diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1140 @@
1
+ # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ BaseImageProcessor,
21
+ CLIPTextModelWithProjection,
22
+ CLIPTokenizer,
23
+ PreTrainedModel,
24
+ T5EncoderModel,
25
+ T5TokenizerFast,
26
+ )
27
+
28
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
29
+ from ...loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
30
+ from ...models.autoencoders import AutoencoderKL
31
+ from ...models.transformers import SD3Transformer2DModel
32
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
33
+ from ...utils import (
34
+ USE_PEFT_BACKEND,
35
+ is_torch_xla_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ scale_lora_layers,
39
+ unscale_lora_layers,
40
+ )
41
+ from ...utils.torch_utils import randn_tensor
42
+ from ..pipeline_utils import DiffusionPipeline
43
+ from .pipeline_output import StableDiffusion3PipelineOutput
44
+
45
+
46
+ if is_torch_xla_available():
47
+ import torch_xla.core.xla_model as xm
48
+
49
+ XLA_AVAILABLE = True
50
+ else:
51
+ XLA_AVAILABLE = False
52
+
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+ EXAMPLE_DOC_STRING = """
57
+ Examples:
58
+ ```py
59
+ >>> import torch
60
+ >>> from diffusers import StableDiffusion3Pipeline
61
+
62
+ >>> pipe = StableDiffusion3Pipeline.from_pretrained(
63
+ ... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
64
+ ... )
65
+ >>> pipe.to("cuda")
66
+ >>> prompt = "A cat holding a sign that says hello world"
67
+ >>> image = pipe(prompt).images[0]
68
+ >>> image.save("sd3.png")
69
+ ```
70
+ """
71
+
72
+
73
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
74
+ def calculate_shift(
75
+ image_seq_len,
76
+ base_seq_len: int = 256,
77
+ max_seq_len: int = 4096,
78
+ base_shift: float = 0.5,
79
+ max_shift: float = 1.16,
80
+ ):
81
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
82
+ b = base_shift - m * base_seq_len
83
+ mu = image_seq_len * m + b
84
+ return mu
85
+
86
+
87
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
88
+ def retrieve_timesteps(
89
+ scheduler,
90
+ num_inference_steps: Optional[int] = None,
91
+ device: Optional[Union[str, torch.device]] = None,
92
+ timesteps: Optional[List[int]] = None,
93
+ sigmas: Optional[List[float]] = None,
94
+ **kwargs,
95
+ ):
96
+ r"""
97
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
98
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
99
+
100
+ Args:
101
+ scheduler (`SchedulerMixin`):
102
+ The scheduler to get timesteps from.
103
+ num_inference_steps (`int`):
104
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
105
+ must be `None`.
106
+ device (`str` or `torch.device`, *optional*):
107
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
108
+ timesteps (`List[int]`, *optional*):
109
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
110
+ `num_inference_steps` and `sigmas` must be `None`.
111
+ sigmas (`List[float]`, *optional*):
112
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
113
+ `num_inference_steps` and `timesteps` must be `None`.
114
+
115
+ Returns:
116
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
117
+ second element is the number of inference steps.
118
+ """
119
+ if timesteps is not None and sigmas is not None:
120
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
121
+ if timesteps is not None:
122
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
123
+ if not accepts_timesteps:
124
+ raise ValueError(
125
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
126
+ f" timestep schedules. Please check whether you are using the correct scheduler."
127
+ )
128
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ num_inference_steps = len(timesteps)
131
+ elif sigmas is not None:
132
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
133
+ if not accept_sigmas:
134
+ raise ValueError(
135
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
136
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
137
+ )
138
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ num_inference_steps = len(timesteps)
141
+ else:
142
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
143
+ timesteps = scheduler.timesteps
144
+ return timesteps, num_inference_steps
145
+
146
+
147
+ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin):
148
+ r"""
149
+ Args:
150
+ transformer ([`SD3Transformer2DModel`]):
151
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
152
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
153
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
154
+ vae ([`AutoencoderKL`]):
155
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
156
+ text_encoder ([`CLIPTextModelWithProjection`]):
157
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
158
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
159
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
160
+ as its dimension.
161
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
162
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
163
+ specifically the
164
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
165
+ variant.
