diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,938 @@
1
+ # Copyright 2024 The RhymesAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import html
17
+ import inspect
18
+ import math
19
+ import re
20
+ import urllib.parse as ul
21
+ from typing import Callable, Dict, List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ from transformers import T5EncoderModel, T5Tokenizer
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...models import AllegroTransformer3DModel, AutoencoderKLAllegro
28
+ from ...models.embeddings import get_3d_rotary_pos_embed_allegro
29
+ from ...pipelines.pipeline_utils import DiffusionPipeline
30
+ from ...schedulers import KarrasDiffusionSchedulers
31
+ from ...utils import (
32
+ BACKENDS_MAPPING,
33
+ deprecate,
34
+ is_bs4_available,
35
+ is_ftfy_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ )
39
+ from ...utils.torch_utils import randn_tensor
40
+ from ...video_processor import VideoProcessor
41
+ from .pipeline_output import AllegroPipelineOutput
42
+
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+ if is_bs4_available():
47
+ from bs4 import BeautifulSoup
48
+
49
+ if is_ftfy_available():
50
+ import ftfy
51
+
52
+
53
+ EXAMPLE_DOC_STRING = """
54
+ Examples:
55
+ ```py
56
+ >>> import torch
57
+ >>> from diffusers import AutoencoderKLAllegro, AllegroPipeline
58
+ >>> from diffusers.utils import export_to_video
59
+
60
+ >>> vae = AutoencoderKLAllegro.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32)
61
+ >>> pipe = AllegroPipeline.from_pretrained("rhymes-ai/Allegro", vae=vae, torch_dtype=torch.bfloat16).to("cuda")
62
+ >>> pipe.enable_vae_tiling()
63
+
64
+ >>> prompt = (
65
+ ... "A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, "
66
+ ... "the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this "
67
+ ... "location might be a popular spot for docking fishing boats."
68
+ ... )
69
+ >>> video = pipe(prompt, guidance_scale=7.5, max_sequence_length=512).frames[0]
70
+ >>> export_to_video(video, "output.mp4", fps=15)
71
+ ```
72
+ """
73
+
74
+
75
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
76
+ def retrieve_timesteps(
77
+ scheduler,
78
+ num_inference_steps: Optional[int] = None,
79
+ device: Optional[Union[str, torch.device]] = None,
80
+ timesteps: Optional[List[int]] = None,
81
+ sigmas: Optional[List[float]] = None,
82
+ **kwargs,
83
+ ):
84
+ r"""
85
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
86
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
87
+
88
+ Args:
89
+ scheduler (`SchedulerMixin`):
90
+ The scheduler to get timesteps from.
91
+ num_inference_steps (`int`):
92
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
93
+ must be `None`.
94
+ device (`str` or `torch.device`, *optional*):
95
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
96
+ timesteps (`List[int]`, *optional*):
97
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
98
+ `num_inference_steps` and `sigmas` must be `None`.
99
+ sigmas (`List[float]`, *optional*):
100
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
101
+ `num_inference_steps` and `timesteps` must be `None`.
102
+
103
+ Returns:
104
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
105
+ second element is the number of inference steps.
106
+ """
107
+ if timesteps is not None and sigmas is not None:
108
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
109
+ if timesteps is not None:
110
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
111
+ if not accepts_timesteps:
112
+ raise ValueError(
113
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
114
+ f" timestep schedules. Please check whether you are using the correct scheduler."
115
+ )
116
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
117
+ timesteps = scheduler.timesteps
118
+ num_inference_steps = len(timesteps)
119
+ elif sigmas is not None:
120
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
121
+ if not accept_sigmas:
122
+ raise ValueError(
123
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
124
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
125
+ )
126
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
127
+ timesteps = scheduler.timesteps
128
+ num_inference_steps = len(timesteps)
129
+ else:
130
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
131
+ timesteps = scheduler.timesteps
132
+ return timesteps, num_inference_steps
133
+
134
+
135
+ class AllegroPipeline(DiffusionPipeline):
136
+ r"""
137
+ Pipeline for text-to-video generation using Allegro.
