diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
diffusers/models/attention.py
CHANGED
@@ -11,7 +11,7 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
from typing import Any, Dict, Optional
|
14
|
+
from typing import Any, Dict, List, Optional, Tuple
|
15
15
|
|
16
16
|
import torch
|
17
17
|
import torch.nn.functional as F
|
@@ -19,10 +19,10 @@ from torch import nn
|
|
19
19
|
|
20
20
|
from ..utils import deprecate, logging
|
21
21
|
from ..utils.torch_utils import maybe_allow_in_graph
|
22
|
-
from .activations import GEGLU, GELU, ApproximateGELU
|
23
|
-
from .attention_processor import Attention
|
22
|
+
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
|
23
|
+
from .attention_processor import Attention, JointAttnProcessor2_0
|
24
24
|
from .embeddings import SinusoidalPositionalEmbedding
|
25
|
-
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
25
|
+
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
|
26
26
|
|
27
27
|
|
28
28
|
logger = logging.get_logger(__name__)
|
@@ -85,6 +85,178 @@ class GatedSelfAttentionDense(nn.Module):
|
|
85
85
|
return x
|
86
86
|
|
87
87
|
|
88
|
+
@maybe_allow_in_graph
|
89
|
+
class JointTransformerBlock(nn.Module):
|
90
|
+
r"""
|
91
|
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
92
|
+
|
93
|
+
Reference: https://arxiv.org/abs/2403.03206
|
94
|
+
|
95
|
+
Parameters:
|
96
|
+
dim (`int`): The number of channels in the input and output.
|
97
|
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
98
|
+
attention_head_dim (`int`): The number of channels in each head.
|
99
|
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
100
|
+
processing of `context` conditions.
|
101
|
+
"""
|
102
|
+
|
103
|
+
def __init__(
|
104
|
+
self,
|
105
|
+
dim: int,
|
106
|
+
num_attention_heads: int,
|
107
|
+
attention_head_dim: int,
|
108
|
+
context_pre_only: bool = False,
|
109
|
+
qk_norm: Optional[str] = None,
|
110
|
+
use_dual_attention: bool = False,
|
111
|
+
):
|
112
|
+
super().__init__()
|
113
|
+
|
114
|
+
self.use_dual_attention = use_dual_attention
|
115
|
+
self.context_pre_only = context_pre_only
|
116
|
+
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
117
|
+
|
118
|
+
if use_dual_attention:
|
119
|
+
self.norm1 = SD35AdaLayerNormZeroX(dim)
|
120
|
+
else:
|
121
|
+
self.norm1 = AdaLayerNormZero(dim)
|
122
|
+
|
123
|
+
if context_norm_type == "ada_norm_continous":
|
124
|
+
self.norm1_context = AdaLayerNormContinuous(
|
125
|
+
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
126
|
+
)
|
127
|
+
elif context_norm_type == "ada_norm_zero":
|
128
|
+
self.norm1_context = AdaLayerNormZero(dim)
|
129
|
+
else:
|
130
|
+
raise ValueError(
|
131
|
+
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
132
|
+
)
|
133
|
+
|
134
|
+
if hasattr(F, "scaled_dot_product_attention"):
|
135
|
+
processor = JointAttnProcessor2_0()
|
136
|
+
else:
|
137
|
+
raise ValueError(
|
138
|
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
139
|
+
)
|
140
|
+
|
141
|
+
self.attn = Attention(
|
142
|
+
query_dim=dim,
|
143
|
+
cross_attention_dim=None,
|
144
|
+
added_kv_proj_dim=dim,
|
145
|
+
dim_head=attention_head_dim,
|
146
|
+
heads=num_attention_heads,
|
147
|
+
out_dim=dim,
|
148
|
+
context_pre_only=context_pre_only,
|
149
|
+
bias=True,
|
150
|
+
processor=processor,
|
151
|
+
qk_norm=qk_norm,
|
152
|
+
eps=1e-6,
|
153
|
+
)
|
154
|
+
|
155
|
+
if use_dual_attention:
|
156
|
+
self.attn2 = Attention(
|
157
|
+
query_dim=dim,
|
158
|
+
cross_attention_dim=None,
|
159
|
+
dim_head=attention_head_dim,
|
160
|
+
heads=num_attention_heads,
|
161
|
+
out_dim=dim,
|
162
|
+
bias=True,
|
163
|
+
processor=processor,
|
164
|
+
qk_norm=qk_norm,
|
165
|
+
eps=1e-6,
|
166
|
+
)
|
167
|
+
else:
|
168
|
+
self.attn2 = None
|
169
|
