diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1176 @@
|
|
1
|
+
# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
16
|
+
|
17
|
+
import numpy as np
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
import torch.nn.functional as F
|
21
|
+
import torch.utils.checkpoint
|
22
|
+
|
23
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from ...utils import is_torch_version, logging
|
25
|
+
from ...utils.accelerate_utils import apply_forward_hook
|
26
|
+
from ..activations import get_activation
|
27
|
+
from ..attention_processor import Attention
|
28
|
+
from ..modeling_outputs import AutoencoderKLOutput
|
29
|
+
from ..modeling_utils import ModelMixin
|
30
|
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
31
|
+
|
32
|
+
|
33
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34
|
+
|
35
|
+
|
36
|
+
def prepare_causal_attention_mask(
|
37
|
+
num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None
|
38
|
+
) -> torch.Tensor:
|
39
|
+
seq_len = num_frames * height_width
|
40
|
+
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
|
41
|
+
for i in range(seq_len):
|
42
|
+
i_frame = i // height_width
|
43
|
+
mask[i, : (i_frame + 1) * height_width] = 0
|
44
|
+
if batch_size is not None:
|
45
|
+
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
|
46
|
+
return mask
|
47
|
+
|
48
|
+
|
49
|
+
class HunyuanVideoCausalConv3d(nn.Module):
|
50
|
+
def __init__(
|
51
|
+
self,
|
52
|
+
in_channels: int,
|
53
|
+
out_channels: int,
|
54
|
+
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
55
|
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
56
|
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
57
|
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
58
|
+
bias: bool = True,
|
59
|
+
pad_mode: str = "replicate",
|
60
|
+
) -> None:
|
61
|
+
super().__init__()
|
62
|
+
|
63
|
+
kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
64
|
+
|
65
|
+
self.pad_mode = pad_mode
|
66
|
+
self.time_causal_padding = (
|
67
|
+
kernel_size[0] // 2,
|
68
|
+
kernel_size[0] // 2,
|
69
|
+
kernel_size[1] // 2,
|
70
|
+
kernel_size[1] // 2,
|
71
|
+
kernel_size[2] - 1,
|
72
|
+
0,
|
73
|
+
)
|
74
|
+
|
75
|
+
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
76
|
+
|
77
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
78
|
+
hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode)
|
79
|
+
return self.conv(hidden_states)
|
80
|
+
|
81
|
+
|
82
|
+
class HunyuanVideoUpsampleCausal3D(nn.Module):
|
83
|
+
def __init__(
|
84
|
+
self,
|
85
|
+
in_channels: int,
|
86
|
+
out_channels: Optional[int] = None,
|
87
|
+
kernel_size: int = 3,
|
88
|
+
stride: int = 1,
|
89
|
+
bias: bool = True,
|
90
|
+
upsample_factor: Tuple[float, float, float] = (2, 2, 2),
|
91
|
+
) -> None:
|
92
|
+
super().__init__()
|
93
|
+
|
94
|
+
out_channels = out_channels or in_channels
|
95
|
+
self.upsample_factor = upsample_factor
|
96
|
+
|
97
|
+
self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias)
|
98
|
+
|
99
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
100
|
+
num_frames = hidden_states.size(2)
|
101
|
+
|
102
|
+
first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2)
|
103
|
+
first_frame = F.interpolate(
|
104
|
+
first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest"
|
105
|
+
).unsqueeze(2)
|
106
|
+
|
107
|
+
if num_frames > 1:
|
108
|
+
# See: https://github.com/pytorch/pytorch/issues/81665
|
109
|
+
# Unless you have a version of pytorch where non-contiguous implementation of F.interpolate
|
110
|
+
# is fixed, this will raise either a runtime error, or fail silently with bad outputs.
|
111
|
+
# If you are encountering an error here, make sure to try running encoding/decoding with
|
112
|
+
# `vae.enable_tiling()` first. If that doesn't work, open an issue at:
|
113
|
+
# https://github.com/huggingface/diffusers/issues
|
114
|
+
other_frames = other_frames.contiguous()
|
115
|
+
other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest")
|
116
|
+
hidden_states = torch.cat((first_frame, other_frames), dim=2)
|
117
|
+
else:
|
118
|
+
hidden_states = first_frame
|
119
|
+
|
120
|
+
hidden_states = self.conv(hidden_states)
|
121
|
+
return hidden_states
|
122
|
+
|
123
|
+
|
124
|
+
class HunyuanVideoDownsampleCausal3D(nn.Module):
|
125
|
+
def __init__(
|
126
|
+
self,
|
127
|
+
channels: int,
|
128
|
+
out_channels: Optional[int] = None,
|
129
|
+
padding: int = 1,
|
130
|
+
kernel_size: int = 3,
|
131
|
+
bias: bool = True,
|
132
|
+
stride=2,
|
133
|
+
) -> None:
|
134
|
+
super().__init__()
|
135
|
+
out_channels = out_channels or channels
|
136
|
+
|
137
|
+
self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias)
|
138
|
+
|
139
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
140
|
+
hidden_states = self.conv(hidden_states)
|
141
|
+
return hidden_states
|
142
|
+
|
143
|
+
|
144
|
+
class HunyuanVideoResnetBlockCausal3D(nn.Module):
|
145
|
+
def __init__(
|
146
|
+
self,
|
147
|
+
