diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,584 @@
1
+ # Copyright 2024 AuraFlow Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import T5Tokenizer, UMT5EncoderModel
19
+
20
+ from ...image_processor import VaeImageProcessor
21
+ from ...models import AuraFlowTransformer2DModel, AutoencoderKL
22
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
23
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
24
+ from ...utils import logging, replace_example_docstring
25
+ from ...utils.torch_utils import randn_tensor
26
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
27
+
28
+
29
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
+
31
+
32
+ EXAMPLE_DOC_STRING = """
33
+ Examples:
34
+ ```py
35
+ >>> import torch
36
+ >>> from diffusers import AuraFlowPipeline
37
+
38
+ >>> pipe = AuraFlowPipeline.from_pretrained("fal/AuraFlow", torch_dtype=torch.float16)
39
+ >>> pipe = pipe.to("cuda")
40
+ >>> prompt = "A cat holding a sign that says hello world"
41
+ >>> image = pipe(prompt).images[0]
42
+ >>> image.save("aura_flow.png")
43
+ ```
44
+ """
45
+
46
+
47
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
48
+ def retrieve_timesteps(
49
+ scheduler,
50
+ num_inference_steps: Optional[int] = None,
51
+ device: Optional[Union[str, torch.device]] = None,
52
+ timesteps: Optional[List[int]] = None,
53
+ sigmas: Optional[List[float]] = None,
54
+ **kwargs,
55
+ ):
56
+ r"""
57
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
58
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
59
+
60
+ Args:
61
+ scheduler (`SchedulerMixin`):
62
+ The scheduler to get timesteps from.
63
+ num_inference_steps (`int`):
64
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
65
+ must be `None`.
66
+ device (`str` or `torch.device`, *optional*):
67
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
68
+ timesteps (`List[int]`, *optional*):
69
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
70
+ `num_inference_steps` and `sigmas` must be `None`.
71
+ sigmas (`List[float]`, *optional*):
72
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
73
+ `num_inference_steps` and `timesteps` must be `None`.
74
+
75
+ Returns:
76
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
77
+ second element is the number of inference steps.
78
+ """
79
+ if timesteps is not None and sigmas is not None:
80
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
81
+ if timesteps is not None:
82
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
83
+ if not accepts_timesteps:
84
+ raise ValueError(
85
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
86
+ f" timestep schedules. Please check whether you are using the correct scheduler."
87
+ )
88
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
89
+ timesteps = scheduler.timesteps
90
+ num_inference_steps = len(timesteps)
91
+ elif sigmas is not None:
92
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
93
+ if not accept_sigmas:
94
+ raise ValueError(
95
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
96
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
97
+ )
98
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
99
+ timesteps = scheduler.timesteps
100
+ num_inference_steps = len(timesteps)
101
+ else:
102
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
103
+ timesteps = scheduler.timesteps
104
+ return timesteps, num_inference_steps
105
+
106
+
107
+ class AuraFlowPipeline(DiffusionPipeline):
108
+ r"""
109
+ Args:
110
+ tokenizer (`T5TokenizerFast`):
111
+ Tokenizer of class
112
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
113
+ text_encoder ([`T5EncoderModel`]):
114
+ Frozen text-encoder. AuraFlow uses
115
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
116
+ [EleutherAI/pile-t5-xl](https://huggingface.co/EleutherAI/pile-t5-xl) variant.
117
+ vae ([`AutoencoderKL`]):
118
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
119
+ transformer ([`AuraFlowTransformer2DModel`]):
120
+ Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents.
121
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
122
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
123
+ """
124
+
125
+ _optional_components = []
126
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
127
+
128
+ def __init__(
129
+ self,
130
+ tokenizer: T5Tokenizer,
131
+ text_encoder: UMT5EncoderModel,
132
+ vae: AutoencoderKL,
133
+ transformer: AuraFlowTransformer2DModel,
134
+ scheduler: FlowMatchEulerDiscreteScheduler,
135
+ ):
136
+ super().__init__()
137
+
138
+ self.register_modules(
139
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
140
+ )
141
+
142
+ self.vae_scale_factor = (
143
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
144
+ )
145
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
146
+
147
+ def check_inputs(
148
+ self,
149
+ prompt,
150
+ height,
151
+ width,
152
+ negative_prompt,
153
+ prompt_embeds=None,
154
+ negative_prompt_embeds=None,
155
+ prompt_attention_mask=None,
156
+ negative_prompt_attention_mask=None,
157
+ ):
158
+ if height % 8 != 0 or width % 8 != 0:
159
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
160
+
161
+ if prompt is not None and prompt_embeds is not None:
162
+ raise ValueError(
163
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
164
+ " only forward one of the two."
