diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -21,7 +21,12 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMR
|
|
21
21
|
|
22
22
|
from ....configuration_utils import FrozenDict
|
23
23
|
from ....image_processor import PipelineImageInput, VaeImageProcessor
|
24
|
-
from ....loaders import
|
24
|
+
from ....loaders import (
|
25
|
+
FromSingleFileMixin,
|
26
|
+
IPAdapterMixin,
|
27
|
+
StableDiffusionLoraLoaderMixin,
|
28
|
+
TextualInversionLoaderMixin,
|
29
|
+
)
|
25
30
|
from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
26
31
|
from ....models.lora import adjust_lora_scale_text_encoder
|
27
32
|
from ....schedulers import KarrasDiffusionSchedulers
|
@@ -60,9 +65,21 @@ EXAMPLE_DOC_STRING = """
|
|
60
65
|
|
61
66
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
62
67
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
63
|
-
"""
|
64
|
-
|
65
|
-
|
68
|
+
r"""
|
69
|
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
70
|
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
71
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
72
|
+
|
73
|
+
Args:
|
74
|
+
noise_cfg (`torch.Tensor`):
|
75
|
+
The predicted noise tensor for the guided diffusion process.
|
76
|
+
noise_pred_text (`torch.Tensor`):
|
77
|
+
The predicted noise tensor for the text-guided diffusion process.
|
78
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
79
|
+
A rescale factor applied to the noise predictions.
|
80
|
+
|
81
|
+
Returns:
|
82
|
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
66
83
|
"""
|
67
84
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
68
85
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -79,9 +96,10 @@ def retrieve_timesteps(
|
|
79
96
|
num_inference_steps: Optional[int] = None,
|
80
97
|
device: Optional[Union[str, torch.device]] = None,
|
81
98
|
timesteps: Optional[List[int]] = None,
|
99
|
+
sigmas: Optional[List[float]] = None,
|
82
100
|
**kwargs,
|
83
101
|
):
|
84
|
-
"""
|
102
|
+
r"""
|
85
103
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
86
104
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
87
105
|
|
@@ -89,19 +107,23 @@ def retrieve_timesteps(
|
|
89
107
|
scheduler (`SchedulerMixin`):
|
90
108
|
The scheduler to get timesteps from.
|
91
109
|
num_inference_steps (`int`):
|
92
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
93
|
-
|
110
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
111
|
+
must be `None`.
|
94
112
|
device (`str` or `torch.device`, *optional*):
|
95
113
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
96
114
|
timesteps (`List[int]`, *optional*):
|
97
|
-
|
98
|
-
|
99
|
-
|
115
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
116
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
117
|
+
sigmas (`List[float]`, *optional*):
|
118
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
119
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
100
120
|
|
101
121
|
Returns:
|
102
122
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
103
123
|
second element is the number of inference steps.
|
104
124
|
"""
|
125
|
+
if timesteps is not None and sigmas is not None:
|
126
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
105
127
|
if timesteps is not None:
|
106
128
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
107
129
|
if not accepts_timesteps:
|
@@ -112,6 +134,16 @@ def retrieve_timesteps(
|
|
112
134
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
113
135
|
timesteps = scheduler.timesteps
|
114
136
|
num_inference_steps = len(timesteps)
|
137
|
+
elif sigmas is not None:
|
138
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
139
|
+
if not accept_sigmas:
|
140
|
+
raise ValueError(
|
141
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
142
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
143
|
+
)
|
144
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
145
|
+
timesteps = scheduler.timesteps
|
146
|
+
num_inference_steps = len(timesteps)
|
115
147
|
else:
|
116
148
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
117
149
|
timesteps = scheduler.timesteps
|
@@ -122,7 +154,7 @@ class AltDiffusionPipeline(
|
|
122
154
|
DiffusionPipeline,
|
123
155
|
StableDiffusionMixin,
|
124
156
|
TextualInversionLoaderMixin,
|
125
|
-
|
157
|
+
StableDiffusionLoraLoaderMixin,
|
126
158
|
IPAdapterMixin,
|
127
159
|
FromSingleFileMixin,
|
128
160
|
):
|
@@ -134,8 +166,8 @@ class AltDiffusionPipeline(
|
|
134
166
|
|
135
167
|
The pipeline also inherits the following loading methods:
|
136
168
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
137
|
-
- [`~loaders.