in_channels: int,
|
148
|
+
out_channels: Optional[int] = None,
|
149
|
+
dropout: float = 0.0,
|
150
|
+
groups: int = 32,
|
151
|
+
eps: float = 1e-6,
|
152
|
+
non_linearity: str = "swish",
|
153
|
+
) -> None:
|
154
|
+
super().__init__()
|
155
|
+
out_channels = out_channels or in_channels
|
156
|
+
|
157
|
+
self.nonlinearity = get_activation(non_linearity)
|
158
|
+
|
159
|
+
self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True)
|
160
|
+
self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0)
|
161
|
+
|
162
|
+
self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True)
|
163
|
+
self.dropout = nn.Dropout(dropout)
|
164
|
+
self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0)
|
165
|
+
|
166
|
+
self.conv_shortcut = None
|
167
|
+
if in_channels != out_channels:
|
168
|
+
self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0)
|
169
|
+
|
170
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
171
|
+
hidden_states = hidden_states.contiguous()
|
172
|
+
residual = hidden_states
|
173
|
+
|
174
|
+
hidden_states = self.norm1(hidden_states)
|
175
|
+
hidden_states = self.nonlinearity(hidden_states)
|
176
|
+
hidden_states = self.conv1(hidden_states)
|
177
|
+
|
178
|
+
hidden_states = self.norm2(hidden_states)
|
179
|
+
hidden_states = self.nonlinearity(hidden_states)
|
180
|
+
hidden_states = self.dropout(hidden_states)
|
181
|
+
hidden_states = self.conv2(hidden_states)
|
182
|
+
|
183
|
+
if self.conv_shortcut is not None:
|
184
|
+
residual = self.conv_shortcut(residual)
|
185
|
+
|
186
|
+
hidden_states = hidden_states + residual
|
187
|
+
return hidden_states
|
188
|
+
|
189
|
+
|
190
|
+
class HunyuanVideoMidBlock3D(nn.Module):
|
191
|
+
def __init__(
|
192
|
+
self,
|
193
|
+
in_channels: int,
|
194
|
+
dropout: float = 0.0,
|
195
|
+
num_layers: int = 1,
|
196
|
+
resnet_eps: float = 1e-6,
|
197
|
+
resnet_act_fn: str = "swish",
|
198
|
+
resnet_groups: int = 32,
|
199
|
+
add_attention: bool = True,
|
200
|
+
attention_head_dim: int = 1,
|
201
|
+
) -> None:
|
202
|
+
super().__init__()
|
203
|
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
204
|
+
self.add_attention = add_attention
|
205
|
+
|
206
|
+
# There is always at least one resnet
|
207
|
+
resnets = [
|
208
|
+
HunyuanVideoResnetBlockCausal3D(
|
209
|
+
in_channels=in_channels,
|
210
|
+
out_channels=in_channels,
|
211
|
+
eps=resnet_eps,
|
212
|
+
groups=resnet_groups,
|
213
|
+
dropout=dropout,
|
214
|
+
non_linearity=resnet_act_fn,
|
215
|
+
)
|
216
|
+
]
|
217
|
+
attentions = []
|
218
|
+
|
219
|
+
for _ in range(num_layers):
|
220
|
+
if self.add_attention:
|
221
|
+
attentions.append(
|
222
|
+
Attention(
|
223
|
+
in_channels,
|
224
|
+
heads=in_channels // attention_head_dim,
|
225
|
+
dim_head=attention_head_dim,
|
226
|
+
eps=resnet_eps,
|
227
|
+
norm_num_groups=resnet_groups,
|
228
|
+
residual_connection=True,
|
229
|
+
bias=True,
|
230
|
+
upcast_softmax=True,
|
231
|
+
_from_deprecated_attn_block=True,
|
232
|
+
)
|
233
|
+
)
|
234
|
+
else:
|
235
|
+
attentions.append(None)
|
236
|
+
|
237
|
+
resnets.append(
|
238
|
+
HunyuanVideoResnetBlockCausal3D(
|
239
|
+
in_channels=in_channels,
|
240
|
+
out_channels=in_channels,
|
241
|
+
eps=resnet_eps,
|
242
|
+
groups=resnet_groups,
|
243
|
+
dropout=dropout,
|
244
|
+
non_linearity=resnet_act_fn,
|
245
|
+
)
|
246
|
+
)
|
247
|
+
|
248
|
+
self.attentions = nn.ModuleList(attentions)
|
249
|
+
self.resnets = nn.ModuleList(resnets)
|
250
|
+
|
251
|
+
self.gradient_checkpointing = False
|
252
|
+
|
253
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
254
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
255
|
+
|
256
|
+
def create_custom_forward(module, return_dict=None):
|
257
|
+
def custom_forward(*inputs):
|
258
|
+
if return_dict is not None:
|
259
|
+
return module(*inputs, return_dict=return_dict)
|
260
|
+
else:
|
261
|
+
return module(*inputs)
|
262
|
+
|
263
|
+
return custom_forward
|
264
|
+
|
265
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
266
|
+
|
267
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
268
|
+
create_custom_forward(self.resnets[0]), hidden_states, **ckpt_kwargs
|
269
|
+
)
|
270
|
+
|
271
|
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
272
|
+
if attn is not None:
|
273
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
274
|
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
|
275
|
+
attention_mask = prepare_causal_attention_mask(
|
276
|
+
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
|
277
|
+
)
|
278
|
+
hidden_states = attn(hidden_states, attention_mask=attention_mask)
|
279
|
+
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
|
280
|
+
|
281
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
282
|
+
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
|
283
|
+
)
|
284
|
+
|
285
|
+
else:
|
286
|
+
hidden_states = self.resnets[0](hidden_states)
|
287
|
+
|
288
|
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