166
+ text_encoder_3 ([`T5EncoderModel`]):
167
+ Frozen text-encoder. Stable Diffusion 3 uses
168
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
169
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
170
+ tokenizer (`CLIPTokenizer`):
171
+ Tokenizer of class
172
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
173
+ tokenizer_2 (`CLIPTokenizer`):
174
+ Second Tokenizer of class
175
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
176
+ tokenizer_3 (`T5TokenizerFast`):
177
+ Tokenizer of class
178
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
179
+ image_encoder (`PreTrainedModel`, *optional*):
180
+ Pre-trained Vision Model for IP Adapter.
181
+ feature_extractor (`BaseImageProcessor`, *optional*):
182
+ Image processor for IP Adapter.
183
+ """
184
+
185
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
186
+ _optional_components = ["image_encoder", "feature_extractor"]
187
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
188
+
189
+ def __init__(
190
+ self,
191
+ transformer: SD3Transformer2DModel,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKL,
194
+ text_encoder: CLIPTextModelWithProjection,
195
+ tokenizer: CLIPTokenizer,
196
+ text_encoder_2: CLIPTextModelWithProjection,
197
+ tokenizer_2: CLIPTokenizer,
198
+ text_encoder_3: T5EncoderModel,
199
+ tokenizer_3: T5TokenizerFast,
200
+ image_encoder: PreTrainedModel = None,
201
+ feature_extractor: BaseImageProcessor = None,
202
+ ):
203
+ super().__init__()
204
+
205
+ self.register_modules(
206
+ vae=vae,
207
+ text_encoder=text_encoder,
208
+ text_encoder_2=text_encoder_2,
209
+ text_encoder_3=text_encoder_3,
210
+ tokenizer=tokenizer,
211
+ tokenizer_2=tokenizer_2,
212
+ tokenizer_3=tokenizer_3,
213
+ transformer=transformer,
214
+ scheduler=scheduler,
215
+ image_encoder=image_encoder,
216
+ feature_extractor=feature_extractor,
217
+ )
218
+ self.vae_scale_factor = (
219
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
220
+ )
221
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
222
+ self.tokenizer_max_length = (
223
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
224
+ )
225
+ self.default_sample_size = (
226
+ self.transformer.config.sample_size
227
+ if hasattr(self, "transformer") and self.transformer is not None
228
+ else 128
229
+ )
230
+ self.patch_size = (
231
+ self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
232
+ )
233
+
234
+ def _get_t5_prompt_embeds(
235
+ self,
236
+ prompt: Union[str, List[str]] = None,
237
+ num_images_per_prompt: int = 1,
238
+ max_sequence_length: int = 256,
239
+ device: Optional[torch.device] = None,
240
+ dtype: Optional[torch.dtype] = None,
241
+ ):
242
+ device = device or self._execution_device
243
+ dtype = dtype or self.text_encoder.dtype
244
+
245
+ prompt = [prompt] if isinstance(prompt, str) else prompt
246
+ batch_size = len(prompt)
247
+
248
+ if self.text_encoder_3 is None:
249
+ return torch.zeros(
250
+ (
251
+ batch_size * num_images_per_prompt,
252
+ self.tokenizer_max_length,
253
+ self.transformer.config.joint_attention_dim,
254
+ ),
255
+ device=device,
256
+ dtype=dtype,
257
+ )
258
+
259
+ text_inputs = self.tokenizer_3(
260
+ prompt,
261
+ padding="max_length",
262
+ max_length=max_sequence_length,
263
+ truncation=True,
264
+ add_special_tokens=True,
265
+ return_tensors="pt",
266
+ )
267
+ text_input_ids = text_inputs.input_ids
268
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
269
+
270
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
271
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
272
+ logger.warning(
273
+ "The following part of your input was truncated because `max_sequence_length` is set to "
274
+ f" {max_sequence_length} tokens: {removed_text}"
275
+ )
276
+
277
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
278
+
279
+ dtype = self.text_encoder_3.dtype
280
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
281
+
282
+ _, seq_len, _ = prompt_embeds.shape
283
+
284
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
285
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
286
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
287
+
288
+ return prompt_embeds
289
+
290
+ def _get_clip_prompt_embeds(
291
+ self,
292
+ prompt: Union[str, List[str]],
293
+ num_images_per_prompt: int = 1,
294
+ device: Optional[torch.device] = None,
295
+ clip_skip: Optional[int] = None,
296
+ clip_model_index: int = 0,
297
+ ):
298
+ device = device or self._execution_device
299
+
300
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
301
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
302
+
303
+ tokenizer = clip_tokenizers[clip_model_index]
304
+ text_encoder = clip_text_encoders[clip_model_index]
305
+
306
+ prompt = [prompt] if isinstance(prompt, str) else prompt
307
+ batch_size = len(prompt)
308
+
309
+ text_inputs = tokenizer(
310
+ prompt,
311
+ padding="max_length",
312
+ max_length=self.tokenizer_max_length,
313
+ truncation=True,
314
+ return_tensors="pt",
315
+ )
316
+
317
+ text_input_ids = text_inputs.input_ids
318
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
319
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
320
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
321
+ logger.warning(
322
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
323
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
324
+ )
325
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
326
+ pooled_prompt_embeds = prompt_embeds[0]
327
+
328
+ if clip_skip is None:
329
+ prompt_embeds = prompt_embeds.hidden_states[-2]
330
+ else:
331
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
332
+
333
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
334
+
335
+ _, seq_len, _ = prompt_embeds.shape
336
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
337
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
338