165
+ )
166
+ elif prompt is None and prompt_embeds is None:
167
+ raise ValueError(
168
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
169
+ )
170
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
171
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
172
+
173
+ if prompt is not None and negative_prompt_embeds is not None:
174
+ raise ValueError(
175
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
176
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
177
+ )
178
+
179
+ if negative_prompt is not None and negative_prompt_embeds is not None:
180
+ raise ValueError(
181
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
182
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
183
+ )
184
+
185
+ if prompt_embeds is not None and prompt_attention_mask is None:
186
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
187
+
188
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
189
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
190
+
191
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
192
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
193
+ raise ValueError(
194
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
195
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
196
+ f" {negative_prompt_embeds.shape}."
197
+ )
198
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
199
+ raise ValueError(
200
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
201
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
202
+ f" {negative_prompt_attention_mask.shape}."
203
+ )
204
+
205
+ def encode_prompt(
206
+ self,
207
+ prompt: Union[str, List[str]],
208
+ negative_prompt: Union[str, List[str]] = None,
209
+ do_classifier_free_guidance: bool = True,
210
+ num_images_per_prompt: int = 1,
211
+ device: Optional[torch.device] = None,
212
+ prompt_embeds: Optional[torch.Tensor] = None,
213
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
214
+ prompt_attention_mask: Optional[torch.Tensor] = None,
215
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
216
+ max_sequence_length: int = 256,
217
+ ):
218
+ r"""
219
+ Encodes the prompt into text encoder hidden states.
220
+
221
+ Args:
222
+ prompt (`str` or `List[str]`, *optional*):
223
+ prompt to be encoded
224
+ negative_prompt (`str` or `List[str]`, *optional*):
225
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
226
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
227
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
228
+ whether to use classifier free guidance or not
229
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
230
+ number of images that should be generated per prompt
231
+ device: (`torch.device`, *optional*):
232
+ torch device to place the resulting embeddings on
233
+ prompt_embeds (`torch.Tensor`, *optional*):
234
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
235
+ provided, text embeddings will be generated from `prompt` input argument.
236
+ prompt_attention_mask (`torch.Tensor`, *optional*):
237
+ Pre-generated attention mask for text embeddings.
238
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
239
+ Pre-generated negative text embeddings.
240
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
241
+ Pre-generated attention mask for negative text embeddings.
242
+ max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
243
+ """
244
+ if device is None:
245
+ device = self._execution_device
246
+
247
+ if prompt is not None and isinstance(prompt, str):
248
+ batch_size = 1
249
+ elif prompt is not None and isinstance(prompt, list):
250
+ batch_size = len(prompt)
251
+ else:
252
+ batch_size = prompt_embeds.shape[0]
253
+
254
+ max_length = max_sequence_length
255
+ if prompt_embeds is None:
256
+ text_inputs = self.tokenizer(
257
+ prompt,
258
+ truncation=True,
259
+ max_length=max_length,
260
+ padding="max_length",
261
+ return_tensors="pt",
262
+ )
263
+ text_input_ids = text_inputs["input_ids"]
264
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
265
+
266
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
267
+ text_input_ids, untruncated_ids
268
+ ):
269
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
270
+ logger.warning(
271
+ "The following part of your input was truncated because T5 can only handle sequences up to"
272
+ f" {max_length} tokens: {removed_text}"
273
+ )
274
+
275
+ text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
276
+ prompt_embeds = self.text_encoder(**text_inputs)[0]
277
+ prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
278
+ prompt_embeds = prompt_embeds * prompt_attention_mask
279
+
280
+ if self.text_encoder is not None:
281
+ dtype = self.text_encoder.dtype
282
+ elif self.transformer is not None:
283
+ dtype = self.transformer.dtype
284
+ else:
285
+ dtype = None
286
+
287
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
288
+
289
+ bs_embed, seq_len, _ = prompt_embeds.shape
290
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
291
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
292
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
293
+ prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
294
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
295
+
296
+ # get unconditional embeddings for classifier free guidance
297
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
298
+ negative_prompt = negative_prompt or ""
299
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
300