289
|
+
if attn is not None:
|
290
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
291
|
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
|
292
|
+
attention_mask = prepare_causal_attention_mask(
|
293
|
+
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
|
294
|
+
)
|
295
|
+
hidden_states = attn(hidden_states, attention_mask=attention_mask)
|
296
|
+
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
|
297
|
+
|
298
|
+
hidden_states = resnet(hidden_states)
|
299
|
+
|
300
|
+
return hidden_states
|
301
|
+
|
302
|
+
|
303
|
+
class HunyuanVideoDownBlock3D(nn.Module):
|
304
|
+
def __init__(
|
305
|
+
self,
|
306
|
+
in_channels: int,
|
307
|
+
out_channels: int,
|
308
|
+
dropout: float = 0.0,
|
309
|
+
num_layers: int = 1,
|
310
|
+
resnet_eps: float = 1e-6,
|
311
|
+
resnet_act_fn: str = "swish",
|
312
|
+
resnet_groups: int = 32,
|
313
|
+
add_downsample: bool = True,
|
314
|
+
downsample_stride: int = 2,
|
315
|
+
downsample_padding: int = 1,
|
316
|
+
) -> None:
|
317
|
+
super().__init__()
|
318
|
+
resnets = []
|
319
|
+
|
320
|
+
for i in range(num_layers):
|
321
|
+
in_channels = in_channels if i == 0 else out_channels
|
322
|
+
resnets.append(
|
323
|
+
HunyuanVideoResnetBlockCausal3D(
|
324
|
+
in_channels=in_channels,
|
325
|
+
out_channels=out_channels,
|
326
|
+
eps=resnet_eps,
|
327
|
+
groups=resnet_groups,
|
328
|
+
dropout=dropout,
|
329
|
+
non_linearity=resnet_act_fn,
|
330
|
+
)
|
331
|
+
)
|
332
|
+
|
333
|
+
self.resnets = nn.ModuleList(resnets)
|
334
|
+
|
335
|
+
if add_downsample:
|
336
|
+
self.downsamplers = nn.ModuleList(
|
337
|
+
[
|
338
|
+
HunyuanVideoDownsampleCausal3D(
|
339
|
+
out_channels,
|
340
|
+
out_channels=out_channels,
|
341
|
+
padding=downsample_padding,
|
342
|
+
stride=downsample_stride,
|
343
|
+
)
|
344
|
+
]
|
345
|
+
)
|
346
|
+
else:
|
347
|
+
self.downsamplers = None
|
348
|
+
|
349
|
+
self.gradient_checkpointing = False
|
350
|
+
|
351
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
352
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
353
|
+
|
354
|
+
def create_custom_forward(module, return_dict=None):
|
355
|
+
def custom_forward(*inputs):
|
356
|
+
if return_dict is not None:
|
357
|
+
return module(*inputs, return_dict=return_dict)
|
358
|
+
else:
|
359
|
+
return module(*inputs)
|
360
|
+
|
361
|
+
return custom_forward
|
362
|
+
|
363
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
364
|
+
|
365
|
+
for resnet in self.resnets:
|
366
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
367
|
+
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
|
368
|
+
)
|
369
|
+
else:
|
370
|
+
for resnet in self.resnets:
|
371
|
+
hidden_states = resnet(hidden_states)
|
372
|
+
|
373
|
+
if self.downsamplers is not None:
|
374
|
+
for downsampler in self.downsamplers:
|
375
|
+
hidden_states = downsampler(hidden_states)
|
376
|
+
|
377
|
+
return hidden_states
|
378
|
+
|
379
|
+
|
380
|
+
class HunyuanVideoUpBlock3D(nn.Module):
|
381
|
+
def __init__(
|
382
|
+
self,
|
383
|
+
in_channels: int,
|
384
|
+
out_channels: int,
|
385
|
+
dropout: float = 0.0,
|
386
|
+
num_layers: int = 1,
|
387
|
+
resnet_eps: float = 1e-6,
|
388
|
+
resnet_act_fn: str = "swish",
|
389
|
+
resnet_groups: int = 32,
|
390
|
+
add_upsample: bool = True,
|
391
|
+
upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2),
|
392
|
+
) -> None:
|
393
|
+
super().__init__()
|
394
|
+
resnets = []
|
395
|
+
|
396
|
+
for i in range(num_layers):
|
397
|
+
input_channels = in_channels if i == 0 else out_channels
|
398
|
+
|
399
|
+
resnets.append(
|
400
|
+
HunyuanVideoResnetBlockCausal3D(
|
401
|
+
in_channels=input_channels,
|
402
|
+
out_channels=out_channels,
|
403
|
+
eps=resnet_eps,
|
404
|
+
groups=resnet_groups,
|
405
|
+
dropout=dropout,
|
406
|
+
non_linearity=resnet_act_fn,
|
407
|
+
)
|
408
|
+
)
|
409
|
+
|
410
|
+
self.resnets = nn.ModuleList(resnets)
|
411
|
+
|
412
|
+
if add_upsample:
|
413
|
+
self.upsamplers = nn.ModuleList(
|
414
|
+
[
|
415
|
+
HunyuanVideoUpsampleCausal3D(
|
416
|
+
out_channels,
|
417
|
+
out_channels=out_channels,
|
418
|
+
upsample_factor=upsample_scale_factor,
|
419
|
+
)
|
420
|
+
]
|
421
|
+
)
|
422
|
+
else:
|
423
|
+
self.upsamplers = None
|
424
|
+
|
425
|
+
self.gradient_checkpointing = False
|
426
|
+
|
427
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
428
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
429
|
+
|
430
|
+
def create_custom_forward(module, return_dict=None):
|
431
|
+
def custom_forward(*inputs):
|
432
|
+
if return_dict is not None:
|
433
|
+
return module(*inputs, return_dict=return_dict)
|
434
|
+
else:
|
435
|
+
return module(*inputs)
|
436
|
+
|
437
|
+
return custom_forward
|
438
|
+
|
439
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
440
|
+
|
441
|
+
for resnet in self.resnets:
|
442
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
443
|
+
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
|
444
|
+
)
|
445
|