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
339
+
340
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
341
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
342
+
343
+ return prompt_embeds, pooled_prompt_embeds
344
+
345
+ def encode_prompt(
346
+ self,
347
+ prompt: Union[str, List[str]],
348
+ prompt_2: Union[str, List[str]],
349
+ prompt_3: Union[str, List[str]],
350
+ device: Optional[torch.device] = None,
351
+ num_images_per_prompt: int = 1,
352
+ do_classifier_free_guidance: bool = True,
353
+ negative_prompt: Optional[Union[str, List[str]]] = None,
354
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
355
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
356
+ prompt_embeds: Optional[torch.FloatTensor] = None,
357
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
358
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
359
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
360
+ clip_skip: Optional[int] = None,
361
+ max_sequence_length: int = 256,
362
+ lora_scale: Optional[float] = None,
363
+ ):
364
+ r"""
365
+
366
+ Args:
367
+ prompt (`str` or `List[str]`, *optional*):
368
+ prompt to be encoded
369
+ prompt_2 (`str` or `List[str]`, *optional*):
370
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
371
+ used in all text-encoders
372
+ prompt_3 (`str` or `List[str]`, *optional*):
373
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
374
+ used in all text-encoders
375
+ device: (`torch.device`):
376
+ torch device
377
+ num_images_per_prompt (`int`):
378
+ number of images that should be generated per prompt
379
+ do_classifier_free_guidance (`bool`):
380
+ whether to use classifier free guidance or not
381
+ negative_prompt (`str` or `List[str]`, *optional*):
382
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
383
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
384
+ less than `1`).
385
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
386
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
387
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
388
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
389
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
390
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
391
+ prompt_embeds (`torch.FloatTensor`, *optional*):
392
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
393
+ provided, text embeddings will be generated from `prompt` input argument.
394
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
395
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
396
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
397
+ argument.
398
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
399
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
400
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
401
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
402
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
403
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
404
+ input argument.
405
+ clip_skip (`int`, *optional*):
406
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
407
+ the output of the pre-final layer will be used for computing the prompt embeddings.
408
+ lora_scale (`float`, *optional*):
409
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
410
+ """
411
+ device = device or self._execution_device
412
+
413
+ # set lora scale so that monkey patched LoRA
414
+ # function of text encoder can correctly access it
415
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
416
+ self._lora_scale = lora_scale
417
+
418
+ # dynamically adjust the LoRA scale
419
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
420
+ scale_lora_layers(self.text_encoder, lora_scale)
421
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
422
+ scale_lora_layers(self.text_encoder_2, lora_scale)
423
+
424
+ prompt = [prompt] if isinstance(prompt, str) else prompt
425
+ if prompt is not None:
426
+ batch_size = len(prompt)
427
+ else:
428
+ batch_size = prompt_embeds.shape[0]
429
+
430
+ if prompt_embeds is None:
431
+ prompt_2 = prompt_2 or prompt
432
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
433
+
434
+ prompt_3 = prompt_3 or prompt
435
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
436
+
437
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
438
+ prompt=prompt,
439
+ device=device,
440
+ num_images_per_prompt=num_images_per_prompt,
441
+ clip_skip=clip_skip,
442
+ clip_model_index=0,
443
+ )
444
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
445
+ prompt=prompt_2,
446
+ device=device,
447
+ num_images_per_prompt=num_images_per_prompt,
448
+ clip_skip=clip_skip,
449
+ clip_model_index=1,
450
+ )
451
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
452
+
453
+ t5_prompt_embed = self._get_t5_prompt_embeds(
454
+ prompt=prompt_3,
455
+ num_images_per_prompt=num_images_per_prompt,
456
+ max_sequence_length=max_sequence_length,
457
+ device=device,
458
+ )
459
+
460
+ clip_prompt_embeds = torch.nn.functional.pad(
461
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
462
+ )
463
+
464
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
465
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
466
+
467
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
468
+ negative_prompt = negative_prompt or ""
469
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
470
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
471
+
472
+ # normalize str to list
473
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
474
+ negative_prompt_2 = (
475
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
476
+ )
477
+ negative_prompt_3 = (
478
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
479
+ )
480
+
481
+ if prompt is not None and type(prompt) is not type(negative_prompt):
482
+ raise TypeError(
483
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
484
+ f" {type(prompt)}."