+ max_length = prompt_embeds.shape[1]
301
+ uncond_input = self.tokenizer(
302
+ uncond_tokens,
303
+ truncation=True,
304
+ max_length=max_length,
305
+ padding="max_length",
306
+ return_tensors="pt",
307
+ )
308
+ uncond_input = {k: v.to(device) for k, v in uncond_input.items()}
309
+ negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
310
+ negative_prompt_attention_mask = (
311
+ uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
312
+ )
313
+ negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask
314
+
315
+ if do_classifier_free_guidance:
316
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
317
+ seq_len = negative_prompt_embeds.shape[1]
318
+
319
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
320
+
321
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
322
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
323
+
324
+ negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
325
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
326
+ else:
327
+ negative_prompt_embeds = None
328
+ negative_prompt_attention_mask = None
329
+
330
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
331
+
332
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
333
+ def prepare_latents(
334
+ self,
335
+ batch_size,
336
+ num_channels_latents,
337
+ height,
338
+ width,
339
+ dtype,
340
+ device,
341
+ generator,
342
+ latents=None,
343
+ ):
344
+ if latents is not None:
345
+ return latents.to(device=device, dtype=dtype)
346
+
347
+ shape = (
348
+ batch_size,
349
+ num_channels_latents,
350
+ int(height) // self.vae_scale_factor,
351
+ int(width) // self.vae_scale_factor,
352
+ )
353
+
354
+ if isinstance(generator, list) and len(generator) != batch_size:
355
+ raise ValueError(
356
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
357
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
358
+ )
359
+
360
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
361
+
362
+ return latents
363
+
364
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
365
+ def upcast_vae(self):
366
+ dtype = self.vae.dtype
367
+ self.vae.to(dtype=torch.float32)
368
+ use_torch_2_0_or_xformers = isinstance(
369
+ self.vae.decoder.mid_block.attentions[0].processor,
370
+ (
371
+ AttnProcessor2_0,
372
+ XFormersAttnProcessor,
373
+ FusedAttnProcessor2_0,
374
+ ),
375
+ )
376
+ # if xformers or torch_2_0 is used attention block does not need
377
+ # to be in float32 which can save lots of memory
378
+ if use_torch_2_0_or_xformers:
379
+ self.vae.post_quant_conv.to(dtype)
380
+ self.vae.decoder.conv_in.to(dtype)
381
+ self.vae.decoder.mid_block.to(dtype)
382
+
383
+ @torch.no_grad()
384
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
385
+ def __call__(
386
+ self,
387
+ prompt: Union[str, List[str]] = None,
388
+ negative_prompt: Union[str, List[str]] = None,
389
+ num_inference_steps: int = 50,
390
+ sigmas: List[float] = None,
391
+ guidance_scale: float = 3.5,
392
+ num_images_per_prompt: Optional[int] = 1,
393
+ height: Optional[int] = 1024,
394
+ width: Optional[int] = 1024,
395
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
396
+ latents: Optional[torch.Tensor] = None,
397
+ prompt_embeds: Optional[torch.Tensor] = None,
398
+ prompt_attention_mask: Optional[torch.Tensor] = None,
399
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
400
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
401
+ max_sequence_length: int = 256,
402
+ output_type: Optional[str] = "pil",
403
+ return_dict: bool = True,
404
+ ) -> Union[ImagePipelineOutput, Tuple]:
405
+ r"""
406
+ Function invoked when calling the pipeline for generation.
407
+
408
+ Args:
409
+ prompt (`str` or `List[str]`, *optional*):
410
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
411
+ instead.
412
+ negative_prompt (`str` or `List[str]`, *optional*):
413
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
414
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
415
+ less than `1`).
416
+ height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
417
+ The height in pixels of the generated image. This is set to 1024 by default for best results.
418
+ width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
419
+ The width in pixels of the generated image. This is set to 1024 by default for best results.
420
+ num_inference_steps (`int`, *optional*, defaults to 50):
421
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
422
+ expense of slower inference.
423
+ sigmas (`List[float]`, *optional*):
424
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
425
+ `num_inference_steps` and `timesteps` must be `None`.
426
+ guidance_scale (`float`, *optional*, defaults to 5.0):
427
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
428
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
429
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
430
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
431
+ usually at the expense of lower image quality.
432
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
433
+ The number of images to generate per prompt.
434
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
435
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
436
+ to make generation deterministic.
437
+ latents (`torch.FloatTensor`, *optional*):
438
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
439
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
440
+ tensor will ge generated by sampling using the supplied random `generator`.