+
|
446
|
+
else:
|
447
|
+
for resnet in self.resnets:
|
448
|
+
hidden_states = resnet(hidden_states)
|
449
|
+
|
450
|
+
if self.upsamplers is not None:
|
451
|
+
for upsampler in self.upsamplers:
|
452
|
+
hidden_states = upsampler(hidden_states)
|
453
|
+
|
454
|
+
return hidden_states
|
455
|
+
|
456
|
+
|
457
|
+
class HunyuanVideoEncoder3D(nn.Module):
|
458
|
+
r"""
|
459
|
+
Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
|
460
|
+
"""
|
461
|
+
|
462
|
+
def __init__(
|
463
|
+
self,
|
464
|
+
in_channels: int = 3,
|
465
|
+
out_channels: int = 3,
|
466
|
+
down_block_types: Tuple[str, ...] = (
|
467
|
+
"HunyuanVideoDownBlock3D",
|
468
|
+
"HunyuanVideoDownBlock3D",
|
469
|
+
"HunyuanVideoDownBlock3D",
|
470
|
+
"HunyuanVideoDownBlock3D",
|
471
|
+
),
|
472
|
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
473
|
+
layers_per_block: int = 2,
|
474
|
+
norm_num_groups: int = 32,
|
475
|
+
act_fn: str = "silu",
|
476
|
+
double_z: bool = True,
|
477
|
+
mid_block_add_attention=True,
|
478
|
+
temporal_compression_ratio: int = 4,
|
479
|
+
spatial_compression_ratio: int = 8,
|
480
|
+
) -> None:
|
481
|
+
super().__init__()
|
482
|
+
|
483
|
+
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
|
484
|
+
self.mid_block = None
|
485
|
+
self.down_blocks = nn.ModuleList([])
|
486
|
+
|
487
|
+
output_channel = block_out_channels[0]
|
488
|
+
for i, down_block_type in enumerate(down_block_types):
|
489
|
+
if down_block_type != "HunyuanVideoDownBlock3D":
|
490
|
+
raise ValueError(f"Unsupported down_block_type: {down_block_type}")
|
491
|
+
|
492
|
+
input_channel = output_channel
|
493
|
+
output_channel = block_out_channels[i]
|
494
|
+
is_final_block = i == len(block_out_channels) - 1
|
495
|
+
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
|
496
|
+
num_time_downsample_layers = int(np.log2(temporal_compression_ratio))
|
497
|
+
|
498
|
+
if temporal_compression_ratio == 4:
|
499
|
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
500
|
+
add_time_downsample = bool(
|
501
|
+
i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block
|
502
|
+
)
|
503
|
+
elif temporal_compression_ratio == 8:
|
504
|
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
505
|
+
add_time_downsample = bool(i < num_time_downsample_layers)
|
506
|
+
else:
|
507
|
+
raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}")
|
508
|
+
|
509
|
+
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
|
510
|
+
downsample_stride_T = (2,) if add_time_downsample else (1,)
|
511
|
+
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
|
512
|
+
|
513
|
+
down_block = HunyuanVideoDownBlock3D(
|
514
|
+
num_layers=layers_per_block,
|
515
|
+
in_channels=input_channel,
|
516
|
+
out_channels=output_channel,
|
517
|
+
add_downsample=bool(add_spatial_downsample or add_time_downsample),
|
518
|
+
resnet_eps=1e-6,
|
519
|
+
resnet_act_fn=act_fn,
|
520
|
+
resnet_groups=norm_num_groups,
|
521
|
+
downsample_stride=downsample_stride,
|
522
|
+
downsample_padding=0,
|
523
|
+
)
|
524
|
+
|
525
|
+
self.down_blocks.append(down_block)
|
526
|
+
|
527
|
+
self.mid_block = HunyuanVideoMidBlock3D(
|
528
|
+
in_channels=block_out_channels[-1],
|
529
|
+
resnet_eps=1e-6,
|
530
|
+
resnet_act_fn=act_fn,
|
531
|
+
attention_head_dim=block_out_channels[-1],
|
532
|
+
resnet_groups=norm_num_groups,
|
533
|
+
add_attention=mid_block_add_attention,
|
534
|
+
)
|
535
|
+
|
536
|
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
537
|
+
self.conv_act = nn.SiLU()
|
538
|
+
|
539
|
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
540
|
+
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
541
|
+
|
542
|
+
self.gradient_checkpointing = False
|
543
|
+
|
544
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
545
|
+
hidden_states = self.conv_in(hidden_states)
|
546
|
+
|
547
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
548
|
+
|
549
|
+
def create_custom_forward(module, return_dict=None):
|
550
|
+
def custom_forward(*inputs):
|
551
|
+
if return_dict is not None:
|
552
|
+
return module(*inputs, return_dict=return_dict)
|
553
|
+
else:
|
554
|
+
return module(*inputs)
|
555
|
+
|
556
|
+
return custom_forward
|
557
|
+
|
558
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
559
|
+
|
560
|
+
for down_block in self.down_blocks:
|
561
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
562
|
+
create_custom_forward(down_block), hidden_states, **ckpt_kwargs
|
563
|
+
)
|
564
|
+
|
565
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
566
|
+
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs
|
567
|
+
)
|
568
|
+
else:
|
569
|
+
for down_block in self.down_blocks:
|
570
|
+
hidden_states = down_block(hidden_states)
|
571
|
+
|
572
|
+
hidden_states = self.mid_block(hidden_states)
|
573
|
+
|
574
|
+
hidden_states = self.conv_norm_out(hidden_states)
|
575
|
+
hidden_states = self.conv_act(hidden_states)
|
576
|
+
hidden_states = self.conv_out(hidden_states)
|