485
+ )
486
+ elif batch_size != len(negative_prompt):
487
+ raise ValueError(
488
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
489
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
490
+ " the batch size of `prompt`."
491
+ )
492
+
493
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
494
+ negative_prompt,
495
+ device=device,
496
+ num_images_per_prompt=num_images_per_prompt,
497
+ clip_skip=None,
498
+ clip_model_index=0,
499
+ )
500
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
501
+ negative_prompt_2,
502
+ device=device,
503
+ num_images_per_prompt=num_images_per_prompt,
504
+ clip_skip=None,
505
+ clip_model_index=1,
506
+ )
507
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
508
+
509
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
510
+ prompt=negative_prompt_3,
511
+ num_images_per_prompt=num_images_per_prompt,
512
+ max_sequence_length=max_sequence_length,
513
+ device=device,
514
+ )
515
+
516
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
517
+ negative_clip_prompt_embeds,
518
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
519
+ )
520
+
521
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
522
+ negative_pooled_prompt_embeds = torch.cat(
523
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
524
+ )
525
+
526
+ if self.text_encoder is not None:
527
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
528
+ # Retrieve the original scale by scaling back the LoRA layers
529
+ unscale_lora_layers(self.text_encoder, lora_scale)
530
+
531
+ if self.text_encoder_2 is not None:
532
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
533
+ # Retrieve the original scale by scaling back the LoRA layers
534
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
535
+
536
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
537
+
538
+ def check_inputs(
539
+ self,
540
+ prompt,
541
+ prompt_2,
542
+ prompt_3,
543
+ height,
544
+ width,
545
+ negative_prompt=None,
546
+ negative_prompt_2=None,
547
+ negative_prompt_3=None,
548
+ prompt_embeds=None,
549
+ negative_prompt_embeds=None,
550
+ pooled_prompt_embeds=None,
551
+ negative_pooled_prompt_embeds=None,
552
+ callback_on_step_end_tensor_inputs=None,
553
+ max_sequence_length=None,
554
+ ):
555
+ if (
556
+ height % (self.vae_scale_factor * self.patch_size) != 0
557
+ or width % (self.vae_scale_factor * self.patch_size) != 0
558
+ ):
559
+ raise ValueError(
560
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
561
+ f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
562
+ )
563
+
564
+ if callback_on_step_end_tensor_inputs is not None and not all(
565
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
566
+ ):
567
+ raise ValueError(
568
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
569
+ )
570
+
571
+ if prompt is not None and prompt_embeds is not None:
572
+ raise ValueError(
573
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
574
+ " only forward one of the two."
575
+ )
576
+ elif prompt_2 is not None and prompt_embeds is not None:
577
+ raise ValueError(
578
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
579
+ " only forward one of the two."
580
+ )
581
+ elif prompt_3 is not None and prompt_embeds is not None:
582
+ raise ValueError(
583
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
584
+ " only forward one of the two."
585
+ )
586
+ elif prompt is None and prompt_embeds is None:
587
+ raise ValueError(
588
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
589
+ )
590
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
591
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
592
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
593
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
594
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
595
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
596
+
597
+ if negative_prompt is not None and negative_prompt_embeds is not None:
598
+ raise ValueError(
599
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
600
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
601
+ )
602
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
603
+ raise ValueError(
604
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
605
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
606
+ )
607
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
608
+ raise ValueError(
609
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
610
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
611
+ )
612
+
613
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
614
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
615
+ raise ValueError(
616
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
617
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
618
+ f" {negative_prompt_embeds.shape}."