+
|
170
|
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
171
|
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
172
|
+
|
173
|
+
if not context_pre_only:
|
174
|
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
175
|
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
176
|
+
else:
|
177
|
+
self.norm2_context = None
|
178
|
+
self.ff_context = None
|
179
|
+
|
180
|
+
# let chunk size default to None
|
181
|
+
self._chunk_size = None
|
182
|
+
self._chunk_dim = 0
|
183
|
+
|
184
|
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
185
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
186
|
+
# Sets chunk feed-forward
|
187
|
+
self._chunk_size = chunk_size
|
188
|
+
self._chunk_dim = dim
|
189
|
+
|
190
|
+
def forward(
|
191
|
+
self,
|
192
|
+
hidden_states: torch.FloatTensor,
|
193
|
+
encoder_hidden_states: torch.FloatTensor,
|
194
|
+
temb: torch.FloatTensor,
|
195
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
196
|
+
):
|
197
|
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
198
|
+
if self.use_dual_attention:
|
199
|
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
|
200
|
+
hidden_states, emb=temb
|
201
|
+
)
|
202
|
+
else:
|
203
|
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
204
|
+
|
205
|
+
if self.context_pre_only:
|
206
|
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
207
|
+
else:
|
208
|
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
209
|
+
encoder_hidden_states, emb=temb
|
210
|
+
)
|
211
|
+
|
212
|
+
# Attention.
|
213
|
+
attn_output, context_attn_output = self.attn(
|
214
|
+
hidden_states=norm_hidden_states,
|
215
|
+
encoder_hidden_states=norm_encoder_hidden_states,
|
216
|
+
**joint_attention_kwargs,
|
217
|
+
)
|
218
|
+
|
219
|
+
# Process attention outputs for the `hidden_states`.
|
220
|
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
221
|
+
hidden_states = hidden_states + attn_output
|
222
|
+
|
223
|
+
if self.use_dual_attention:
|
224
|
+
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs)
|
225
|
+
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
|
226
|
+
hidden_states = hidden_states + attn_output2
|
227
|
+
|
228
|
+
norm_hidden_states = self.norm2(hidden_states)
|
229
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
230
|
+
if self._chunk_size is not None:
|
231
|
+
# "feed_forward_chunk_size" can be used to save memory
|
232
|
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
233
|
+
else:
|
234
|
+
ff_output = self.ff(norm_hidden_states)
|
235
|
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
236
|
+
|
237
|
+
hidden_states = hidden_states + ff_output
|
238
|
+
|
239
|
+
# Process attention outputs for the `encoder_hidden_states`.
|
240
|
+
if self.context_pre_only:
|
241
|
+
encoder_hidden_states = None
|
242
|
+
else:
|
243
|
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
244
|
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
245
|
+
|
246
|
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
247
|
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
248
|
+
if self._chunk_size is not None:
|
249
|
+
# "feed_forward_chunk_size" can be used to save memory
|
250
|
+
context_ff_output = _chunked_feed_forward(
|
251
|
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
252
|
+
)
|
253
|
+
else:
|
254
|
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
255
|
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
256
|
+
|
257
|
+
return encoder_hidden_states, hidden_states
|
258
|
+
|
259
|
+
|
88
260
|
@maybe_allow_in_graph
|
89
261
|
class BasicTransformerBlock(nn.Module):
|
90
262
|
r"""
|
@@ -148,6 +320,17 @@ class BasicTransformerBlock(nn.Module):
|
|
148
320
|
attention_out_bias: bool = True,
|
149
321
|
):
|
150
322
|
super().__init__()