577
|
+
|
578
|
+
return hidden_states
|
579
|
+
|
580
|
+
|
581
|
+
class HunyuanVideoDecoder3D(nn.Module):
|
582
|
+
r"""
|
583
|
+
Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
|
584
|
+
"""
|
585
|
+
|
586
|
+
def __init__(
|
587
|
+
self,
|
588
|
+
in_channels: int = 3,
|
589
|
+
out_channels: int = 3,
|
590
|
+
up_block_types: Tuple[str, ...] = (
|
591
|
+
"HunyuanVideoUpBlock3D",
|
592
|
+
"HunyuanVideoUpBlock3D",
|
593
|
+
"HunyuanVideoUpBlock3D",
|
594
|
+
"HunyuanVideoUpBlock3D",
|
595
|
+
),
|
596
|
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
597
|
+
layers_per_block: int = 2,
|
598
|
+
norm_num_groups: int = 32,
|
599
|
+
act_fn: str = "silu",
|
600
|
+
mid_block_add_attention=True,
|
601
|
+
time_compression_ratio: int = 4,
|
602
|
+
spatial_compression_ratio: int = 8,
|
603
|
+
):
|
604
|
+
super().__init__()
|
605
|
+
self.layers_per_block = layers_per_block
|
606
|
+
|
607
|
+
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
|
608
|
+
self.up_blocks = nn.ModuleList([])
|
609
|
+
|
610
|
+
# mid
|
611
|
+
self.mid_block = HunyuanVideoMidBlock3D(
|
612
|
+
in_channels=block_out_channels[-1],
|
613
|
+
resnet_eps=1e-6,
|
614
|
+
resnet_act_fn=act_fn,
|
615
|
+
attention_head_dim=block_out_channels[-1],
|
616
|
+
resnet_groups=norm_num_groups,
|
617
|
+
add_attention=mid_block_add_attention,
|
618
|
+
)
|
619
|
+
|
620
|
+
# up
|
621
|
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
622
|
+
output_channel = reversed_block_out_channels[0]
|
623
|
+
for i, up_block_type in enumerate(up_block_types):
|
624
|
+
if up_block_type != "HunyuanVideoUpBlock3D":
|
625
|
+
raise ValueError(f"Unsupported up_block_type: {up_block_type}")
|
626
|
+
|
627
|
+
prev_output_channel = output_channel
|
628
|
+
output_channel = reversed_block_out_channels[i]
|
629
|
+
is_final_block = i == len(block_out_channels) - 1
|
630
|
+
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
|
631
|
+
num_time_upsample_layers = int(np.log2(time_compression_ratio))
|
632
|
+
|
633
|
+
if time_compression_ratio == 4:
|
634
|
+
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
|
635
|
+
add_time_upsample = bool(
|
636
|
+
i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block
|
637
|
+
)
|
638
|
+
else:
|
639
|
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}")
|
640
|
+
|
641
|
+
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
|
642
|
+
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
|
643
|
+
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
|
644
|
+
|
645
|
+
up_block = HunyuanVideoUpBlock3D(
|
646
|
+
num_layers=self.layers_per_block + 1,
|
647
|
+
in_channels=prev_output_channel,
|
648
|
+
out_channels=output_channel,
|
649
|
+
add_upsample=bool(add_spatial_upsample or add_time_upsample),
|
650
|
+
upsample_scale_factor=upsample_scale_factor,
|
651
|
+
resnet_eps=1e-6,
|
652
|
+
resnet_act_fn=act_fn,
|
653
|
+
resnet_groups=norm_num_groups,
|
654
|
+
)
|
655
|
+
|
656
|
+
self.up_blocks.append(up_block)
|
657
|
+
prev_output_channel = output_channel
|
658
|
+
|
659
|
+
# out
|
660
|
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
661
|
+
self.conv_act = nn.SiLU()
|
662
|
+
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
663
|
+
|
664
|
+
self.gradient_checkpointing = False
|
665
|
+
|
666
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
667
|
+
hidden_states = self.conv_in(hidden_states)
|
668
|
+
|
669
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
670
|
+
|
671
|
+
def create_custom_forward(module, return_dict=None):
|
672
|
+
def custom_forward(*inputs):
|
673
|
+
if return_dict is not None:
|
674
|
+
return module(*inputs, return_dict=return_dict)
|
675
|
+
else:
|
676
|
+
return module(*inputs)
|
677
|
+
|
678
|
+
return custom_forward
|
679
|
+
|
680
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
681
|
+
|
682
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
683
|
+
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs
|
684
|
+
)
|
685
|
+
|
686
|
+
for up_block in self.up_blocks:
|
687
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
688
|
+
create_custom_forward(up_block), hidden_states, **ckpt_kwargs
|
689
|
+
)
|
690
|
+
else:
|
691
|
+
hidden_states = self.mid_block(hidden_states)
|
692
|
+
|
693
|
+
for up_block in self.up_blocks:
|
694
|
+
hidden_states = up_block(hidden_states)
|
695
|
+
|
696
|
+
# post-process
|
697
|
+
hidden_states = self.conv_norm_out(hidden_states)
|
698
|
+
hidden_states = self.conv_act(hidden_states)
|
699
|
+
hidden_states = self.conv_out(hidden_states)
|
700
|
+
|
701
|
+
return hidden_states
|
702
|
+
|
703
|
+
|
704
|
+
class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin):
|
705
|
+
r"""
|
706
|
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
707
|
+
Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603).
|
708
|
+
|
709
|
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
710
|
+
for all models (such as downloading or saving).