|
138
|
-
- [`~loaders.
|
169
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
170
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
139
171
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
140
172
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
141
173
|
|
@@ -263,8 +295,8 @@ class AltDiffusionPipeline(
|
|
263
295
|
num_images_per_prompt,
|
264
296
|
do_classifier_free_guidance,
|
265
297
|
negative_prompt=None,
|
266
|
-
prompt_embeds: Optional[torch.
|
267
|
-
negative_prompt_embeds: Optional[torch.
|
298
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
299
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
268
300
|
lora_scale: Optional[float] = None,
|
269
301
|
**kwargs,
|
270
302
|
):
|
@@ -295,8 +327,8 @@ class AltDiffusionPipeline(
|
|
295
327
|
num_images_per_prompt,
|
296
328
|
do_classifier_free_guidance,
|
297
329
|
negative_prompt=None,
|
298
|
-
prompt_embeds: Optional[torch.
|
299
|
-
negative_prompt_embeds: Optional[torch.
|
330
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
331
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
300
332
|
lora_scale: Optional[float] = None,
|
301
333
|
clip_skip: Optional[int] = None,
|
302
334
|
):
|
@@ -316,10 +348,10 @@ class AltDiffusionPipeline(
|
|
316
348
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
317
349
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
318
350
|
less than `1`).
|
319
|
-
prompt_embeds (`torch.
|
351
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
320
352
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
321
353
|
provided, text embeddings will be generated from `prompt` input argument.
|
322
|
-
negative_prompt_embeds (`torch.
|
354
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
323
355
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
324
356
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
325
357
|
argument.
|
@@ -331,7 +363,7 @@ class AltDiffusionPipeline(
|
|
331
363
|
"""
|
332
364
|
# set lora scale so that monkey patched LoRA
|
333
365
|
# function of text encoder can correctly access it
|
334
|
-
if lora_scale is not None and isinstance(self,
|
366
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
335
367
|
self._lora_scale = lora_scale
|
336
368
|
|
337
369
|
# dynamically adjust the LoRA scale
|
@@ -463,7 +495,7 @@ class AltDiffusionPipeline(
|
|
463
495
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
464
496
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
465
497
|
|
466
|
-
if isinstance(self,
|
498
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
467
499
|
# Retrieve the original scale by scaling back the LoRA layers
|
468
500
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
469
501
|
|
@@ -588,7 +620,12 @@ class AltDiffusionPipeline(
|
|
588
620
|
)
|
589
621
|
|
590
622
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
591
|
-
shape = (
|
623
|
+
shape = (
|
624
|
+
batch_size,
|
625
|
+
num_channels_latents,
|
626
|
+
int(height) // self.vae_scale_factor,
|
627
|
+
int(width) // self.vae_scale_factor,
|
628
|
+
)
|
592
629
|
if isinstance(generator, list) and len(generator) != batch_size:
|
593
630
|
raise ValueError(
|
594
631
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -617,7 +654,7 @@ class AltDiffusionPipeline(
|
|
617
654
|
data type of the generated embeddings
|
618
655
|
|
619
656
|
Returns:
|
620
|
-
`torch.
|
657
|
+
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
621
658
|
"""
|
622
659
|
assert len(w.shape) == 1
|
623
660
|
w = w * 1000.0
|
@@ -668,14 +705,15 @@ class AltDiffusionPipeline(
|
|
668
705
|
width: Optional[int] = None,
|
669
706
|
num_inference_steps: int = 50,
|
670
707
|
timesteps: List[int] = None,
|
708
|
+
sigmas: List[float] = None,
|
671
709
|
guidance_scale: float = 7.5,
|
672
710
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
673
711
|
num_images_per_prompt: Optional[int] = 1,
|
674
712
|
eta: float = 0.0,
|
675
713
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
676
|
-
latents: Optional[torch.
|
677
|
-
prompt_embeds: Optional[torch.
|
678
|
-
negative_prompt_embeds: Optional[torch.