|
323
|
+
self.dim = dim
|
324
|
+
self.num_attention_heads = num_attention_heads
|
325
|
+
self.attention_head_dim = attention_head_dim
|
326
|
+
self.dropout = dropout
|
327
|
+
self.cross_attention_dim = cross_attention_dim
|
328
|
+
self.activation_fn = activation_fn
|
329
|
+
self.attention_bias = attention_bias
|
330
|
+
self.double_self_attention = double_self_attention
|
331
|
+
self.norm_elementwise_affine = norm_elementwise_affine
|
332
|
+
self.positional_embeddings = positional_embeddings
|
333
|
+
self.num_positional_embeddings = num_positional_embeddings
|
151
334
|
self.only_cross_attention = only_cross_attention
|
152
335
|
|
153
336
|
# We keep these boolean flags for backward-compatibility.
|
@@ -235,7 +418,10 @@ class BasicTransformerBlock(nn.Module):
|
|
235
418
|
out_bias=attention_out_bias,
|
236
419
|
) # is self-attn if encoder_hidden_states is none
|
237
420
|
else:
|
238
|
-
|
421
|
+
if norm_type == "ada_norm_single": # For Latte
|
422
|
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
423
|
+
else:
|
424
|
+
self.norm2 = None
|
239
425
|
self.attn2 = None
|
240
426
|
|
241
427
|
# 3. Feed-forward
|
@@ -249,7 +435,7 @@ class BasicTransformerBlock(nn.Module):
|
|
249
435
|
"layer_norm",
|
250
436
|
)
|
251
437
|
|
252
|
-
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"
|
438
|
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
|
253
439
|
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
254
440
|
elif norm_type == "layer_norm_i2vgen":
|
255
441
|
self.norm3 = None
|
@@ -282,18 +468,18 @@ class BasicTransformerBlock(nn.Module):
|
|
282
468
|
|
283
469
|
def forward(
|
284
470
|
self,
|
285
|
-
hidden_states: torch.
|
286
|
-
attention_mask: Optional[torch.
|
287
|
-
encoder_hidden_states: Optional[torch.
|
288
|
-
encoder_attention_mask: Optional[torch.
|
471
|
+
hidden_states: torch.Tensor,
|
472
|
+
attention_mask: Optional[torch.Tensor] = None,
|
473
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
474
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
289
475
|
timestep: Optional[torch.LongTensor] = None,
|
290
476
|
cross_attention_kwargs: Dict[str, Any] = None,
|
291
477
|
class_labels: Optional[torch.LongTensor] = None,
|
292
478
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
293
|
-
) -> torch.
|
479
|
+
) -> torch.Tensor:
|
294
480
|
if cross_attention_kwargs is not None:
|
295
481
|
if cross_attention_kwargs.get("scale", None) is not None:
|
296
|
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is
|
482
|
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
297
483
|
|
298
484
|
# Notice that normalization is always applied before the real computation in the following blocks.
|
299
485
|
# 0. Self-Attention
|
@@ -315,7 +501,6 @@ class BasicTransformerBlock(nn.Module):
|
|
315
501
|
).chunk(6, dim=1)
|
316
502
|
norm_hidden_states = self.norm1(hidden_states)
|
317
503
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
318
|
-
norm_hidden_states = norm_hidden_states.squeeze(1)
|
319
504
|
else:
|
320
505
|
raise ValueError("Incorrect norm used")
|
321
506
|
|
@@ -332,6 +517,7 @@ class BasicTransformerBlock(nn.Module):
|
|
332
517
|
attention_mask=attention_mask,
|
333
518
|
**cross_attention_kwargs,
|
334
519
|
)
|
520
|
+
|
335
521
|
if self.norm_type == "ada_norm_zero":
|
336
522
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
337
523
|
elif self.norm_type == "ada_norm_single":
|
@@ -403,6 +589,56 @@ class BasicTransformerBlock(nn.Module):
|
|
403
589
|
return hidden_states
|
404
590
|
|
405
591
|
|
592
|
+
class LuminaFeedForward(nn.Module):
|
593
|
+
r"""
|
594
|
+
A feed-forward layer.