|
711
|
+
"""
|
712
|
+
|
713
|
+
_supports_gradient_checkpointing = True
|
714
|
+
|
715
|
+
@register_to_config
|
716
|
+
def __init__(
|
717
|
+
self,
|
718
|
+
in_channels: int = 3,
|
719
|
+
out_channels: int = 3,
|
720
|
+
latent_channels: int = 16,
|
721
|
+
down_block_types: Tuple[str, ...] = (
|
722
|
+
"HunyuanVideoDownBlock3D",
|
723
|
+
"HunyuanVideoDownBlock3D",
|
724
|
+
"HunyuanVideoDownBlock3D",
|
725
|
+
"HunyuanVideoDownBlock3D",
|
726
|
+
),
|
727
|
+
up_block_types: Tuple[str, ...] = (
|
728
|
+
"HunyuanVideoUpBlock3D",
|
729
|
+
"HunyuanVideoUpBlock3D",
|
730
|
+
"HunyuanVideoUpBlock3D",
|
731
|
+
"HunyuanVideoUpBlock3D",
|
732
|
+
),
|
733
|
+
block_out_channels: Tuple[int] = (128, 256, 512, 512),
|
734
|
+
layers_per_block: int = 2,
|
735
|
+
act_fn: str = "silu",
|
736
|
+
norm_num_groups: int = 32,
|
737
|
+
scaling_factor: float = 0.476986,
|
738
|
+
spatial_compression_ratio: int = 8,
|
739
|
+
temporal_compression_ratio: int = 4,
|
740
|
+
mid_block_add_attention: bool = True,
|
741
|
+
) -> None:
|
742
|
+
super().__init__()
|
743
|
+
|
744
|
+
self.time_compression_ratio = temporal_compression_ratio
|
745
|
+
|
746
|
+
self.encoder = HunyuanVideoEncoder3D(
|
747
|
+
in_channels=in_channels,
|
748
|
+
out_channels=latent_channels,
|
749
|
+
down_block_types=down_block_types,
|
750
|
+
block_out_channels=block_out_channels,
|
751
|
+
layers_per_block=layers_per_block,
|
752
|
+
norm_num_groups=norm_num_groups,
|
753
|
+
act_fn=act_fn,
|
754
|
+
double_z=True,
|
755
|
+
mid_block_add_attention=mid_block_add_attention,
|
756
|
+
temporal_compression_ratio=temporal_compression_ratio,
|
757
|
+
spatial_compression_ratio=spatial_compression_ratio,
|
758
|
+
)
|
759
|
+
|
760
|
+
self.decoder = HunyuanVideoDecoder3D(
|
761
|
+
in_channels=latent_channels,
|
762
|
+
out_channels=out_channels,
|
763
|
+
up_block_types=up_block_types,
|
764
|
+
block_out_channels=block_out_channels,
|
765
|
+
layers_per_block=layers_per_block,
|
766
|
+
norm_num_groups=norm_num_groups,
|
767
|
+
act_fn=act_fn,
|
768
|
+
time_compression_ratio=temporal_compression_ratio,
|
769
|
+
spatial_compression_ratio=spatial_compression_ratio,
|
770
|
+
mid_block_add_attention=mid_block_add_attention,
|
771
|
+
)
|
772
|
+
|
773
|
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
774
|
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
775
|
+
|
776
|
+
self.spatial_compression_ratio = spatial_compression_ratio
|
777
|
+
self.temporal_compression_ratio = temporal_compression_ratio
|
778
|
+
|
779
|
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
780
|
+
# to perform decoding of a single video latent at a time.
|
781
|
+
self.use_slicing = False
|
782
|
+
|
783
|
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
784
|
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
785
|
+
# intermediate tiles together, the memory requirement can be lowered.
|
786
|
+
self.use_tiling = False
|
787
|
+
|
788
|
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
789
|
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
790
|
+
self.use_framewise_encoding = True
|
791
|
+
self.use_framewise_decoding = True
|
792
|
+
|
793
|
+
# The minimal tile height and width for spatial tiling to be used
|
794
|
+
self.tile_sample_min_height = 256
|
795
|
+
self.tile_sample_min_width = 256
|
796
|
+
self.tile_sample_min_num_frames = 16
|
797
|
+
|
798
|
+
# The minimal distance between two spatial tiles
|
799
|
+
self.tile_sample_stride_height = 192
|
800
|
+
self.tile_sample_stride_width = 192
|
801
|
+
self.tile_sample_stride_num_frames = 12
|
802
|
+
|
803
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
804
|
+
if isinstance(module, (HunyuanVideoEncoder3D, HunyuanVideoDecoder3D)):
|
805
|
+
module.gradient_checkpointing = value
|
806
|
+
|
807
|
+
def enable_tiling(
|
808
|
+
self,
|
809
|
+
tile_sample_min_height: Optional[int] = None,
|
810
|
+
tile_sample_min_width: Optional[int] = None,
|
811
|
+
tile_sample_min_num_frames: Optional[int] = None,
|
812
|
+
tile_sample_stride_height: Optional[float] = None,
|
813
|
+
tile_sample_stride_width: Optional[float] = None,
|
814
|
+
tile_sample_stride_num_frames: Optional[float] = None,
|
815
|
+
) -> None:
|
816
|
+
r"""
|
817
|
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
818
|
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
819
|
+
processing larger images.
|
820
|
+
|
821
|
+
Args:
|
822
|
+
tile_sample_min_height (`int`, *optional*):
|
823
|
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
824
|
+
tile_sample_min_width (`int`, *optional*):
|
825
|
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
826
|
+
tile_sample_min_num_frames (`int`, *optional*):
|
827
|
+
The minimum number of frames required for a sample to be separated into tiles across the frame
|
828
|
+
dimension.
|
829
|
+
tile_sample_stride_height (`int`, *optional*):
|
830
|
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
831
|
+
no tiling artifacts produced across the height dimension.
|
832
|
+
tile_sample_stride_width (`int`, *optional*):
|
833
|
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
834
|
+
artifacts produced across the width dimension.
|
835
|
+
tile_sample_stride_num_frames (`int`, *optional*):
|
836
|
+
The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts
|
837
|
+
produced across the frame dimension.
|
838
|
+
"""
|
839
|
+
self.use_tiling = True
|
840
|
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
841
|
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
842
|
+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
|
843
|
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
844
|
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
845
|
+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
|
846
|
+
|
847
|
+
def disable_tiling(self) -> None:
|
848
|
+
r"""
|
849
|
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
850
|
+
decoding in one step.
