diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -11,175 +11,25 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- from dataclasses import dataclass
15
- from typing import Any, Dict, List, Optional, Tuple, Union
16
-
17
- import torch
18
- from torch import nn
19
- from torch.nn import functional as F
20
-
21
- from ..configuration_utils import ConfigMixin, register_to_config
22
- from ..loaders import FromOriginalControlNetMixin
23
- from ..utils import BaseOutput, logging
24
- from .attention_processor import (
25
- ADDED_KV_ATTENTION_PROCESSORS,
26
- CROSS_ATTENTION_PROCESSORS,
27
- AttentionProcessor,
28
- AttnAddedKVProcessor,
29
- AttnProcessor,
30
- )
31
- from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
32
- from .modeling_utils import ModelMixin
33
- from .unets.unet_2d_blocks import (
34
- CrossAttnDownBlock2D,
35
- DownBlock2D,
36
- UNetMidBlock2D,
37
- UNetMidBlock2DCrossAttn,
38
- get_down_block,
14
+ from typing import Optional, Tuple, Union
15
+
16
+ from ..utils import deprecate
17
+ from .controlnets.controlnet import ( # noqa
18
+ ControlNetConditioningEmbedding,
19
+ ControlNetModel,
20
+ ControlNetOutput,
21
+ zero_module,
39
22
  )
40
- from .unets.unet_2d_condition import UNet2DConditionModel
41
-
42
-
43
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
23
 
45
24
 
46
- @dataclass
47
- class ControlNetOutput(BaseOutput):
48
- """
49
- The output of [`ControlNetModel`].
25
+ class ControlNetOutput(ControlNetOutput):
26
+ def __init__(self, *args, **kwargs):
27
+ deprecation_message = "Importing `ControlNetOutput` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetOutput`, instead."
28
+ deprecate("diffusers.models.controlnet.ControlNetOutput", "0.34", deprecation_message)
29
+ super().__init__(*args, **kwargs)
50
30
 
51
- Args:
52
- down_block_res_samples (`tuple[torch.Tensor]`):
53
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
54
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
55
- used to condition the original UNet's downsampling activations.
56
- mid_down_block_re_sample (`torch.Tensor`):
57
- The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
58
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
59
- Output can be used to condition the original UNet's middle block activation.
60
- """
61
-
62
- down_block_res_samples: Tuple[torch.Tensor]
63
- mid_block_res_sample: torch.Tensor
64
-
65
-
66
- class ControlNetConditioningEmbedding(nn.Module):
67
- """
68
- Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
69
- [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
70
- training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
71
- convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
72
- (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
73
- model) to encode image-space conditions ... into feature maps ..."
74
- """
75
31
 