|
595
|
+
|
596
|
+
Parameters:
|
597
|
+
hidden_size (`int`):
|
598
|
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
599
|
+
hidden representations.
|
600
|
+
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
|
601
|
+
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
|
602
|
+
of this value.
|
603
|
+
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
|
604
|
+
dimension. Defaults to None.
|
605
|
+
"""
|
606
|
+
|
607
|
+
def __init__(
|
608
|
+
self,
|
609
|
+
dim: int,
|
610
|
+
inner_dim: int,
|
611
|
+
multiple_of: Optional[int] = 256,
|
612
|
+
ffn_dim_multiplier: Optional[float] = None,
|
613
|
+
):
|
614
|
+
super().__init__()
|
615
|
+
inner_dim = int(2 * inner_dim / 3)
|
616
|
+
# custom hidden_size factor multiplier
|
617
|
+
if ffn_dim_multiplier is not None:
|
618
|
+
inner_dim = int(ffn_dim_multiplier * inner_dim)
|
619
|
+
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
620
|
+
|
621
|
+
self.linear_1 = nn.Linear(
|
622
|
+
dim,
|
623
|
+
inner_dim,
|
624
|
+
bias=False,
|
625
|
+
)
|
626
|
+
self.linear_2 = nn.Linear(
|
627
|
+
inner_dim,
|
628
|
+
dim,
|
629
|
+
bias=False,
|
630
|
+
)
|
631
|
+
self.linear_3 = nn.Linear(
|
632
|
+
dim,
|
633
|
+
inner_dim,
|
634
|
+
bias=False,
|
635
|
+
)
|
636
|
+
self.silu = FP32SiLU()
|
637
|
+
|
638
|
+
def forward(self, x):
|
639
|
+
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
|
640
|
+
|
641
|
+
|
406
642
|
@maybe_allow_in_graph
|
407
643
|
class TemporalBasicTransformerBlock(nn.Module):
|
408
644
|
r"""
|
@@ -477,10 +713,10 @@ class TemporalBasicTransformerBlock(nn.Module):
|
|
477
713
|
|
478
714
|
def forward(
|
479
715
|
self,
|
480
|
-
hidden_states: torch.
|
716
|
+
hidden_states: torch.Tensor,
|
481
717
|
num_frames: int,
|
482
|
-
encoder_hidden_states: Optional[torch.
|
483
|
-
) -> torch.
|
718
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
719
|
+
) -> torch.Tensor:
|
484
720
|
# Notice that normalization is always applied before the real computation in the following blocks.
|
485
721
|
# 0. Self-Attention
|
486
722
|
batch_size = hidden_states.shape[0]
|
@@ -605,6 +841,354 @@ class SkipFFTransformerBlock(nn.Module):
|
|
605
841
|
return hidden_states
|
606
842
|
|
607
843
|
|
844
|
+
@maybe_allow_in_graph
|
845
|
+
class FreeNoiseTransformerBlock(nn.Module):
|
846
|
+
r"""
|
847
|
+
A FreeNoise Transformer block.
|
848
|
+
|
849
|
+
Parameters:
|
850
|
+
dim (`int`):
|
851
|
+
The number of channels in the input and output.
|
852
|
+
num_attention_heads (`int`):
|
853
|
+
The number of heads to use for multi-head attention.
|
854
|
+
attention_head_dim (`int`):
|
855
|
+
The number of channels in each head.
|
856
|
+
dropout (`float`, *optional*, defaults to 0.0):
|
857
|
+
The dropout probability to use.
|
858
|
+
cross_attention_dim (`int`, *optional*):
|
859
|
+
The size of the encoder_hidden_states vector for cross attention.
|
860
|
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
861
|
+
Activation function to be used in feed-forward.
|
862
|
+
num_embeds_ada_norm (`int`, *optional*):
|
863
|
+
The number of diffusion steps used during training. See `Transformer2DModel`.
|
864
|
+
attention_bias (`bool`, defaults to `False`):
|
865
|
+
Configure if the attentions should contain a bias parameter.