619
+ )
620
+
621
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
622
+ raise ValueError(
623
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
624
+ )
625
+
626
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
627
+ raise ValueError(
628
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
629
+ )
630
+
631
+ if max_sequence_length is not None and max_sequence_length > 512:
632
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
633
+
634
+ def prepare_latents(
635
+ self,
636
+ batch_size,
637
+ num_channels_latents,
638
+ height,
639
+ width,
640
+ dtype,
641
+ device,
642
+ generator,
643
+ latents=None,
644
+ ):
645
+ if latents is not None:
646
+ return latents.to(device=device, dtype=dtype)
647
+
648
+ shape = (
649
+ batch_size,
650
+ num_channels_latents,
651
+ int(height) // self.vae_scale_factor,
652
+ int(width) // self.vae_scale_factor,
653
+ )
654
+
655
+ if isinstance(generator, list) and len(generator) != batch_size:
656
+ raise ValueError(
657
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
658
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
659
+ )
660
+
661
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
662
+
663
+ return latents
664
+
665
+ @property
666
+ def guidance_scale(self):
667
+ return self._guidance_scale
668
+
669
+ @property
670
+ def skip_guidance_layers(self):
671
+ return self._skip_guidance_layers
672
+
673
+ @property
674
+ def clip_skip(self):
675
+ return self._clip_skip
676
+
677
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
678
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
679
+ # corresponds to doing no classifier free guidance.
680
+ @property
681
+ def do_classifier_free_guidance(self):
682
+ return self._guidance_scale > 1
683
+
684
+ @property
685
+ def joint_attention_kwargs(self):
686
+ return self._joint_attention_kwargs
687
+
688
+ @property
689
+ def num_timesteps(self):
690
+ return self._num_timesteps
691
+
692
+ @property
693
+ def interrupt(self):
694
+ return self._interrupt
695
+
696
+ # Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image
697
+ def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
698
+ """Encodes the given image into a feature representation using a pre-trained image encoder.
699
+
700
+ Args:
701
+ image (`PipelineImageInput`):
702
+ Input image to be encoded.
703
+ device: (`torch.device`):
704
+ Torch device.
705
+
706
+ Returns:
707
+ `torch.Tensor`: The encoded image feature representation.
708
+ """
709
+ if not isinstance(image, torch.Tensor):
710
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
711
+
712
+ image = image.to(device=device, dtype=self.dtype)
713
+
714
+ return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
715
+
716
+ # Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.prepare_ip_adapter_image_embeds
717
+ def prepare_ip_adapter_image_embeds(
718
+ self,
719
+ ip_adapter_image: Optional[PipelineImageInput] = None,
720
+ ip_adapter_image_embeds: Optional[torch.Tensor] = None,
721
+ device: Optional[torch.device] = None,
722
+ num_images_per_prompt: int = 1,
723
+ do_classifier_free_guidance: bool = True,
724
+ ) -> torch.Tensor:
725
+ """Prepares image embeddings for use in the IP-Adapter.
726
+
727
+ Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
728
+
729
+ Args:
730
+ ip_adapter_image (`PipelineImageInput`, *optional*):
731
+ The input image to extract features from for IP-Adapter.
732
+ ip_adapter_image_embeds (`torch.Tensor`, *optional*):
733
+ Precomputed image embeddings.
734
+ device: (`torch.device`, *optional*):
735
+ Torch device.
736
+ num_images_per_prompt (`int`, defaults to 1):
737
+ Number of images that should be generated per prompt.
738
+ do_classifier_free_guidance (`bool`, defaults to True):
739
+ Whether to use classifier free guidance or not.