|
714
|
+
latents: Optional[torch.Tensor] = None,
|
715
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
716
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
679
717
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
680
718
|
output_type: Optional[str] = "pil",
|
681
719
|
return_dict: bool = True,
|
@@ -717,14 +755,14 @@ class AltDiffusionPipeline(
|
|
717
755
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
718
756
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
719
757
|
generation deterministic.
|
720
|
-
latents (`torch.
|
758
|
+
latents (`torch.Tensor`, *optional*):
|
721
759
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
722
760
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
723
761
|
tensor is generated by sampling using the supplied random `generator`.
|
724
|
-
prompt_embeds (`torch.
|
762
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
725
763
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
726
764
|
provided, text embeddings are generated from the `prompt` input argument.
|
727
|
-
negative_prompt_embeds (`torch.
|
765
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
728
766
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
729
767
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
730
768
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
@@ -843,7 +881,9 @@ class AltDiffusionPipeline(
|
|
843
881
|
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
844
882
|
|
845
883
|
# 4. Prepare timesteps
|
846
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
884
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
885
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
886
|
+
)
|
847
887
|
|
848
888
|
# 5. Prepare latent variables
|
849
889
|
num_channels_latents = self.unet.config.in_channels
|
@@ -23,7 +23,12 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMR
|
|
23
23
|
|
24
24
|
from ....configuration_utils import FrozenDict
|
25
25
|
from ....image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ....loaders import
|
26
|
+
from ....loaders import (
|
27
|
+
FromSingleFileMixin,
|
28
|
+
IPAdapterMixin,
|
29
|
+
StableDiffusionLoraLoaderMixin,
|
30
|
+
TextualInversionLoaderMixin,
|
31
|
+
)
|
27
32
|
from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
28
33
|
from ....models.lora import adjust_lora_scale_text_encoder
|
29
34
|
from ....schedulers import KarrasDiffusionSchedulers
|
@@ -119,9 +124,10 @@ def retrieve_timesteps(
|
|
119
124
|
num_inference_steps: Optional[int] = None,
|
120
125
|
device: Optional[Union[str, torch.device]] = None,
|
121
126
|
timesteps: Optional[List[int]] = None,
|
127
|
+
sigmas: Optional[List[float]] = None,
|
122
128
|
**kwargs,
|
123
129
|
):
|
124
|
-
"""
|
130
|
+
r"""
|
125
131
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
126
132
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
127
133
|
|
@@ -129,19 +135,23 @@ def retrieve_timesteps(
|
|
129
135
|
scheduler (`SchedulerMixin`):
|
130
136
|
The scheduler to get timesteps from.
|
131
137
|
num_inference_steps (`int`):
|
132
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
133
|
-
|
138
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
139
|
+
must be `None`.
|
134
140
|
device (`str` or `torch.device`, *optional*):
|
135
141
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
136
142
|
timesteps (`List[int]`, *optional*):
|
137
|
-
|
138
|
-
|
139
|
-
|
143
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
144
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
145
|
+
sigmas (`List[float]`, *optional*):
|
146
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
147
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
140
148
|
|
141
149
|
Returns:
|
142
150
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
143
151
|
second element is the number of inference steps.
|
144
152
|
"""
|
153
|
+
if timesteps is not None and sigmas is not None:
|
154
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
145
155
|
if timesteps is not None:
|
146
156
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
147
157
|
if not accepts_timesteps:
|
@@ -152,6 +162,16 @@ def retrieve_timesteps(
|
|
152
162
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
153
163
|
timesteps = scheduler.timesteps
|
154
164
|
num_inference_steps = len(timesteps)
|
165
|
+
elif sigmas is not None:
|
166
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
167
|
+
if not accept_sigmas:
|
168
|
+
raise ValueError(
|
169
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
170
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
171
|
+
)
|
172
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
173
|
+
timesteps = scheduler.timesteps
|
174
|
+
num_inference_steps = len(timesteps)
|
155
175
|
else:
|
156
176
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
157
177
|
timesteps = scheduler.timesteps
|
@@ -163,7 +183,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
163
183
|
StableDiffusionMixin,
|
164
184
|
TextualInversionLoaderMixin,
|
165
185
|
IPAdapterMixin,
|
166
|
-
|
186
|
+
StableDiffusionLoraLoaderMixin,
|
167
187
|
FromSingleFileMixin,
|
168
188
|
):
|
169
189
|
r"""
|
@@ -174,8 +194,8 @@ class AltDiffusionImg2ImgPipeline(
|
|
174
194
|
|
175
195
|
The pipeline also inherits the following loading methods:
|
176
196
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
177
|
-
- [`~loaders.