|
851
|
+
"""
|
852
|
+
self.use_tiling = False
|
853
|
+
|
854
|
+
def enable_slicing(self) -> None:
|
855
|
+
r"""
|
856
|
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
857
|
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
858
|
+
"""
|
859
|
+
self.use_slicing = True
|
860
|
+
|
861
|
+
def disable_slicing(self) -> None:
|
862
|
+
r"""
|
863
|
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
864
|
+
decoding in one step.
|
865
|
+
"""
|
866
|
+
self.use_slicing = False
|
867
|
+
|
868
|
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
869
|
+
batch_size, num_channels, num_frames, height, width = x.shape
|
870
|
+
|
871
|
+
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
|
872
|
+
return self._temporal_tiled_encode(x)
|
873
|
+
|
874
|
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
875
|
+
return self.tiled_encode(x)
|
876
|
+
|
877
|
+
x = self.encoder(x)
|
878
|
+
enc = self.quant_conv(x)
|
879
|
+
return enc
|
880
|
+
|
881
|
+
@apply_forward_hook
|
882
|
+
def encode(
|
883
|
+
self, x: torch.Tensor, return_dict: bool = True
|
884
|
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
885
|
+
r"""
|
886
|
+
Encode a batch of images into latents.
|
887
|
+
|
888
|
+
Args:
|
889
|
+
x (`torch.Tensor`): Input batch of images.
|
890
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
891
|
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
892
|
+
|
893
|
+
Returns:
|
894
|
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
895
|
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
896
|
+
"""
|
897
|
+
if self.use_slicing and x.shape[0] > 1:
|
898
|
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
899
|
+
h = torch.cat(encoded_slices)
|
900
|
+
else:
|
901
|
+
h = self._encode(x)
|
902
|
+
|
903
|
+
posterior = DiagonalGaussianDistribution(h)
|
904
|
+
|
905
|
+
if not return_dict:
|
906
|
+
return (posterior,)
|
907
|
+
return AutoencoderKLOutput(latent_dist=posterior)
|
908
|
+
|
909
|
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
910
|
+
batch_size, num_channels, num_frames, height, width = z.shape
|
911
|
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
912
|
+
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
913
|
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
914
|
+
|
915
|
+
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
|
916
|
+
return self._temporal_tiled_decode(z, return_dict=return_dict)
|
917
|
+
|
918
|
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
919
|
+
return self.tiled_decode(z, return_dict=return_dict)
|
920
|
+
|
921
|
+
z = self.post_quant_conv(z)
|
922
|
+
dec = self.decoder(z)
|
923
|
+
|
924
|
+
if not return_dict:
|
925
|
+
return (dec,)
|
926
|
+
|
927
|
+
return DecoderOutput(sample=dec)
|
928
|
+
|
929
|
+
@apply_forward_hook
|
930
|
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
931
|
+
r"""
|
932
|
+
Decode a batch of images.
|
933
|
+
|
934
|
+
Args:
|
935
|
+
z (`torch.Tensor`): Input batch of latent vectors.
|
936
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
937
|
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
938
|
+
|
939
|
+
Returns:
|
940
|
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
941
|
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
942
|
+
returned.
|
943
|
+
"""
|
944
|
+
if self.use_slicing and z.shape[0] > 1:
|
945
|
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
946
|
+
decoded = torch.cat(decoded_slices)
|
947
|
+
else:
|
948
|
+
decoded = self._decode(z).sample
|
949
|
+
|
950
|
+
if not return_dict:
|
951
|
+
return (decoded,)
|
952
|
+
|
953
|
+
return DecoderOutput(sample=decoded)
|
954
|
+
|
955
|
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
956
|
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
957
|
+
for y in range(blend_extent):
|
958
|
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
959
|
+
y / blend_extent
|
960
|
+
)
|
961
|
+
return b
|
962
|
+
|
963
|
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
964
|
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
965
|
+
for x in range(blend_extent):
|
966
|
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
967
|
+
x / blend_extent
|
968
|
+
)
|
969
|
+
return b
|
970
|
+
|
971
|
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
972
|
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
973
|
+
for x in range(blend_extent):
|
974
|
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
|
975
|
+
x / blend_extent
|
976
|
+
)
|
977
|
+
return b
|
978
|
+
|
979
|
+
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
980
|
+
r"""Encode a batch of images using a tiled encoder.
|
981
|
+
|
982
|
+
Args:
|
983
|
+
x (`torch.Tensor`): Input batch of videos.
|
984
|
+
|
985
|
+
Returns:
|
986
|
+
`torch.Tensor`:
|
987
|
+
The latent representation of the encoded videos.
|
988
|
+
"""
|
989
|
+
batch_size, num_channels, num_frames, height, width = x.shape
|
990
|
+
latent_height = height // self.spatial_compression_ratio
|
991
|
+
latent_width = width // self.spatial_compression_ratio
|
992
|
+
|
993
|
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
994
|
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
995
|
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
996
|
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
997
|
+
|
998
|
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
999
|
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
1000
|
+
|
1001
|
+
# Split x into overlapping tiles and encode them separately.
|
1002
|
+
# The tiles have an overlap to avoid seams between tiles.
|
1003
|
+
rows = []
|
1004
|
+
for i in range(0, height, self.tile_sample_stride_height):
|
1005
|
+
row = []
|
1006
|
+
for j in range(0, width, self.tile_sample_stride_width):
|
1007
|
+
tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
1008
|
+
tile = self.encoder(tile)
|
1009
|
+
tile = self.quant_conv(tile)
|
1010
|
+
row.append(tile)
|
1011
|
+
rows.append(row)
|
1012
|
+
|
1013
|
+
result_rows = []
|
1014
|
+
for i, row in enumerate(rows):
|
1015
|
+
result_row = []
|
1016
|
+
for j, tile in enumerate(row):
|
1017
|
+
# blend the above tile and the left tile
|
1018
|
+
# to the current tile and add the current tile to the result row
|
1019
|
+
if i > 0:
|
1020
|
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1021
|
+
if j > 0:
|
1022
|
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1023
|
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
1024
|
+
result_rows.append(torch.cat(result_row, dim=4))
|
1025
|
+
|
1026
|
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
1027
|
+
return enc
|
1028
|
+
|
1029
|
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1030
|
+
r"""
|
1031
|
+
Decode a batch of images using a tiled decoder.