138
+
139
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
140
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
141
+
142
+ Args:
143
+ vae ([`AllegroAutoEncoderKL3D`]):
144
+ Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
145
+ text_encoder ([`T5EncoderModel`]):
146
+ Frozen text-encoder. PixArt-Alpha uses
147
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
148
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
149
+ tokenizer (`T5Tokenizer`):
150
+ Tokenizer of class
151
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
152
+ transformer ([`AllegroTransformer3DModel`]):
153
+ A text conditioned `AllegroTransformer3DModel` to denoise the encoded video latents.
154
+ scheduler ([`SchedulerMixin`]):
155
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
156
+ """
157
+
158
+ bad_punct_regex = re.compile(
159
+ r"["
160
+ + "#®•©™&@·º½¾¿¡§~"
161
+ + r"\)"
162
+ + r"\("
163
+ + r"\]"
164
+ + r"\["
165
+ + r"\}"
166
+ + r"\{"
167
+ + r"\|"
168
+ + "\\"
169
+ + r"\/"
170
+ + r"\*"
171
+ + r"]{1,}"
172
+ ) # noqa
173
+
174
+ _optional_components = []
175
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
176
+
177
+ _callback_tensor_inputs = [
178
+ "latents",
179
+ "prompt_embeds",
180
+ "negative_prompt_embeds",
181
+ ]
182
+
183
+ def __init__(
184
+ self,
185
+ tokenizer: T5Tokenizer,
186
+ text_encoder: T5EncoderModel,
187
+ vae: AutoencoderKLAllegro,
188
+ transformer: AllegroTransformer3DModel,
189
+ scheduler: KarrasDiffusionSchedulers,
190
+ ):
191
+ super().__init__()
192
+
193
+ self.register_modules(
194
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
195
+ )
196
+ self.vae_scale_factor_spatial = (
197
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
198
+ )
199
+ self.vae_scale_factor_temporal = (
200
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
201
+ )
202
+
203
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
204
+
205
+ # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->512, num_images_per_prompt->num_videos_per_prompt
206
+ def encode_prompt(
207
+ self,
208
+ prompt: Union[str, List[str]],
209
+ do_classifier_free_guidance: bool = True,
210
+ negative_prompt: str = "",
211
+ num_videos_per_prompt: int = 1,
212
+ device: Optional[torch.device] = None,
213
+ prompt_embeds: Optional[torch.Tensor] = None,
214
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
215
+ prompt_attention_mask: Optional[torch.Tensor] = None,
216
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
217
+ clean_caption: bool = False,
218
+ max_sequence_length: int = 512,
219
+ **kwargs,
220
+ ):
221
+ r"""
222
+ Encodes the prompt into text encoder hidden states.
223
+
224
+ Args:
225
+ prompt (`str` or `List[str]`, *optional*):
226
+ prompt to be encoded
227
+ negative_prompt (`str` or `List[str]`, *optional*):
228
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
229
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
230
+ PixArt-Alpha, this should be "".
231
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
232
+ whether to use classifier free guidance or not
233
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
234
+ number of images that should be generated per prompt
235
+ device: (`torch.device`, *optional*):
236
+ torch device to place the resulting embeddings on
237
+ prompt_embeds (`torch.Tensor`, *optional*):
238
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
239
+ provided, text embeddings will be generated from `prompt` input argument.
240
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
241
+ Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
242
+ string.
243
+ clean_caption (`bool`, defaults to `False`):
244
+ If `True`, the function will preprocess and clean the provided caption before encoding.
245
+ max_sequence_length (`int`, defaults to 512): Maximum sequence length to use for the prompt.
246
+ """
247
+
248
+ if "mask_feature" in kwargs:
249
+ deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
250
+ deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
251
+
252
+ if device is None:
253
+ device = self._execution_device
254
+
255
+ # See Section 3.1. of the paper.