740
+ """
741
+ device = device or self._execution_device
742
+
743
+ if ip_adapter_image_embeds is not None:
744
+ if do_classifier_free_guidance:
745
+ single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
746
+ else:
747
+ single_image_embeds = ip_adapter_image_embeds
748
+ elif ip_adapter_image is not None:
749
+ single_image_embeds = self.encode_image(ip_adapter_image, device)
750
+ if do_classifier_free_guidance:
751
+ single_negative_image_embeds = torch.zeros_like(single_image_embeds)
752
+ else:
753
+ raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
754
+
755
+ image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
756
+
757
+ if do_classifier_free_guidance:
758
+ negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
759
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
760
+
761
+ return image_embeds.to(device=device)
762
+
763
+ def enable_sequential_cpu_offload(self, *args, **kwargs):
764
+ if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
765
+ logger.warning(
766
+ "`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
767
+ "`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
768
+ "`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
769
+ )
770
+
771
+ super().enable_sequential_cpu_offload(*args, **kwargs)
772
+
773
+ @torch.no_grad()
774
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
775
+ def __call__(
776
+ self,
777
+ prompt: Union[str, List[str]] = None,
778
+ prompt_2: Optional[Union[str, List[str]]] = None,
779
+ prompt_3: Optional[Union[str, List[str]]] = None,
780
+ height: Optional[int] = None,
781
+ width: Optional[int] = None,
782
+ num_inference_steps: int = 28,
783
+ sigmas: Optional[List[float]] = None,
784
+ guidance_scale: float = 7.0,
785
+ negative_prompt: Optional[Union[str, List[str]]] = None,
786
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
787
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
788
+ num_images_per_prompt: Optional[int] = 1,
789
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
790
+ latents: Optional[torch.FloatTensor] = None,
791
+ prompt_embeds: Optional[torch.FloatTensor] = None,
792
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
793
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
794
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
795
+ ip_adapter_image: Optional[PipelineImageInput] = None,
796
+ ip_adapter_image_embeds: Optional[torch.Tensor] = None,
797
+ output_type: Optional[str] = "pil",
798
+ return_dict: bool = True,
799
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
800
+ clip_skip: Optional[int] = None,
801
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
802
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
803
+ max_sequence_length: int = 256,
804
+ skip_guidance_layers: List[int] = None,
805
+ skip_layer_guidance_scale: float = 2.8,
806
+ skip_layer_guidance_stop: float = 0.2,
807
+ skip_layer_guidance_start: float = 0.01,
808
+ mu: Optional[float] = None,
809
+ ):
810
+ r"""
811
+ Function invoked when calling the pipeline for generation.
812
+
813
+ Args:
814
+ prompt (`str` or `List[str]`, *optional*):
815
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
816
+ instead.
817
+ prompt_2 (`str` or `List[str]`, *optional*):
818
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
819
+ will be used instead
820
+ prompt_3 (`str` or `List[str]`, *optional*):
821
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
822
+ will be used instead
823
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
824
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
825
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
826
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
827
+ num_inference_steps (`int`, *optional*, defaults to 50):
828
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
829
+ expense of slower inference.
830
+ sigmas (`List[float]`, *optional*):
831
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
832
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
833
+ will be used.
834
+ guidance_scale (`float`, *optional*, defaults to 7.0):
835
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
836
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
837
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
838
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
839
+ usually at the expense of lower image quality.
840
+ negative_prompt (`str` or `List[str]`, *optional*):
841
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
842
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
843
+ less than `1`).
844
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
845
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
846
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
847
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
848
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
849
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
850
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
851
+ The number of images to generate per prompt.
852
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
853
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
854
+ to make generation deterministic.
855
+ latents (`torch.FloatTensor`, *optional*):
856
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
857
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
858
+ tensor will ge generated by sampling using the supplied random `generator`.
859
+ prompt_embeds (`torch.FloatTensor`, *optional*):
860
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
861
+ provided, text embeddings will be generated from `prompt` input argument.
862
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
863
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
864
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
865
+ argument.
866
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
867
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
868
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
869
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
870
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
871
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
872
+ input argument.
873
+ ip_adapter_image (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
874
+ ip_adapter_image_embeds (`torch.Tensor`, *optional*):
875
+ Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images,
876
+ emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
877
+ `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument.
878
+ output_type (`str`, *optional*, defaults to `"pil"`):
879
+ The output format of the generate image. Choose between
880
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
881
+ return_dict (`bool`, *optional*, defaults to `True`):
882
+ Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
883
+ a plain tuple.
884
+ joint_attention_kwargs (`dict`, *optional*):
885
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
886
+ `self.processor` in
887
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
888
+ callback_on_step_end (`Callable`, *optional*):
889
+ A function that calls at the end of each denoising steps during the inference. The function is called
890
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
891
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
892
+ `callback_on_step_end_tensor_inputs`.
893
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
894
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
895
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
896
+ `._callback_tensor_inputs` attribute of your pipeline class.
897
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
898
+ skip_guidance_layers (`List[int]`, *optional*):
899
+ A list of integers that specify layers to skip during guidance. If not provided, all layers will be
900
+ used for guidance. If provided, the guidance will only be applied to the layers specified in the list.
901
+ Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is [7, 8, 9].
902
+ skip_layer_guidance_scale (`int`, *optional*): The scale of the guidance for the layers specified in
903
+ `skip_guidance_layers`. The guidance will be applied to the layers specified in `skip_guidance_layers`
904
+ with a scale of `skip_layer_guidance_scale`. The guidance will be applied to the rest of the layers
905
+ with a scale of `1`.
