
|
1050
1050
|
Args:
|
1051
|
-
latent_image_embeds (`torch.
|
1051
|
+
latent_image_embeds (`torch.Tensor` of shape `(batch size, latent channels, height, width)`):
|
1052
1052
|
Latent image representation from the VAE encoder.
|
1053
|
-
image_embeds (`torch.
|
1053
|
+
image_embeds (`torch.Tensor` of shape `(batch size, 1, clip_img_dim)`):
|
1054
1054
|
CLIP-embedded image representation (unsqueezed in the first dimension).
|
1055
|
-
prompt_embeds (`torch.
|
1055
|
+
prompt_embeds (`torch.Tensor` of shape `(batch size, seq_len, text_dim)`):
|
1056
1056
|
CLIP-embedded text representation.
|
1057
1057
|
timestep_img (`torch.long` or `float` or `int`):
|
1058
1058
|
Current denoising step for the image.
|
@@ -14,7 +14,7 @@ from transformers import (
|
|
14
14
|
)
|
15
15
|
|
16
16
|
from ...image_processor import VaeImageProcessor
|
17
|
-
from ...loaders import
|
17
|
+
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
18
18
|
from ...models import AutoencoderKL
|
19
19
|
from ...models.lora import adjust_lora_scale_text_encoder
|
20
20
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -304,7 +304,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
304
304
|
if isinstance(image, PIL.Image.Image):
|
305
305
|
batch_size = 1
|
306
306
|
else:
|
307
|
-
# Image must be available and type either PIL.Image.Image or torch.
|
307
|
+
# Image must be available and type either PIL.Image.Image or torch.Tensor.
|
308
308
|
# Not currently supporting something like image_embeds.
|
309
309
|
batch_size = image.shape[0]
|
310
310
|
multiplier = num_prompts_per_image
|
@@ -353,8 +353,8 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
353
353
|
num_images_per_prompt,
|
354
354
|
do_classifier_free_guidance,
|
355
355
|
negative_prompt=None,
|
356
|
-
prompt_embeds: Optional[torch.
|
357
|
-
negative_prompt_embeds: Optional[torch.
|
356
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
357
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
358
358
|
lora_scale: Optional[float] = None,
|
359
359
|
**kwargs,
|
360
360
|
):
|
@@ -386,8 +386,8 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
386
386
|
num_images_per_prompt,
|
387
387
|
do_classifier_free_guidance,
|
388
388
|
negative_prompt=None,
|
389
|
-
prompt_embeds: Optional[torch.
|
390
|
-
negative_prompt_embeds: Optional[torch.
|
389
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
390
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
391
391
|
lora_scale: Optional[float] = None,
|
392
392
|
clip_skip: Optional[int] = None,
|
393
393
|
):
|
@@ -407,10 +407,10 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
407
407
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
408
408
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
409
409
|
less than `1`).
|
410
|
-
prompt_embeds (`torch.
|
410
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
411
411
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
412
412
|
provided, text embeddings will be generated from `prompt` input argument.
|
413
|
-
negative_prompt_embeds (`torch.
|
413
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
414
414
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
415
415
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
416
416
|
argument.
|
@@ -422,7 +422,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
422
422
|
"""
|
423
423
|
# set lora scale so that monkey patched LoRA
|
424
424
|
# function of text encoder can correctly access it
|
425
|
-
if lora_scale is not None and isinstance(self,
|
425
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
426
426
|
self._lora_scale = lora_scale
|
427
427
|
|
428
428
|
# dynamically adjust the LoRA scale
|
@@ -554,9 +554,10 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
554
554
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
555
555
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
556
556
|
|
557
|
-
if
|
558
|
-
|
559
|
-
|
557
|
+
if self.text_encoder is not None:
|
558
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
559
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
560
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
560
561
|
|
561
562
|
return prompt_embeds, negative_prompt_embeds
|
562
563
|
|
@@ -1080,7 +1081,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
1080
1081
|
def __call__(
|
1081
1082
|
self,
|
1082
1083
|
prompt: Optional[Union[str, List[str]]] = None,
|
1083
|
-
image: Optional[Union[torch.
|
1084
|
+
image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
|
1084
1085
|
height: Optional[int] = None,
|
1085
1086
|
width: Optional[int] = None,
|
1086
1087
|
data_type: Optional[int] = 1,
|
@@ -1091,15 +1092,15 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
1091
1092
|
num_prompts_per_image: Optional[int] = 1,
|
1092
1093
|
eta: float = 0.0,
|
1093
1094
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1094
|
-
latents: Optional[torch.
|
1095
|
-
prompt_latents: Optional[torch.