256
+ max_length = max_sequence_length
257
+
258
+ if prompt_embeds is None:
259
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
260
+ text_inputs = self.tokenizer(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_length,
264
+ truncation=True,
265
+ add_special_tokens=True,
266
+ return_tensors="pt",
267
+ )
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
270
+
271
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
272
+ text_input_ids, untruncated_ids
273
+ ):
274
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
275
+ logger.warning(
276
+ "The following part of your input was truncated because T5 can only handle sequences up to"
277
+ f" {max_length} tokens: {removed_text}"
278
+ )
279
+
280
+ prompt_attention_mask = text_inputs.attention_mask
281
+ prompt_attention_mask = prompt_attention_mask.to(device)
282
+
283
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
284
+ prompt_embeds = prompt_embeds[0]
285
+
286
+ if self.text_encoder is not None:
287
+ dtype = self.text_encoder.dtype
288
+ elif self.transformer is not None:
289
+ dtype = self.transformer.dtype
290
+ else:
291
+ dtype = None
292
+
293
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
294
+
295
+ bs_embed, seq_len, _ = prompt_embeds.shape
296
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
297
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
298
+ prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
299
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
300
+ prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_videos_per_prompt, -1)
301
+
302
+ # get unconditional embeddings for classifier free guidance
303
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
304
+ uncond_tokens = [negative_prompt] * bs_embed if isinstance(negative_prompt, str) else negative_prompt
305
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
306
+ max_length = prompt_embeds.shape[1]
307
+ uncond_input = self.tokenizer(
308
+ uncond_tokens,
309
+ padding="max_length",
310
+ max_length=max_length,
311
+ truncation=True,
312
+ return_attention_mask=True,
313
+ add_special_tokens=True,
314
+ return_tensors="pt",
315
+ )
316
+ negative_prompt_attention_mask = uncond_input.attention_mask
317
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
318
+
319
+ negative_prompt_embeds = self.text_encoder(
320
+ uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
321
+ )
322
+ negative_prompt_embeds = negative_prompt_embeds[0]
323
+
324
+ if do_classifier_free_guidance:
325
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
326
+ seq_len = negative_prompt_embeds.shape[1]
327
+
328
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
329
+
330
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
331
+ negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
332
+
333
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_videos_per_prompt)
334
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_videos_per_prompt, -1)
335
+ else:
336
+ negative_prompt_embeds = None
337
+ negative_prompt_attention_mask = None
338
+
339
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
340
+
341
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
342
+ def prepare_extra_step_kwargs(self, generator, eta):
343
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
344
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
345
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
346
+ # and should be between [0, 1]
347
+
348
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
349
+ extra_step_kwargs = {}
350
+ if accepts_eta:
351
+ extra_step_kwargs["eta"] = eta
352
+
353
+ # check if the scheduler accepts generator
354
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
355
+ if accepts_generator:
356
+ extra_step_kwargs["generator"] = generator
357
+ return extra_step_kwargs
358
+
359
+ def check_inputs(
360
+ self,
361
+ prompt,
362
+ num_frames,
363
+ height,
364
+ width,
365
+ callback_on_step_end_tensor_inputs,
366
+ negative_prompt=None,
367
+ prompt_embeds=None,
368
+ negative_prompt_embeds=None,
369
+ prompt_attention_mask=None,
370
+ negative_prompt_attention_mask=None,
371
+ ):
372
+ if num_frames <= 0:
373
+ raise ValueError(f"`num_frames` have to be positive but is {num_frames}.")
374
+ if height % 8 != 0 or width % 8 != 0:
375
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
376
+
377
+ if callback_on_step_end_tensor_inputs is not None and not all(
378
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
379
+ ):
380
+ raise ValueError(
381
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
382
+ )
383
+
384
+ if prompt is not None and prompt_embeds is not None:
385
+ raise ValueError(
386
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
387
+ " only forward one of the two."
388
+ )
389
+ elif prompt is None and prompt_embeds is None:
390
+ raise ValueError(
391
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
392
+ )
393
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
394
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
395
+
396
+ if prompt is not None and negative_prompt_embeds is not None:
397
+ raise ValueError(
398
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
399
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
400
+ )
401
+
402
+ if negative_prompt is not None and negative_prompt_embeds is not None:
403
+ raise ValueError(
404
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
405
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
406
+ )
407
+
408
+ if prompt_embeds is not None and prompt_attention_mask is None:
409
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
410
+
411
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
412
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
413
+
414
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
415
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
416
+ raise ValueError(
417
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
418
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
419
+ f" {negative_prompt_embeds.shape}."