|
866
|
+
only_cross_attention (`bool`, defaults to `False`):
|
867
|
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
868
|
+
double_self_attention (`bool`, defaults to `False`):
|
869
|
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
870
|
+
upcast_attention (`bool`, defaults to `False`):
|
871
|
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
872
|
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
873
|
+
Whether to use learnable elementwise affine parameters for normalization.
|
874
|
+
norm_type (`str`, defaults to `"layer_norm"`):
|
875
|
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
876
|
+
final_dropout (`bool` defaults to `False`):
|
877
|
+
Whether to apply a final dropout after the last feed-forward layer.
|
878
|
+
attention_type (`str`, defaults to `"default"`):
|
879
|
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
880
|
+
positional_embeddings (`str`, *optional*):
|
881
|
+
The type of positional embeddings to apply to.
|
882
|
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
883
|
+
The maximum number of positional embeddings to apply.
|
884
|
+
ff_inner_dim (`int`, *optional*):
|
885
|
+
Hidden dimension of feed-forward MLP.
|
886
|
+
ff_bias (`bool`, defaults to `True`):
|
887
|
+
Whether or not to use bias in feed-forward MLP.
|
888
|
+
attention_out_bias (`bool`, defaults to `True`):
|
889
|
+
Whether or not to use bias in attention output project layer.
|
890
|
+
context_length (`int`, defaults to `16`):
|
891
|
+
The maximum number of frames that the FreeNoise block processes at once.
|
892
|
+
context_stride (`int`, defaults to `4`):
|
893
|
+
The number of frames to be skipped before starting to process a new batch of `context_length` frames.
|
894
|
+
weighting_scheme (`str`, defaults to `"pyramid"`):
|
895
|
+
The weighting scheme to use for weighting averaging of processed latent frames. As described in the
|
896
|
+
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
|
897
|
+
used.
|
898
|
+
"""
|
899
|
+
|
900
|
+
def __init__(
|
901
|
+
self,
|
902
|
+
dim: int,
|
903
|
+
num_attention_heads: int,
|
904
|
+
attention_head_dim: int,
|
905
|
+
dropout: float = 0.0,
|
906
|
+
cross_attention_dim: Optional[int] = None,
|
907
|
+
activation_fn: str = "geglu",
|
908
|
+
num_embeds_ada_norm: Optional[int] = None,
|
909
|
+
attention_bias: bool = False,
|
910
|
+
only_cross_attention: bool = False,
|
911
|
+
double_self_attention: bool = False,
|
912
|
+
upcast_attention: bool = False,
|
913
|
+
norm_elementwise_affine: bool = True,
|
914
|
+
norm_type: str = "layer_norm",
|
915
|
+
norm_eps: float = 1e-5,
|
916
|
+
final_dropout: bool = False,
|
917
|
+
positional_embeddings: Optional[str] = None,
|
918
|
+
num_positional_embeddings: Optional[int] = None,
|
919
|
+
ff_inner_dim: Optional[int] = None,
|
920
|
+
ff_bias: bool = True,
|
921
|
+
attention_out_bias: bool = True,
|
922
|
+
context_length: int = 16,
|
923
|
+
context_stride: int = 4,
|
924
|
+
weighting_scheme: str = "pyramid",
|
925
|
+
):
|
926
|
+
super().__init__()