|
178
|
-
- [`~loaders.
|
197
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
198
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
179
199
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
180
200
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
181
201
|
|
@@ -303,8 +323,8 @@ class AltDiffusionImg2ImgPipeline(
|
|
303
323
|
num_images_per_prompt,
|
304
324
|
do_classifier_free_guidance,
|
305
325
|
negative_prompt=None,
|
306
|
-
prompt_embeds: Optional[torch.
|
307
|
-
negative_prompt_embeds: Optional[torch.
|
326
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
327
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
308
328
|
lora_scale: Optional[float] = None,
|
309
329
|
**kwargs,
|
310
330
|
):
|
@@ -335,8 +355,8 @@ class AltDiffusionImg2ImgPipeline(
|
|
335
355
|
num_images_per_prompt,
|
336
356
|
do_classifier_free_guidance,
|
337
357
|
negative_prompt=None,
|
338
|
-
prompt_embeds: Optional[torch.
|
339
|
-
negative_prompt_embeds: Optional[torch.
|
358
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
359
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
340
360
|
lora_scale: Optional[float] = None,
|
341
361
|
clip_skip: Optional[int] = None,
|
342
362
|
):
|
@@ -356,10 +376,10 @@ class AltDiffusionImg2ImgPipeline(
|
|
356
376
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
357
377
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
358
378
|
less than `1`).
|
359
|
-
prompt_embeds (`torch.
|
379
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
360
380
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
361
381
|
provided, text embeddings will be generated from `prompt` input argument.
|
362
|
-
negative_prompt_embeds (`torch.
|
382
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
363
383
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
364
384
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
365
385
|
argument.
|
@@ -371,7 +391,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
371
391
|
"""
|
372
392
|
# set lora scale so that monkey patched LoRA
|
373
393
|
# function of text encoder can correctly access it
|
374
|
-
if lora_scale is not None and isinstance(self,
|
394
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
375
395
|
self._lora_scale = lora_scale
|
376
396
|
|
377
397
|
# dynamically adjust the LoRA scale
|
@@ -503,7 +523,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
503
523
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
504
524
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
505
525
|
|
506
|
-
if isinstance(self,
|
526
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
507
527
|
# Retrieve the original scale by scaling back the LoRA layers
|
508
528
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
509
529
|
|
@@ -706,7 +726,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
706
726
|
data type of the generated embeddings
|
707
727
|
|
708
728
|
Returns:
|
709
|
-
`torch.
|
729
|
+
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
710
730
|
"""
|
711
731
|
assert len(w.shape) == 1
|
712
732
|
w = w * 1000.0
|
@@ -753,13 +773,14 @@ class AltDiffusionImg2ImgPipeline(
|
|
753
773
|
strength: float = 0.8,
|
754
774
|
num_inference_steps: Optional[int] = 50,
|
755
775
|
timesteps: List[int] = None,
|
776
|
+
sigmas: List[float] = None,
|
756
777
|
guidance_scale: Optional[float] = 7.5,
|
757
778
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
758
779
|
num_images_per_prompt: Optional[int] = 1,
|
759
780
|
eta: Optional[float] = 0.0,
|
760
781
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
761
|
-
prompt_embeds: Optional[torch.
|
762
|
-
negative_prompt_embeds: Optional[torch.
|
782
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
783
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
763
784
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
764
785
|
output_type: Optional[str] = "pil",
|
765
786
|
return_dict: bool = True,
|
@@ -775,7 +796,7 @@ class AltDiffusionImg2ImgPipeline(
|
|
775
796
|
Args:
|
776
797
|
prompt (`str` or `List[str]`, *optional*):
|
777
798
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
778
|
-
image (`torch.