906
+ skip_layer_guidance_stop (`int`, *optional*): The step at which the guidance for the layers specified in
907
+ `skip_guidance_layers` will stop. The guidance will be applied to the layers specified in
908
+ `skip_guidance_layers` until the fraction specified in `skip_layer_guidance_stop`. Recommended value by
909
+ StabiltyAI for Stable Diffusion 3.5 Medium is 0.2.
910
+ skip_layer_guidance_start (`int`, *optional*): The step at which the guidance for the layers specified in
911
+ `skip_guidance_layers` will start. The guidance will be applied to the layers specified in
912
+ `skip_guidance_layers` from the fraction specified in `skip_layer_guidance_start`. Recommended value by
913
+ StabiltyAI for Stable Diffusion 3.5 Medium is 0.01.
914
+ mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
915
+
916
+ Examples:
917
+
918
+ Returns:
919
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
920
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
921
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
922
+ """
923
+
924
+ height = height or self.default_sample_size * self.vae_scale_factor
925
+ width = width or self.default_sample_size * self.vae_scale_factor
926
+
927
+ # 1. Check inputs. Raise error if not correct
928
+ self.check_inputs(
929
+ prompt,
930
+ prompt_2,
931
+ prompt_3,
932
+ height,
933
+ width,
934
+ negative_prompt=negative_prompt,
935
+ negative_prompt_2=negative_prompt_2,
936
+ negative_prompt_3=negative_prompt_3,
937
+ prompt_embeds=prompt_embeds,
938
+ negative_prompt_embeds=negative_prompt_embeds,
939
+ pooled_prompt_embeds=pooled_prompt_embeds,
940
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
941
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
942
+ max_sequence_length=max_sequence_length,
943
+ )
944
+
945
+ self._guidance_scale = guidance_scale
946
+ self._skip_layer_guidance_scale = skip_layer_guidance_scale
947
+ self._clip_skip = clip_skip
948
+ self._joint_attention_kwargs = joint_attention_kwargs
949
+ self._interrupt = False
950
+
951
+ # 2. Define call parameters
952
+ if prompt is not None and isinstance(prompt, str):
953
+ batch_size = 1
954
+ elif prompt is not None and isinstance(prompt, list):
955
+ batch_size = len(prompt)
956
+ else:
957
+ batch_size = prompt_embeds.shape[0]
958
+
959
+ device = self._execution_device
960
+
961
+ lora_scale = (
962
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
963
+ )
964
+ (
965
+ prompt_embeds,
966
+ negative_prompt_embeds,
967
+ pooled_prompt_embeds,
968
+ negative_pooled_prompt_embeds,
969
+ ) = self.encode_prompt(
970
+ prompt=prompt,
971
+ prompt_2=prompt_2,
972
+ prompt_3=prompt_3,
973
+ negative_prompt=negative_prompt,
974
+ negative_prompt_2=negative_prompt_2,
975
+ negative_prompt_3=negative_prompt_3,
976
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
977
+ prompt_embeds=prompt_embeds,
978
+ negative_prompt_embeds=negative_prompt_embeds,
979
+ pooled_prompt_embeds=pooled_prompt_embeds,
980
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
981
+ device=device,
982
+ clip_skip=self.clip_skip,
983
+ num_images_per_prompt=num_images_per_prompt,
984
+ max_sequence_length=max_sequence_length,
985
+ lora_scale=lora_scale,
986
+ )
987
+
988
+ if self.do_classifier_free_guidance:
989
+ if skip_guidance_layers is not None:
990
+ original_prompt_embeds = prompt_embeds
991
+ original_pooled_prompt_embeds = pooled_prompt_embeds
992
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
993
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
994
+
995
+ # 4. Prepare latent variables
996
+ num_channels_latents = self.transformer.config.in_channels
997
+ latents = self.prepare_latents(
998
+ batch_size * num_images_per_prompt,
999
+ num_channels_latents,
1000
+ height,
1001
+ width,
1002
+ prompt_embeds.dtype,
1003
+ device,
1004
+ generator,
1005
+ latents,
1006
+ )
1007
+
1008
+ # 5. Prepare timesteps
1009
+ scheduler_kwargs = {}
1010
+ if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
1011
+ _, _, height, width = latents.shape
1012
+ image_seq_len = (height // self.transformer.config.patch_size) * (
1013
+ width // self.transformer.config.patch_size
1014
+ )
1015
+ mu = calculate_shift(
1016
+ image_seq_len,
1017
+ self.scheduler.config.base_image_seq_len,
1018
+ self.scheduler.config.max_image_seq_len,