|
1032
|
+
|
1033
|
+
Args:
|
1034
|
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1035
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1036
|
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1037
|
+
|
1038
|
+
Returns:
|
1039
|
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1040
|
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1041
|
+
returned.
|
1042
|
+
"""
|
1043
|
+
|
1044
|
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1045
|
+
sample_height = height * self.spatial_compression_ratio
|
1046
|
+
sample_width = width * self.spatial_compression_ratio
|
1047
|
+
|
1048
|
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1049
|
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1050
|
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
1051
|
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1052
|
+
|
1053
|
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
1054
|
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
1055
|
+
|
1056
|
+
# Split z into overlapping tiles and decode them separately.
|
1057
|
+
# The tiles have an overlap to avoid seams between tiles.
|
1058
|
+
rows = []
|
1059
|
+
for i in range(0, height, tile_latent_stride_height):
|
1060
|
+
row = []
|
1061
|
+
for j in range(0, width, tile_latent_stride_width):
|
1062
|
+
tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
|
1063
|
+
tile = self.post_quant_conv(tile)
|
1064
|
+
decoded = self.decoder(tile)
|
1065
|
+
row.append(decoded)
|
1066
|
+
rows.append(row)
|
1067
|
+
|
1068
|
+
result_rows = []
|
1069
|
+
for i, row in enumerate(rows):
|
1070
|
+
result_row = []
|
1071
|
+
for j, tile in enumerate(row):
|
1072
|
+
# blend the above tile and the left tile
|
1073
|
+
# to the current tile and add the current tile to the result row
|
1074
|
+
if i > 0:
|
1075
|
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1076
|
+
if j > 0:
|
1077
|
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1078
|
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
1079
|
+
result_rows.append(torch.cat(result_row, dim=-1))
|
1080
|
+
|
1081
|
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
1082
|
+
|
1083
|
+
if not return_dict:
|
1084
|
+
return (dec,)
|
1085
|
+
return DecoderOutput(sample=dec)
|
1086
|
+
|
1087
|
+
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
1088
|
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1089
|
+
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
|
1090
|
+
|
1091
|
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
1092
|
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
1093
|
+
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
|
1094
|
+
|
1095
|
+
row = []
|
1096
|
+
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
|
1097
|
+
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
|
1098
|
+
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
|
1099
|
+
tile = self.tiled_encode(tile)
|
1100
|
+
else:
|
1101
|
+
tile = self.encoder(tile)
|
1102
|
+
tile = self.quant_conv(tile)
|
1103
|
+
if i > 0:
|
1104
|
+
tile = tile[:, :, 1:, :, :]
|
1105
|
+
row.append(tile)
|
1106
|
+
|
1107
|
+
result_row = []
|
1108
|
+
for i, tile in enumerate(row):
|
1109
|
+
if i > 0:
|
1110
|
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
1111
|
+
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
|
1112
|
+
else:
|
1113
|
+
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
|
1114
|
+
|
1115
|
+
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
|
1116
|
+
return enc
|
1117
|
+
|
1118
|
+
def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1119
|
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1120
|
+
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
|
1121
|
+
|
1122
|
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1123
|
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1124
|
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
1125
|
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
1126
|
+
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
|
1127
|
+
|
1128
|
+
row = []
|
1129
|
+
for i in range(0, num_frames, tile_latent_stride_num_frames):
|
1130
|
+
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
|
1131
|
+
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
|
1132
|
+
decoded = self.tiled_decode(tile, return_dict=True).sample
|
1133
|
+
else:
|
1134
|
+
tile = self.post_quant_conv(tile)
|
1135
|
+
decoded = self.decoder(tile)
|
1136
|
+
if i > 0:
|
1137
|
+
decoded = decoded[:, :, 1:, :, :]
|
1138
|
+
row.append(decoded)
|
1139
|
+
|
1140
|
+
result_row = []
|
1141
|
+
for i, tile in enumerate(row):
|
1142
|
+
if i > 0:
|
1143
|
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
1144
|
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :])
|
1145
|
+
else:
|
1146
|
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
|
1147
|
+
|
1148
|
+
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
|
1149
|
+
|
1150
|
+
if not return_dict:
|
1151
|
+
return (dec,)
|
1152
|
+
return DecoderOutput(sample=dec)
|
1153
|
+
|
1154
|
+
def forward(
|
1155
|
+
self,
|
1156
|
+
sample: torch.Tensor,
|
1157
|
+
sample_posterior: bool = False,
|
1158
|
+
return_dict: bool = True,
|
1159
|
+
generator: Optional[torch.Generator] = None,
|
1160
|
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1161
|
+
r"""
|
1162
|
+
Args:
|
1163
|
+
sample (`torch.Tensor`): Input sample.
|
1164
|
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
1165
|
+
Whether to sample from the posterior.
|
1166
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1167
|
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
1168
|
+
"""
|
1169
|
+
x = sample
|
1170
|
+
posterior = self.encode(x).latent_dist
|
1171
|
+
if sample_posterior:
|
1172
|
+
z = posterior.sample(generator=generator)
|
1173
|
+
else:
|
1174
|
+
z = posterior.mode()
|
1175
|
+
dec = self.decode(z, return_dict=return_dict)
|
1176
|
+
return dec
|