|
927
|
+
self.dim = dim
|
928
|
+
self.num_attention_heads = num_attention_heads
|
929
|
+
self.attention_head_dim = attention_head_dim
|
930
|
+
self.dropout = dropout
|
931
|
+
self.cross_attention_dim = cross_attention_dim
|
932
|
+
self.activation_fn = activation_fn
|
933
|
+
self.attention_bias = attention_bias
|
934
|
+
self.double_self_attention = double_self_attention
|
935
|
+
self.norm_elementwise_affine = norm_elementwise_affine
|
936
|
+
self.positional_embeddings = positional_embeddings
|
937
|
+
self.num_positional_embeddings = num_positional_embeddings
|
938
|
+
self.only_cross_attention = only_cross_attention
|
939
|
+
|
940
|
+
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
|
941
|
+
|
942
|
+
# We keep these boolean flags for backward-compatibility.
|
943
|
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
944
|
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
945
|
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
946
|
+
self.use_layer_norm = norm_type == "layer_norm"
|
947
|
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
948
|
+
|
949
|
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
950
|
+
raise ValueError(
|
951
|
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
952
|
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
953
|
+
)
|
954
|
+
|
955
|
+
self.norm_type = norm_type
|
956
|
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
957
|
+
|
958
|
+
if positional_embeddings and (num_positional_embeddings is None):
|
959
|
+
raise ValueError(
|
960
|
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
961
|
+
)
|
962
|
+
|
963
|
+
if positional_embeddings == "sinusoidal":
|
964
|
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
965
|
+
else:
|
966
|
+
self.pos_embed = None
|
967
|
+
|
968
|
+
# Define 3 blocks. Each block has its own normalization layer.
|
969
|
+
# 1. Self-Attn
|
970
|
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
971
|
+
|
972
|
+
self.attn1 = Attention(
|
973
|
+
query_dim=dim,
|
974
|
+
heads=num_attention_heads,
|
975
|
+
dim_head=attention_head_dim,
|
976
|
+
dropout=dropout,
|
977
|
+
bias=attention_bias,
|
978
|
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
979
|
+
upcast_attention=upcast_attention,
|
980
|
+
out_bias=attention_out_bias,
|
981
|
+
)
|
982
|
+
|
983
|
+
# 2. Cross-Attn
|
984
|
+
if cross_attention_dim is not None or double_self_attention:
|
985
|
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
986
|
+
|
987
|
+
self.attn2 = Attention(
|
988
|
+
query_dim=dim,
|
989
|
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
990
|
+
heads=num_attention_heads,
|
991
|
+
dim_head=attention_head_dim,
|
992
|
+
dropout=dropout,
|
993
|
+
bias=attention_bias,
|
994
|
+
upcast_attention=upcast_attention,
|
995
|
+
out_bias=attention_out_bias,
|
996
|
+
) # is self-attn if encoder_hidden_states is none
|
997
|
+
|
998
|
+
# 3. Feed-forward
|
999
|
+
self.ff = FeedForward(
|
1000
|
+
dim,
|
1001
|
+
dropout=dropout,
|
1002
|
+
activation_fn=activation_fn,
|
1003
|
+
final_dropout=final_dropout,
|
1004
|
+
inner_dim=ff_inner_dim,
|
1005
|
+
bias=ff_bias,
|
1006
|
+
)
|
1007
|
+
|
1008
|
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
1009
|
+
|
1010
|
+
# let chunk size default to None
|
1011
|
+
self._chunk_size = None
|
1012
|
+
self._chunk_dim = 0
|
1013
|
+
|
1014
|
+
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
|
1015
|
+
frame_indices = []
|
1016
|
+
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
|
1017
|
+
window_start = i
|
1018
|
+
window_end = min(num_frames, i + self.context_length)
|
1019
|
+
frame_indices.append((window_start, window_end))
|
1020
|
+
return frame_indices
|
1021
|
+
|
1022
|
+
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
1023
|
+
if weighting_scheme == "flat":
|
1024
|
+
weights = [1.0] * num_frames
|
1025
|
+
|
1026
|
+
elif weighting_scheme == "pyramid":
|
1027
|
+
if num_frames % 2 == 0:
|
1028
|
+
# num_frames = 4 => [1, 2, 2, 1]
|
1029
|
+
mid = num_frames // 2
|
1030
|
+
weights = list(range(1, mid + 1))
|
1031
|
+
weights = weights + weights[::-1]
|
1032
|
+
else:
|
1033
|
+
# num_frames = 5 => [1, 2, 3, 2, 1]
|
1034
|
+
mid = (num_frames + 1) // 2
|
1035
|
+
weights = list(range(1, mid))
|
1036
|
+
weights = weights + [mid] + weights[::-1]
|
1037
|
+
|
1038
|
+
elif weighting_scheme == "delayed_reverse_sawtooth":
|
1039
|
+
if num_frames % 2 == 0:
|
1040
|
+
# num_frames = 4 => [0.01, 2, 2, 1]
|
1041
|
+
mid = num_frames // 2
|
1042
|
+
weights = [0.01] * (mid - 1) + [mid]
|
1043
|
+