|
1096
|
-
vae_latents: Optional[torch.
|
1097
|
-
clip_latents: Optional[torch.
|
1098
|
-
prompt_embeds: Optional[torch.
|
1099
|
-
negative_prompt_embeds: Optional[torch.
|
1095
|
+
latents: Optional[torch.Tensor] = None,
|
1096
|
+
prompt_latents: Optional[torch.Tensor] = None,
|
1097
|
+
vae_latents: Optional[torch.Tensor] = None,
|
1098
|
+
clip_latents: Optional[torch.Tensor] = None,
|
1099
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1100
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1100
1101
|
output_type: Optional[str] = "pil",
|
1101
1102
|
return_dict: bool = True,
|
1102
|
-
callback: Optional[Callable[[int, int, torch.
|
1103
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
1103
1104
|
callback_steps: int = 1,
|
1104
1105
|
):
|
1105
1106
|
r"""
|
@@ -1109,7 +1110,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
1109
1110
|
prompt (`str` or `List[str]`, *optional*):
|
1110
1111
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1111
1112
|
Required for text-conditioned image generation (`text2img`) mode.
|
1112
|
-
image (`torch.
|
1113
|
+
image (`torch.Tensor` or `PIL.Image.Image`, *optional*):
|
1113
1114
|
`Image` or tensor representing an image batch. Required for image-conditioned text generation
|
1114
1115
|
(`img2text`) mode.
|
1115
1116
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
@@ -1144,29 +1145,29 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
1144
1145
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1145
1146
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1146
1147
|
generation deterministic.
|
1147
|
-
latents (`torch.
|
1148
|
+
latents (`torch.Tensor`, *optional*):
|
1148
1149
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint
|
1149
1150
|
image-text generation. Can be used to tweak the same generation with different prompts. If not
|
1150
1151
|
provided, a latents tensor is generated by sampling using the supplied random `generator`. This assumes
|
1151
1152
|
a full set of VAE, CLIP, and text latents, if supplied, overrides the value of `prompt_latents`,
|
1152
1153
|
`vae_latents`, and `clip_latents`.
|
1153
|
-
prompt_latents (`torch.
|
1154
|
+
prompt_latents (`torch.Tensor`, *optional*):
|
1154
1155
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text
|
1155
1156
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1156
1157
|
tensor is generated by sampling using the supplied random `generator`.
|
1157
|
-
vae_latents (`torch.
|
1158
|
+
vae_latents (`torch.Tensor`, *optional*):
|
1158
1159
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1159
1160
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1160
1161
|
tensor is generated by sampling using the supplied random `generator`.
|
1161
|
-
clip_latents (`torch.
|
1162
|
+
clip_latents (`torch.Tensor`, *optional*):
|
1162
1163
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1163
1164
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1164
1165
|
tensor is generated by sampling using the supplied random `generator`.
|
1165
|
-
prompt_embeds (`torch.
|
1166
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1166
1167
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1167
1168
|
provided, text embeddings are generated from the `prompt` input argument. Used in text-conditioned
|
1168
1169
|
image generation (`text2img`) mode.
|
1169
|
-
negative_prompt_embeds (`torch.
|
1170
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1170
1171
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1171
1172
|
not provided, `negative_prompt_embeds` are be generated from the `negative_prompt` input argument. Used
|
1172
1173
|
in text-conditioned image generation (`text2img`) mode.
|
@@ -1176,7 +1177,7 @@ class UniDiffuserPipeline(DiffusionPipeline):
|
|
1176
1177
|
Whether or not to return a [`~pipelines.ImageTextPipelineOutput`] instead of a plain tuple.
|
1177
1178
|
callback (`Callable`, *optional*):
|
1178
1179
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1179
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
1180
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
1180
1181
|
callback_steps (`int`, *optional*, defaults to 1):
|
1181
1182
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1182
1183
|
every step.
|
@@ -130,7 +130,7 @@ class PaellaVQModel(ModelMixin, ConfigMixin):
|
|
130
130
|
)
|
131
131
|
|
132
132
|
@apply_forward_hook
|
133
|
-
def encode(self, x: torch.
|
133
|
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput:
|
134
134
|
h = self.in_block(x)
|
135
135
|
h = self.down_blocks(h)
|
136
136
|
|
@@ -141,8 +141,8 @@ class PaellaVQModel(ModelMixin, ConfigMixin):
|
|
141
141
|
|
142
142
|
@apply_forward_hook
|
143
143
|
def decode(
|
144
|
-
self, h: torch.
|
145
|
-
) -> Union[DecoderOutput, torch.