1019
+ self.scheduler.config.base_shift,
1020
+ self.scheduler.config.max_shift,
1021
+ )
1022
+ scheduler_kwargs["mu"] = mu
1023
+ elif mu is not None:
1024
+ scheduler_kwargs["mu"] = mu
1025
+ timesteps, num_inference_steps = retrieve_timesteps(
1026
+ self.scheduler,
1027
+ num_inference_steps,
1028
+ device,
1029
+ sigmas=sigmas,
1030
+ **scheduler_kwargs,
1031
+ )
1032
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1033
+ self._num_timesteps = len(timesteps)
1034
+
1035
+ # 6. Prepare image embeddings
1036
+ if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
1037
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1038
+ ip_adapter_image,
1039
+ ip_adapter_image_embeds,
1040
+ device,
1041
+ batch_size * num_images_per_prompt,
1042
+ self.do_classifier_free_guidance,
1043
+ )
1044
+
1045
+ if self.joint_attention_kwargs is None:
1046
+ self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
1047
+ else:
1048
+ self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
1049
+
1050
+ # 7. Denoising loop
1051
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1052
+ for i, t in enumerate(timesteps):
1053
+ if self.interrupt:
1054
+ continue
1055
+
1056
+ # expand the latents if we are doing classifier free guidance
1057
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1058
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1059
+ timestep = t.expand(latent_model_input.shape[0])
1060
+
1061
+ noise_pred = self.transformer(
1062
+ hidden_states=latent_model_input,
1063
+ timestep=timestep,
1064
+ encoder_hidden_states=prompt_embeds,
1065
+ pooled_projections=pooled_prompt_embeds,
1066
+ joint_attention_kwargs=self.joint_attention_kwargs,
1067
+ return_dict=False,
1068
+ )[0]
1069
+
1070
+ # perform guidance
1071
+ if self.do_classifier_free_guidance:
1072
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1073
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1074
+ should_skip_layers = (
1075
+ True
1076
+ if i > num_inference_steps * skip_layer_guidance_start
1077
+ and i < num_inference_steps * skip_layer_guidance_stop
1078
+ else False
1079
+ )
1080
+ if skip_guidance_layers is not None and should_skip_layers:
1081
+ timestep = t.expand(latents.shape[0])
1082
+ latent_model_input = latents
1083
+ noise_pred_skip_layers = self.transformer(
1084
+ hidden_states=latent_model_input,
1085
+ timestep=timestep,
1086
+ encoder_hidden_states=original_prompt_embeds,
1087
+ pooled_projections=original_pooled_prompt_embeds,
1088
+ joint_attention_kwargs=self.joint_attention_kwargs,
1089
+ return_dict=False,
1090
+ skip_layers=skip_guidance_layers,
1091
+ )[0]
1092
+ noise_pred = (
1093
+ noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale
1094
+ )
1095
+
1096
+ # compute the previous noisy sample x_t -> x_t-1
1097
+ latents_dtype = latents.dtype
1098
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1099
+
1100
+ if latents.dtype != latents_dtype:
1101
+ if torch.backends.mps.is_available():
1102
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1103
+ latents = latents.to(latents_dtype)
1104
+
1105
+ if callback_on_step_end is not None:
1106
+ callback_kwargs = {}
1107
+ for k in callback_on_step_end_tensor_inputs:
1108
+ callback_kwargs[k] = locals()[k]
1109
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1110
+
1111
+ latents = callback_outputs.pop("latents", latents)
1112
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1113
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1114
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1115
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1116
+ )
1117
+
1118
+ # call the callback, if provided
1119
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1120
+ progress_bar.update()
1121
+
1122
+ if XLA_AVAILABLE:
1123
+ xm.mark_step()
1124
+
1125
+ if output_type == "latent":
1126
+ image = latents
1127
+
1128
+ else:
1129
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1130
+
1131
+ image = self.vae.decode(latents, return_dict=False)[0]
1132
+ image = self.image_processor.postprocess(image, output_type=output_type)
1133
+
1134
+ # Offload all models
1135
+ self.maybe_free_model_hooks()
1136
+
1137
+ if not return_dict:
1138
+ return (image,)
1139
+
1140
+ return StableDiffusion3PipelineOutput(images=image)