420
+ )
421
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
422
+ raise ValueError(
423
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
424
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
425
+ f" {negative_prompt_attention_mask.shape}."
426
+ )
427
+
428
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
429
+ def _text_preprocessing(self, text, clean_caption=False):
430
+ if clean_caption and not is_bs4_available():
431
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
432
+ logger.warning("Setting `clean_caption` to False...")
433
+ clean_caption = False
434
+
435
+ if clean_caption and not is_ftfy_available():
436
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
437
+ logger.warning("Setting `clean_caption` to False...")
438
+ clean_caption = False
439
+
440
+ if not isinstance(text, (tuple, list)):
441
+ text = [text]
442
+
443
+ def process(text: str):
444
+ if clean_caption:
445
+ text = self._clean_caption(text)
446
+ text = self._clean_caption(text)
447
+ else:
448
+ text = text.lower().strip()
449
+ return text
450
+
451
+ return [process(t) for t in text]
452
+
453
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
454
+ def _clean_caption(self, caption):
455
+ caption = str(caption)
456
+ caption = ul.unquote_plus(caption)
457
+ caption = caption.strip().lower()
458
+ caption = re.sub("<person>", "person", caption)
459
+ # urls:
460
+ caption = re.sub(
461
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
462
+ "",
463
+ caption,
464
+ ) # regex for urls
465
+ caption = re.sub(
466
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
467
+ "",
468
+ caption,
469
+ ) # regex for urls
470
+ # html:
471
+ caption = BeautifulSoup(caption, features="html.parser").text
472
+
473
+ # @<nickname>
474
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
475
+
476
+ # 31C0—31EF CJK Strokes
477
+ # 31F0—31FF Katakana Phonetic Extensions
478
+ # 3200—32FF Enclosed CJK Letters and Months
479
+ # 3300—33FF CJK Compatibility
480
+ # 3400—4DBF CJK Unified Ideographs Extension A
481
+ # 4DC0—4DFF Yijing Hexagram Symbols
482
+ # 4E00—9FFF CJK Unified Ideographs
483
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
484
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
485
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
486
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
487
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
488
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
489
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
490
+ #######################################################
491
+
492
+ # все виды тире / all types of dash --> "-"
493
+ caption = re.sub(
494
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
495
+ "-",
496
+ caption,
497
+ )
498
+
499
+ # кавычки к одному стандарту
500
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
501
+ caption = re.sub(r"[‘’]", "'", caption)
502
+
503
+ # &quot;
504
+ caption = re.sub(r"&quot;?", "", caption)
505
+ # &amp
506
+ caption = re.sub(r"&amp", "", caption)
507
+
508
+ # ip adresses:
509
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
510
+
511
+ # article ids:
512
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
513
+
514
+ # \n
515
+ caption = re.sub(r"\\n", " ", caption)
516
+
517
+ # "#123"
518
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
519
+ # "#12345.."
520
+ caption = re.sub(r"#\d{5,}\b", "", caption)
521
+ # "123456.."