|
799
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
779
800
|
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
780
801
|
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
781
802
|
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
@@ -808,10 +829,10 @@ class AltDiffusionImg2ImgPipeline(
|
|
808
829
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
809
830
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
810
831
|
generation deterministic.
|
811
|
-
prompt_embeds (`torch.
|
832
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
812
833
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
813
834
|
provided, text embeddings are generated from the `prompt` input argument.
|
814
|
-
negative_prompt_embeds (`torch.
|
835
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
815
836
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
816
837
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
817
838
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
@@ -919,7 +940,9 @@ class AltDiffusionImg2ImgPipeline(
|
|
919
940
|
image = self.image_processor.preprocess(image)
|
920
941
|
|
921
942
|
# 5. set timesteps
|
922
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
943
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
944
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
945
|
+
)
|
923
946
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
924
947
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
925
948
|
|
@@ -112,9 +112,9 @@ class RePaintPipeline(DiffusionPipeline):
|
|
112
112
|
The call function to the pipeline for generation.
|
113
113
|
|
114
114
|
Args:
|
115
|
-
image (`torch.
|
115
|
+
image (`torch.Tensor` or `PIL.Image.Image`):
|
116
116
|
The original image to inpaint on.
|
117
|
-
mask_image (`torch.
|
117
|
+
mask_image (`torch.Tensor` or `PIL.Image.Image`):
|
118
118
|
The mask_image where 0.0 define which part of the original image to inpaint.
|
119
119
|
num_inference_steps (`int`, *optional*, defaults to 1000):
|
120
120
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
@@ -133,8 +133,8 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
|
|
133
133
|
generator: Optional[torch.Generator] = None,
|
134
134
|
num_inference_steps: int = 100,
|
135
135
|
return_dict: bool = True,
|
136
|
-
output_type: str = "
|
137
|
-
callback: Optional[Callable[[int, int, torch.
|
136
|
+
output_type: str = "np",
|
137
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
138
138
|
callback_steps: int = 1,
|
139
139
|
) -> Union[AudioPipelineOutput, Tuple]:
|
140
140
|
if (callback_steps is None) or (
|
@@ -157,11 +157,11 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
|
|
157
157
|
expense of slower inference.
|
158
158
|
return_dict (`bool`, *optional*, defaults to `True`):
|
159
159
|
Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.
|
160
|
-
output_type (`str`, *optional*, defaults to `"
|
160
|
+
output_type (`str`, *optional*, defaults to `"np"`):
|
161
161
|
The output format of the generated audio.
|
162
162
|
callback (`Callable`, *optional*):
|
163
163
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
164
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
164
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
165
165
|
callback_steps (`int`, *optional*, defaults to 1):
|
166
166
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
167
167
|
every step.
|
@@ -249,16 +249,16 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
|
|
249
249
|
|
250
250
|
logger.info("Generated segment", i)
|
251
251
|
|
252
|
-
if output_type == "
|
252
|
+
if output_type == "np" and not is_onnx_available():
|
253
253
|
raise ValueError(
|
254
254
|
"Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'."
|
255
255
|
)
|
256
|
-
elif output_type == "
|
256
|
+
elif output_type == "np" and self.melgan is None:
|
257
257
|
raise ValueError(
|
258
258
|
"Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'."
|
259
259
|
)
|
260
260
|
|
261
|
-
if output_type == "
|
261
|
+
if output_type == "np":
|
262
262
|
output = self.melgan(input_features=full_pred_mel.astype(np.float32))
|
263
263
|
else:
|
264
264
|
output = full_pred_mel
|
@@ -23,7 +23,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
23
23
|
|
24
24
|
from ....configuration_utils import FrozenDict
|
25
25
|
from ....image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ....loaders import
|
26
|
+
from ....loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
27
27
|
from ....models import AutoencoderKL, UNet2DConditionModel
|
28
28
|
from ....models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ....schedulers import DDIMScheduler
|
@@ -136,7 +136,7 @@ def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
|
|
136
136
|
return noise
|
137
137
|
|
138
138
|
|
139
|
-
class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin,
|
139
|
+
class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin):
|
140
140
|
r"""
|
141
141
|
Pipeline for text-guided image to image generation using Stable Diffusion.