|
144
|
+
self, h: torch.Tensor, force_not_quantize: bool = True, return_dict: bool = True
|
145
|
+
) -> Union[DecoderOutput, torch.Tensor]:
|
146
146
|
if not force_not_quantize:
|
147
147
|
quant, _, _ = self.vquantizer(h)
|
148
148
|
else:
|
@@ -155,10 +155,10 @@ class PaellaVQModel(ModelMixin, ConfigMixin):
|
|
155
155
|
|
156
156
|
return DecoderOutput(sample=dec)
|
157
157
|
|
158
|
-
def forward(self, sample: torch.
|
158
|
+
def forward(self, sample: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
159
159
|
r"""
|
160
160
|
Args:
|
161
|
-
sample (`torch.
|
161
|
+
sample (`torch.Tensor`): Input sample.
|
162
162
|
return_dict (`bool`, *optional*, defaults to `True`):
|
163
163
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
164
164
|
"""
|
@@ -17,8 +17,8 @@ class WuerstchenLayerNorm(nn.LayerNorm):
|
|
17
17
|
class TimestepBlock(nn.Module):
|
18
18
|
def __init__(self, c, c_timestep):
|
19
19
|
super().__init__()
|
20
|
-
|
21
|
-
self.mapper =
|
20
|
+
|
21
|
+
self.mapper = nn.Linear(c_timestep, c * 2)
|
22
22
|
|
23
23
|
def forward(self, x, t):
|
24
24
|
a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1)
|
@@ -29,13 +29,10 @@ class ResBlock(nn.Module):
|
|
29
29
|
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0):
|
30
30
|
super().__init__()
|
31
31
|
|
32
|
-
|
33
|
-
linear_cls = nn.Linear
|
34
|
-
|
35
|
-
self.depthwise = conv_cls(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
|
32
|
+
self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
|
36
33
|
self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6)
|
37
34
|
self.channelwise = nn.Sequential(
|
38
|
-
|
35
|
+
nn.Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c)
|
39
36
|
)
|
40
37
|
|
41
38
|
def forward(self, x, x_skip=None):
|
@@ -64,12 +61,10 @@ class AttnBlock(nn.Module):
|
|
64
61
|
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
|
65
62
|
super().__init__()
|
66
63
|
|
67
|
-
linear_cls = nn.Linear
|
68
|
-
|
69
64
|
self.self_attn = self_attn
|
70
65
|
self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6)
|
71
66
|
self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True)
|
72
|
-
self.kv_mapper = nn.Sequential(nn.SiLU(),
|
67
|
+
self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c))
|
73
68
|
|
74
69
|
def forward(self, x, kv):
|
75
70
|
kv = self.kv_mapper(kv)
|
@@ -40,15 +40,13 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
|
|
40
40
|
@register_to_config
|
41
41
|
def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, dropout=0.1):
|
42
42
|
super().__init__()
|
43
|
-
conv_cls = nn.Conv2d
|
44
|
-
linear_cls = nn.Linear
|
45
43
|
|
46
44
|
self.c_r = c_r
|
47
|
-
self.projection =
|
45
|
+
self.projection = nn.Conv2d(c_in, c, kernel_size=1)
|
48
46
|
self.cond_mapper = nn.Sequential(
|
49
|
-
|
47
|
+
nn.Linear(c_cond, c),
|
50
48
|
nn.LeakyReLU(0.2),
|
51
|
-
|
49
|
+
nn.Linear(c, c),
|
52
50
|
)
|
53
51
|
|
54
52
|
self.blocks = nn.ModuleList()
|
@@ -58,7 +56,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
|
|
58
56
|
self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout))
|
59
57
|
self.out = nn.Sequential(
|
60
58
|
WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6),
|
61
|
-
|
59
|
+
nn.Conv2d(c, c_in * 2, kernel_size=1),
|
62
60
|
)
|
63
61
|
|
64
62
|
self.gradient_checkpointing = False
|
@@ -77,7 +75,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
|
|
77
75
|
|
78
76
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
79
77
|
if hasattr(module, "get_processor"):
|
80
|
-
processors[f"{name}.processor"] = module.get_processor(
|
78
|
+
processors[f"{name}.processor"] = module.get_processor()
|
81
79
|
|
82
80
|
for sub_name, child in module.named_children():
|
83
81
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -160,7 +158,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
|
|
160
158
|
c_embed = self.cond_mapper(c)
|
161
159
|
r_embed = self.gen_r_embedding(r)
|
162
160
|
|
163
|
-
if
|
161
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
164
162
|
|
165
163
|
def create_custom_forward(module):
|
166
164
|
def custom_forward(*inputs):
|