weights = weights + list(range(mid, 0, -1))
|
1044
|
+
else:
|
1045
|
+
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
|
1046
|
+
mid = (num_frames + 1) // 2
|
1047
|
+
weights = [0.01] * mid
|
1048
|
+
weights = weights + list(range(mid, 0, -1))
|
1049
|
+
else:
|
1050
|
+
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
1051
|
+
|
1052
|
+
return weights
|
1053
|
+
|
1054
|
+
def set_free_noise_properties(
|
1055
|
+
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
|
1056
|
+
) -> None:
|
1057
|
+
self.context_length = context_length
|
1058
|
+
self.context_stride = context_stride
|
1059
|
+
self.weighting_scheme = weighting_scheme
|
1060
|
+
|
1061
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
|
1062
|
+
# Sets chunk feed-forward
|
1063
|
+
self._chunk_size = chunk_size
|
1064
|
+
self._chunk_dim = dim
|
1065
|
+
|
1066
|
+
def forward(
|
1067
|
+
self,
|
1068
|
+
hidden_states: torch.Tensor,
|
1069
|
+
attention_mask: Optional[torch.Tensor] = None,
|
1070
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1071
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1072
|
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1073
|
+
*args,
|
1074
|
+
**kwargs,
|
1075
|
+
) -> torch.Tensor:
|
1076
|
+
if cross_attention_kwargs is not None:
|
1077
|
+
if cross_attention_kwargs.get("scale", None) is not None:
|
1078
|
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
1079
|
+
|
1080
|
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
1081
|
+
|
1082
|
+
# hidden_states: [B x H x W, F, C]
|
1083
|
+
device = hidden_states.device
|
1084
|
+
dtype = hidden_states.dtype
|
1085
|
+
|
1086
|
+
num_frames = hidden_states.size(1)
|
1087
|
+
frame_indices = self._get_frame_indices(num_frames)
|
1088
|
+
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
|
1089
|
+
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
|
1090
|
+
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
|
1091
|
+
|
1092
|
+
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
|
1093
|
+
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
|
1094
|
+
# [(0, 16), (4, 20), (8, 24), (10, 26)]
|
1095
|
+
if not is_last_frame_batch_complete:
|
1096
|
+
if num_frames < self.context_length:
|
1097
|
+
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
|
1098
|
+
last_frame_batch_length = num_frames - frame_indices[-1][1]
|
1099
|
+
frame_indices.append((num_frames - self.context_length, num_frames))
|
1100
|
+
|
1101
|
+
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
|
1102
|
+
accumulated_values = torch.zeros_like(hidden_states)
|
1103
|
+
|
1104
|
+
for i, (frame_start, frame_end) in enumerate(frame_indices):
|
1105
|
+
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
|
1106
|
+
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
|
1107
|
+
# essentially a non-multiple of `context_length`.
|
1108
|
+
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
|
1109
|
+
weights *= frame_weights
|
1110
|
+
|
1111
|
+
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
|
1112
|
+
|
1113
|
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1114
|
+
# 1. Self-Attention
|
1115
|
+
norm_hidden_states = self.norm1(hidden_states_chunk)
|
1116
|
+
|
1117
|
+
if self.pos_embed is not None:
|
1118
|
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1119
|
+
|
1120
|
+
attn_output = self.attn1(
|
1121
|
+
norm_hidden_states,
|
1122
|
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1123
|
+
attention_mask=attention_mask,
|
1124
|
+
**cross_attention_kwargs,
|
1125
|
+
)
|
1126
|
+
|
1127
|
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1128
|
+
if hidden_states_chunk.ndim == 4:
|
1129
|
+
hidden_states_chunk = hidden_states_chunk.squeeze(1)
|
1130
|
+
|
1131
|
+
# 2. Cross-Attention
|
1132
|
+
if self.attn2 is not None:
|
1133
|
+
norm_hidden_states = self.norm2(hidden_states_chunk)
|
1134
|
+
|
1135
|
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
1136
|
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1137
|
+
|
1138
|
+
attn_output = self.attn2(
|
1139
|
+
norm_hidden_states,
|
1140
|
+
encoder_hidden_states=encoder_hidden_states,
|
1141
|
+
attention_mask=encoder_attention_mask,
|
1142
|
+
**cross_attention_kwargs,
|
1143
|
+
)
|
1144
|
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1145
|
+
|
1146
|
+
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
|
1147
|
+
accumulated_values[:, -last_frame_batch_length:] += (
|
1148
|
+
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
|
1149
|
+
)
|
1150
|
+
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
|
1151
|
+
else:
|
1152
|
+
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
|
1153
|
+
num_times_accumulated[:, frame_start:frame_end] += weights
|
1154
|
+
|
1155
|
+
# TODO(aryan): Maybe this could be done in a better way.
|
1156
|
+
#
|
1157
|
+
# Previously, this was:
|
1158
|
+
# hidden_states = torch.where(
|
1159
|
+
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
|
1160
|
+
# )
|
1161
|
+
#
|
1162
|
+
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
|
1163
|
+
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
|
1164
|
+
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
|
1165
|
+
# looked into this deeply because other memory optimizations led to more pronounced reductions.
|
1166
|
+
hidden_states = torch.cat(
|
1167
|
+
[
|
1168
|
+
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
|
1169
|
+
for accumulated_split, num_times_split in zip(
|
1170
|
+
accumulated_values.split(self.context_length, dim=1),
|
1171
|
+
num_times_accumulated.split(self.context_length, dim=1),
|
1172
|
+
)
|
1173
|
+
],
|
1174
|
+
dim=1,
|
1175
|
+
).to(dtype)
|
1176
|
+
|
1177
|
+
# 3. Feed-forward
|
1178
|
+
norm_hidden_states = self.norm3(hidden_states)
|
1179
|
+
|
1180
|
+
if self._chunk_size is not None:
|
1181
|
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
1182
|
+
else:
|
1183
|
+
ff_output = self.ff(norm_hidden_states)
|
1184
|
+
|
1185
|
+
hidden_states = ff_output + hidden_states
|
1186
|
+
if hidden_states.ndim == 4:
|
1187
|
+
hidden_states = hidden_states.squeeze(1)
|
1188
|
+
|
1189
|
+
return hidden_states
|
1190
|
+
|
1191
|
+
|
608
1192
|
class FeedForward(nn.Module):
|
609
1193
|
r"""
|
610
1194
|
A feed-forward layer.
|
@@ -634,7 +1218,6 @@ class FeedForward(nn.Module):
|
|
634
1218
|
if inner_dim is None:
|
635
1219
|
inner_dim = int(dim * mult)
|
636
1220
|
dim_out = dim_out if dim_out is not None else dim
|
637
|
-
linear_cls = nn.Linear
|
638
1221
|
|
639
1222
|
if activation_fn == "gelu":
|
640
1223
|
act_fn = GELU(dim, inner_dim, bias=bias)
|
@@ -644,6 +1227,10 @@ class FeedForward(nn.Module):
|
|
644
1227
|
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
645
1228
|
elif activation_fn == "geglu-approximate":
|
646
1229
|
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
1230
|
+
elif activation_fn == "swiglu":
|
1231
|
+
act_fn = SwiGLU(dim, inner_dim, bias=bias)
|
1232
|
+
elif activation_fn == "linear-silu":
|
1233
|
+
act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
|
647
1234
|
|
648
1235
|
self.net = nn.ModuleList([])
|
649
1236
|
# project in
|
@@ -651,7 +1238,7 @@ class FeedForward(nn.Module):
|
|
651
1238
|
# project dropout
|
652
1239
|
self.net.append(nn.Dropout(dropout))
|
653
1240
|
# project out
|
654
|
-
self.net.append(
|
1241
|
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
655
1242
|
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
656
1243
|
if final_dropout:
|
657
1244
|
self.net.append(nn.Dropout(dropout))
|