522
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
523
+ # filenames:
524
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
525
+
526
+ #
527
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
528
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
529
+
530
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
531
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
532
+
533
+ # this-is-my-cute-cat / this_is_my_cute_cat
534
+ regex2 = re.compile(r"(?:\-|\_)")
535
+ if len(re.findall(regex2, caption)) > 3:
536
+ caption = re.sub(regex2, " ", caption)
537
+
538
+ caption = ftfy.fix_text(caption)
539
+ caption = html.unescape(html.unescape(caption))
540
+
541
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
542
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
543
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
544
+
545
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
546
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
547
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
548
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
549
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
550
+
551
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
552
+
553
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
554
+
555
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
556
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
557
+ caption = re.sub(r"\s+", " ", caption)
558
+
559
+ caption.strip()
560
+
561
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
562
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
563
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
564
+ caption = re.sub(r"^\.\S+$", "", caption)
565
+
566
+ return caption.strip()
567
+
568
+ def prepare_latents(
569
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
570
+ ):
571
+ if isinstance(generator, list) and len(generator) != batch_size:
572
+ raise ValueError(
573
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
574
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
575
+ )
576
+
577
+ if num_frames % 2 == 0:
578
+ num_frames = math.ceil(num_frames / self.vae_scale_factor_temporal)
579
+ else:
580
+ num_frames = math.ceil((num_frames - 1) / self.vae_scale_factor_temporal) + 1
581
+
582
+ shape = (
583
+ batch_size,
584
+ num_channels_latents,
585
+ num_frames,
586
+ height // self.vae_scale_factor_spatial,
587
+ width // self.vae_scale_factor_spatial,
588
+ )
589
+
590
+ if latents is None:
591
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
592
+ else:
593
+ latents = latents.to(device)
594
+
595
+ # scale the initial noise by the standard deviation required by the scheduler
596
+ latents = latents * self.scheduler.init_noise_sigma
597
+ return latents
598
+
599
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
600
+ latents = 1 / self.vae.config.scaling_factor * latents
601
+ frames = self.vae.decode(latents).sample
602
+ frames = frames.permute(0, 2, 1, 3, 4) # [batch_size, channels, num_frames, height, width]
603
+ return frames
604
+
605
+ def _prepare_rotary_positional_embeddings(
606
+ self,
607
+ batch_size: int,
608
+ height: int,
609
+ width: int,
610
+ num_frames: int,
611
+ device: torch.device,
612
+ ):
613
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
614
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
615
+
616
+ start, stop = (0, 0), (grid_height, grid_width)
617
+ freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w = get_3d_rotary_pos_embed_allegro(
618
+ embed_dim=self.transformer.config.attention_head_dim,
619
+ crops_coords=(start, stop),
620
+ grid_size=(grid_height, grid_width),
621
+ temporal_size=num_frames,
622
+ interpolation_scale=(
623
+ self.transformer.config.interpolation_scale_t,
624
+ self.transformer.config.interpolation_scale_h,
625
+ self.transformer.config.interpolation_scale_w,
626
+ ),
627
+ device=device,
628
+ )
629
+
630
+ grid_t = grid_t.to(dtype=torch.long)
631
+ grid_h = grid_h.to(dtype=torch.long)
632
+ grid_w = grid_w.to(dtype=torch.long)
633
+
634
+ pos = torch.cartesian_prod(grid_t, grid_h, grid_w)
635
+ pos = pos.reshape(-1, 3).transpose(0, 1).reshape(3, 1, -1).contiguous()
636
+ grid_t, grid_h, grid_w = pos
637
+
638
+ return (freqs_t, freqs_h, freqs_w), (grid_t, grid_h, grid_w)
639
+
640
+ def enable_vae_slicing(self):
641
+ r"""
642
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
643
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
644
+ """
645
+ self.vae.enable_slicing()
646
+
647
+ def disable_vae_slicing(self):
648
+ r"""
649
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
650
+ computing decoding in one step.
651
+ """
652
+ self.vae.disable_slicing()
653
+
654
+ def enable_vae_tiling(self):
655
+ r"""
656
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
657
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
658
+ processing larger images.
659
+ """
660
+ self.vae.enable_tiling()
661
+
662
+ def disable_vae_tiling(self):
663
+ r"""
664
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
665
+ computing decoding in one step.
666
+ """
667
+ self.vae.disable_tiling()
668
+
669
+ @property
670
+ def guidance_scale(self):
671
+ return self._guidance_scale
672
+
673
+ @property
674
+ def num_timesteps(self):
675
+ return self._num_timesteps
676
+
677
+ @property
678
+ def interrupt(self):
679
+ return self._interrupt
680
+
681
+ @torch.no_grad()
682
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
683
+ def __call__(
684
+ self,
685
+ prompt: Union[str, List[str]] = None,
686
+ negative_prompt: str = "",
687
+ num_inference_steps: int = 100,
688
+ timesteps: List[int] = None,
689
+ guidance_scale: float = 7.5,
690
+ num_frames: Optional[int] = None,
691
+ height: Optional[int] = None,
692
+ width: Optional[int] = None,
693
+ num_videos_per_prompt: int = 1,
694
+ eta: float = 0.0,
695
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
696
+ latents: Optional[torch.Tensor] = None,
697
+ prompt_embeds: Optional[torch.Tensor] = None,
698
+ prompt_attention_mask: Optional[torch.Tensor] = None,
699
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
700
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
701
+ output_type: Optional[str] = "pil",
702
+ return_dict: bool = True,
703
+ callback_on_step_end: Optional[
704
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
705
+ ] = None,
706
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
707
+ clean_caption: bool = True,
708
+ max_sequence_length: int = 512,
709
+ ) -> Union[AllegroPipelineOutput, Tuple]:
710
+ """
711
+ Function invoked when calling the pipeline for generation.