|
142
142
|
|
@@ -145,8 +145,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
145
145
|
|
146
146
|
The pipeline also inherits the following loading methods:
|
147
147
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
148
|
-
- [`~loaders.
|
149
|
-
- [`~loaders.
|
148
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
149
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
150
150
|
|
151
151
|
Args:
|
152
152
|
vae ([`AutoencoderKL`]):
|
@@ -255,8 +255,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
255
255
|
num_images_per_prompt,
|
256
256
|
do_classifier_free_guidance,
|
257
257
|
negative_prompt=None,
|
258
|
-
prompt_embeds: Optional[torch.
|
259
|
-
negative_prompt_embeds: Optional[torch.
|
258
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
259
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
260
260
|
lora_scale: Optional[float] = None,
|
261
261
|
**kwargs,
|
262
262
|
):
|
@@ -288,8 +288,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
288
288
|
num_images_per_prompt,
|
289
289
|
do_classifier_free_guidance,
|
290
290
|
negative_prompt=None,
|
291
|
-
prompt_embeds: Optional[torch.
|
292
|
-
negative_prompt_embeds: Optional[torch.
|
291
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
292
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
293
293
|
lora_scale: Optional[float] = None,
|
294
294
|
clip_skip: Optional[int] = None,
|
295
295
|
):
|
@@ -309,10 +309,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
309
309
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
310
310
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
311
311
|
less than `1`).
|
312
|
-
prompt_embeds (`torch.
|
312
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
313
313
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
314
314
|
provided, text embeddings will be generated from `prompt` input argument.
|
315
|
-
negative_prompt_embeds (`torch.
|
315
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
316
316
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
317
317
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
318
318
|
argument.
|
@@ -324,7 +324,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
324
324
|
"""
|
325
325
|
# set lora scale so that monkey patched LoRA
|
326
326
|
# function of text encoder can correctly access it
|
327
|
-
if lora_scale is not None and isinstance(self,
|
327
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
328
328
|
self._lora_scale = lora_scale
|
329
329
|
|
330
330
|
# dynamically adjust the LoRA scale
|
@@ -456,9 +456,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
456
456
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
457
457
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
458
458
|
|
459
|
-
if
|
460
|
-
|
461
|
-
|
459
|
+
if self.text_encoder is not None:
|
460
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
461
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
462
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
462
463
|
|
463
464
|
return prompt_embeds, negative_prompt_embeds
|
464
465
|
|
@@ -638,10 +639,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
638
639
|
num_images_per_prompt: Optional[int] = 1,
|
639
640
|
eta: Optional[float] = 0.1,
|
640
641
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
641
|
-
prompt_embeds: Optional[torch.
|
642
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
642
643
|
output_type: Optional[str] = "pil",
|
643
644
|
return_dict: bool = True,
|
644
|
-
callback: Optional[Callable[[int, int, torch.
|
645
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
645
646
|
callback_steps: int = 1,
|
646
647
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
647
648
|
clip_skip: Optional[int] = None,
|
@@ -652,7 +653,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
652
653
|
Args:
|
653
654
|
prompt (`str` or `List[str]`):
|
654
655
|
The prompt or prompts to guide the image generation.
|
655
|
-
image (`torch.
|
656
|
+
image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
656
657
|
`Image` or tensor representing an image batch to be used as the starting point. Can also accept image
|
657
658
|
latents as `image`, but if passing latents directly it is not encoded again.
|
658
659
|
strength (`float`, *optional*, defaults to 0.8):
|
@@ -678,10 +679,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
678
679
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
679
680
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
680
681
|
generation deterministic.
|
681
|
-
prompt_embeds (`torch.
|
682
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
682
683
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
683
684
|
provided, text embeddings are generated from the `prompt` input argument.
|
684
|
-
negative_prompt_embeds (`torch.
|
685
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
685
686
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
686
687
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
687
688
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
@@ -691,7 +692,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
691
692
|
plain tuple.
|
692
693
|
callback (`Callable`, *optional*):
|
693
694
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
694
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
695
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
695
696
|
callback_steps (`int`, *optional*, defaults to 1):
|
696
697
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
697
698
|
every step.
|