441
+ prompt_embeds (`torch.FloatTensor`, *optional*):
442
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
443
+ provided, text embeddings will be generated from `prompt` input argument.
444
+ prompt_attention_mask (`torch.Tensor`, *optional*):
445
+ Pre-generated attention mask for text embeddings.
446
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
447
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
448
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
449
+ argument.
450
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
451
+ Pre-generated attention mask for negative text embeddings.
452
+ output_type (`str`, *optional*, defaults to `"pil"`):
453
+ The output format of the generate image. Choose between
454
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
455
+ return_dict (`bool`, *optional*, defaults to `True`):
456
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
457
+ of a plain tuple.
458
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
459
+
460
+ Examples:
461
+
462
+ Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
463
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
464
+ where the first element is a list with the generated images.
465
+ """
466
+ # 1. Check inputs. Raise error if not correct
467
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
468
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
469
+
470
+ self.check_inputs(
471
+ prompt,
472
+ height,
473
+ width,
474
+ negative_prompt,
475
+ prompt_embeds,
476
+ negative_prompt_embeds,
477
+ prompt_attention_mask,
478
+ negative_prompt_attention_mask,
479
+ )
480
+
481
+ # 2. Determine batch size.
482
+ if prompt is not None and isinstance(prompt, str):
483
+ batch_size = 1
484
+ elif prompt is not None and isinstance(prompt, list):
485
+ batch_size = len(prompt)
486
+ else:
487
+ batch_size = prompt_embeds.shape[0]
488
+
489
+ device = self._execution_device
490
+
491
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
492
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
493
+ # corresponds to doing no classifier free guidance.
494
+ do_classifier_free_guidance = guidance_scale > 1.0
495
+
496
+ # 3. Encode input prompt
497
+ (
498
+ prompt_embeds,
499
+ prompt_attention_mask,
500
+ negative_prompt_embeds,
501
+ negative_prompt_attention_mask,
502
+ ) = self.encode_prompt(
503
+ prompt=prompt,
504
+ negative_prompt=negative_prompt,
505
+ do_classifier_free_guidance=do_classifier_free_guidance,
506
+ num_images_per_prompt=num_images_per_prompt,
507
+ device=device,
508
+ prompt_embeds=prompt_embeds,
509
+ negative_prompt_embeds=negative_prompt_embeds,
510
+ prompt_attention_mask=prompt_attention_mask,
511
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
512
+ max_sequence_length=max_sequence_length,
513
+ )
514
+ if do_classifier_free_guidance:
515
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
516
+
517
+ # 4. Prepare timesteps
518
+
519
+ # sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
520
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
521
+
522
+ # 5. Prepare latents.
523
+ latent_channels = self.transformer.config.in_channels
524
+ latents = self.prepare_latents(
525
+ batch_size * num_images_per_prompt,
526
+ latent_channels,
527
+ height,
528
+ width,
529
+ prompt_embeds.dtype,
530
+ device,
531
+ generator,
532
+ latents,
533
+ )
534
+
535
+ # 6. Denoising loop
536
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
537
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
538
+ for i, t in enumerate(timesteps):
539
+ # expand the latents if we are doing classifier free guidance
540
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
541
+
542
+ # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
543
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
544
+ timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0])
545
+ timestep = timestep.to(latents.device, dtype=latents.dtype)
546
+
547
+ # predict noise model_output
548
+ noise_pred = self.transformer(
549
+ latent_model_input,
550
+ encoder_hidden_states=prompt_embeds,
551
+ timestep=timestep,
552
+ return_dict=False,
553
+ )[0]
554
+
555
+ # perform guidance
556
+ if do_classifier_free_guidance:
557
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
558
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
559
+
560
+ # compute the previous noisy sample x_t -> x_t-1
561
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
562
+
563
+ # call the callback, if provided
564
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
565
+ progress_bar.update()
566
+
567
+ if output_type == "latent":
568
+ image = latents
569
+ else:
570
+ # make sure the VAE is in float32 mode, as it overflows in float16
571
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
572
+ if needs_upcasting:
573
+ self.upcast_vae()
574
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
575
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
576
+ image = self.image_processor.postprocess(image, output_type=output_type)
577
+
578
+ # Offload all models
579
+ self.maybe_free_model_hooks()
580
+
581
+ if not return_dict:
582
+ return (image,)
583
+
584
+ return ImagePipelineOutput(images=image)