712
+
713
+ Args:
714
+ prompt (`str` or `List[str]`, *optional*):
715
+ The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
716
+ instead.
717
+ negative_prompt (`str` or `List[str]`, *optional*):
718
+ The prompt or prompts not to guide the video generation. If not defined, one has to pass
719
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
720
+ less than `1`).
721
+ num_inference_steps (`int`, *optional*, defaults to 100):
722
+ The number of denoising steps. More denoising steps usually lead to a higher quality video at the
723
+ expense of slower inference.
724
+ timesteps (`List[int]`, *optional*):
725
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
726
+ timesteps are used. Must be in descending order.
727
+ guidance_scale (`float`, *optional*, defaults to 7.5):
728
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
729
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
730
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
731
+ 1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
732
+ usually at the expense of lower video quality.
733
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
734
+ The number of videos to generate per prompt.
735
+ num_frames: (`int`, *optional*, defaults to 88):
736
+ The number controls the generated video frames.
737
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
738
+ The height in pixels of the generated video.
739
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
740
+ The width in pixels of the generated video.
741
+ eta (`float`, *optional*, defaults to 0.0):
742
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
743
+ [`schedulers.DDIMScheduler`], will be ignored for others.
744
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
745
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
746
+ to make generation deterministic.
747
+ latents (`torch.Tensor`, *optional*):
748
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
749
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
750
+ tensor will ge generated by sampling using the supplied random `generator`.
751
+ prompt_embeds (`torch.Tensor`, *optional*):
752
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
753
+ provided, text embeddings will be generated from `prompt` input argument.
754
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
755
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
756
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
757
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
758
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
759
+ Pre-generated attention mask for negative text embeddings.
760
+ output_type (`str`, *optional*, defaults to `"pil"`):
761
+ The output format of the generate video. Choose between
762
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
763
+ return_dict (`bool`, *optional*, defaults to `True`):
764
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
765
+ callback (`Callable`, *optional*):
766
+ A function that will be called every `callback_steps` steps during inference. The function will be
767
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
768
+ callback_steps (`int`, *optional*, defaults to 1):
769
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
770
+ called at every step.
771
+ clean_caption (`bool`, *optional*, defaults to `True`):
772
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
773
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
774
+ prompt.
775
+ max_sequence_length (`int` defaults to `512`):
776
+ Maximum sequence length to use with the `prompt`.
777
+
778
+ Examples:
779
+
780
+ Returns:
781
+ [`~pipelines.allegro.pipeline_output.AllegroPipelineOutput`] or `tuple`:
782
+ If `return_dict` is `True`, [`~pipelines.allegro.pipeline_output.AllegroPipelineOutput`] is returned,
783
+ otherwise a `tuple` is returned where the first element is a list with the generated videos.
784
+ """
785
+
786
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
787
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
788
+
789
+ num_videos_per_prompt = 1
790
+
791
+ # 1. Check inputs. Raise error if not correct
792
+ num_frames = num_frames or self.transformer.config.sample_frames * self.vae_scale_factor_temporal
793
+ height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
794
+ width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
795
+
796
+ self.check_inputs(
797
+ prompt,
798
+ num_frames,
799
+ height,
800
+ width,
801
+ callback_on_step_end_tensor_inputs,
802
+ negative_prompt,
803
+ prompt_embeds,
804
+ negative_prompt_embeds,
805
+ prompt_attention_mask,
806
+ negative_prompt_attention_mask,
807
+ )
808
+ self._guidance_scale = guidance_scale
809
+ self._interrupt = False
810
+
811
+ # 2. Default height and width to transformer
812
+ if prompt is not None and isinstance(prompt, str):
813
+ batch_size = 1
814
+ elif prompt is not None and isinstance(prompt, list):
815
+ batch_size = len(prompt)
816
+ else:
817
+ batch_size = prompt_embeds.shape[0]
818
+
819
+ device = self._execution_device
820
+
821
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
822
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
823
+ # corresponds to doing no classifier free guidance.
824
+ do_classifier_free_guidance = guidance_scale > 1.0
825
+
826
+ # 3. Encode input prompt
827
+ (
828
+ prompt_embeds,
829
+ prompt_attention_mask,
830
+ negative_prompt_embeds,
831
+ negative_prompt_attention_mask,
832
+ ) = self.encode_prompt(
833
+ prompt,
834
+ do_classifier_free_guidance,
835
+ negative_prompt=negative_prompt,
836
+ num_videos_per_prompt=num_videos_per_prompt,
837
+ device=device,
838
+ prompt_embeds=prompt_embeds,
839
+ negative_prompt_embeds=negative_prompt_embeds,
840
+ prompt_attention_mask=prompt_attention_mask,
841
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
842
+ clean_caption=clean_caption,
843
+ max_sequence_length=max_sequence_length,
844
+ )
845
+ if do_classifier_free_guidance:
846
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
847
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
848
+ if prompt_embeds.ndim == 3:
849
+ prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d
850
+
851
+ # 4. Prepare timesteps
852
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
853
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
854
+
855
+ # 5. Prepare latents.
856
+ latent_channels = self.transformer.config.in_channels
857
+ latents = self.prepare_latents(
858
+ batch_size * num_videos_per_prompt,
859
+ latent_channels,
860
+ num_frames,
861
+ height,
862
+ width,
863
+ prompt_embeds.dtype,
864
+ device,
865
+ generator,
866
+ latents,
867
+ )
868
+
869
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
870
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
871
+
872
+ # 7. Prepare rotary embeddings
873
+ image_rotary_emb = self._prepare_rotary_positional_embeddings(
874
+ batch_size, height, width, latents.size(2), device
875
+ )
876
+
877
+ # 8. Denoising loop
878
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
879
+ self._num_timesteps = len(timesteps)
880
+
881
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
882
+ for i, t in enumerate(timesteps):
883
+ if self.interrupt:
884
+ continue
885
+
886
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
887
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
888
+
889
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
890
+ timestep = t.expand(latent_model_input.shape[0])
891
+
892
+ # predict noise model_output
893
+ noise_pred = self.transformer(
894
+ hidden_states=latent_model_input,
895
+ encoder_hidden_states=prompt_embeds,
896
+ encoder_attention_mask=prompt_attention_mask,
897
+ timestep=timestep,
898
+ image_rotary_emb=image_rotary_emb,
899
+ return_dict=False,
900
+ )[0]
901
+
902
+ # perform guidance
903
+ if do_classifier_free_guidance:
904
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
905
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
906
+
907
+ # compute previous image: x_t -> x_t-1
908
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
909
+
910
+ # call the callback, if provided
911
+ if callback_on_step_end is not None:
912
+ callback_kwargs = {}
913
+ for k in callback_on_step_end_tensor_inputs:
914
+ callback_kwargs[k] = locals()[k]
915
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
916
+
917
+ latents = callback_outputs.pop("latents", latents)
918
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
919
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
920
+
921
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
922
+ progress_bar.update()
923
+
924
+ if not output_type == "latent":
925
+ latents = latents.to(self.vae.dtype)
926
+ video = self.decode_latents(latents)
927
+ video = video[:, :, :num_frames, :height, :width]
928
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
929
+ else:
930
+ video = latents
931
+
932
+ # Offload all models
933
+ self.maybe_free_model_hooks()
934
+
935
+ if not return_dict:
936
+ return (video,)
937
+
938
+ return AllegroPipelineOutput(frames=video)