76
- def __init__(
77
- self,
78
- conditioning_embedding_channels: int,
79
- conditioning_channels: int = 3,
80
- block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
81
- ):
82
- super().__init__()
83
-
84
- self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
85
-
86
- self.blocks = nn.ModuleList([])
87
-
88
- for i in range(len(block_out_channels) - 1):
89
- channel_in = block_out_channels[i]
90
- channel_out = block_out_channels[i + 1]
91
- self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
92
- self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
93
-
94
- self.conv_out = zero_module(
95
- nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
96
- )
97
-
98
- def forward(self, conditioning):
99
- embedding = self.conv_in(conditioning)
100
- embedding = F.silu(embedding)
101
-
102
- for block in self.blocks:
103
- embedding = block(embedding)
104
- embedding = F.silu(embedding)
105
-
106
- embedding = self.conv_out(embedding)
107
-
108
- return embedding
109
-
110
-
111
- class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
112
- """
113
- A ControlNet model.
114
-
115
- Args:
116
- in_channels (`int`, defaults to 4):
117
- The number of channels in the input sample.
118
- flip_sin_to_cos (`bool`, defaults to `True`):
119
- Whether to flip the sin to cos in the time embedding.
120
- freq_shift (`int`, defaults to 0):
121
- The frequency shift to apply to the time embedding.
122
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
123
- The tuple of downsample blocks to use.
124
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
125
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
126
- The tuple of output channels for each block.
127
- layers_per_block (`int`, defaults to 2):
128
- The number of layers per block.
129
- downsample_padding (`int`, defaults to 1):
130
- The padding to use for the downsampling convolution.
131
- mid_block_scale_factor (`float`, defaults to 1):
132
- The scale factor to use for the mid block.
133
- act_fn (`str`, defaults to "silu"):
134
- The activation function to use.
135
- norm_num_groups (`int`, *optional*, defaults to 32):
136
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
137
- in post-processing.
138
- norm_eps (`float`, defaults to 1e-5):
139
- The epsilon to use for the normalization.
140
- cross_attention_dim (`int`, defaults to 1280):
141
- The dimension of the cross attention features.
142
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
143
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
144
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
145
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
146
- encoder_hid_dim (`int`, *optional*, defaults to None):
147
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
148
- dimension to `cross_attention_dim`.
149
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
150
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
151
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
152
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
153
- The dimension of the attention heads.
154
- use_linear_projection (`bool`, defaults to `False`):
155
- class_embed_type (`str`, *optional*, defaults to `None`):
156
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
157
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
158
- addition_embed_type (`str`, *optional*, defaults to `None`):
159
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
160
- "text". "text" will use the `TextTimeEmbedding` layer.
161
- num_class_embeds (`int`, *optional*, defaults to 0):
162
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
163
- class conditioning with `class_embed_type` equal to `None`.
164
- upcast_attention (`bool`, defaults to `False`):
165
- resnet_time_scale_shift (`str`, defaults to `"default"`):
166
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
167
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
168
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
169
- `class_embed_type="projection"`.
170
- controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
171
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
172
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
173
- The tuple of output channel for each block in the `conditioning_embedding` layer.
174
- global_pool_conditions (`bool`, defaults to `False`):
175
- TODO(Patrick) - unused parameter.
176
- addition_embed_type_num_heads (`int`, defaults to 64):
177
- The number of heads to use for the `TextTimeEmbedding` layer.
178
- """
179
-
180
- _supports_gradient_checkpointing = True
181
-
182
- @register_to_config
32
+ class ControlNetModel(ControlNetModel):
183
33
  def __init__(
184
34
  self,
185
35
  in_channels: int = 4,
@@ -220,649 +70,46 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
220
70
  global_pool_conditions: bool = False,
221
71
  addition_embed_type_num_heads: int = 64,
222
72
  ):
223
- super().__init__()
224
-
225
- # If `num_attention_heads` is not defined (which is the case for most models)
226
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
227
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
228
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
229
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
230
- # which is why we correct for the naming here.
231
- num_attention_heads = num_attention_heads or attention_head_dim
232
-
233
- # Check inputs
234
- if len(block_out_channels) != len(down_block_types):
235
- raise ValueError(
236
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
237
- )
238
-
239
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
240
- raise ValueError(
241
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
242
- )
243
-
244
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
245
- raise ValueError(
246
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
247
- )
248
-
249
- if isinstance(transformer_layers_per_block, int):
250
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
251
-
252
- # input
253
- conv_in_kernel = 3
254
- conv_in_padding = (conv_in_kernel - 1) // 2
255
- self.conv_in = nn.Conv2d(
256
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
257
- )
258
-
259
- # time
260
- time_embed_dim = block_out_channels[0] * 4
261
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
262
- timestep_input_dim = block_out_channels[0]
263
- self.time_embedding = TimestepEmbedding(
264
- timestep_input_dim,
265
- time_embed_dim,
266
- act_fn=act_fn,
267
- )
268
-
269
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
270
- encoder_hid_dim_type = "text_proj"
271
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
272
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
273
-
274
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
275
- raise ValueError(
276
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
277
- )
278
-
279
- if encoder_hid_dim_type == "text_proj":
280
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
281
- elif encoder_hid_dim_type == "text_image_proj":
282
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
283
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
284
- # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
285
- self.encoder_hid_proj = TextImageProjection(
286
- text_embed_dim=encoder_hid_dim,
287
- image_embed_dim=cross_attention_dim,
288
- cross_attention_dim=cross_attention_dim,
289
- )
290
-
291
- elif encoder_hid_dim_type is not None:
292
- raise ValueError(
293
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
294
- )
295
- else:
296
- self.encoder_hid_proj = None
297
-
298
- # class embedding
299
- if class_embed_type is None and num_class_embeds is not None:
300
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
301
- elif class_embed_type == "timestep":
302
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
303
- elif class_embed_type == "identity":
304
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
305
- elif class_embed_type == "projection":
306
- if projection_class_embeddings_input_dim is None:
307
- raise ValueError(
308
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
309
- )
310
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
311
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
312
- # 2. it projects from an arbitrary input dimension.
313
- #
314
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
315
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
316
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
317
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
318
- else:
319
- self.class_embedding = None
320
-
321
- if addition_embed_type == "text":
322
- if encoder_hid_dim is not None:
323
- text_time_embedding_from_dim = encoder_hid_dim
324
- else:
325
- text_time_embedding_from_dim = cross_attention_dim
326
-
327
- self.add_embedding = TextTimeEmbedding(
328
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
329
- )
330
- elif addition_embed_type == "text_image":
331
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
332
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
333
- # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
334
- self.add_embedding = TextImageTimeEmbedding(
335
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
336
- )
337
- elif addition_embed_type == "text_time":
338
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
339
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
340
-
341
- elif addition_embed_type is not None:
342
- raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
343
-
344
- # control net conditioning embedding
345
- self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
346
- conditioning_embedding_channels=block_out_channels[0],
347
- block_out_channels=conditioning_embedding_out_channels,
73
+ deprecation_message = "Importing `ControlNetModel` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetModel`, instead."
74
+ deprecate("diffusers.models.controlnet.ControlNetModel", "0.34", deprecation_message)
75
+ super().__init__(
76
+ in_channels=in_channels,
348
77
  conditioning_channels=conditioning_channels,
349
- )
350
-
351
- self.down_blocks = nn.ModuleList([])
352
- self.controlnet_down_blocks = nn.ModuleList([])
353
-
354
- if isinstance(only_cross_attention, bool):
355
- only_cross_attention = [only_cross_attention] * len(down_block_types)
356
-
357
- if isinstance(attention_head_dim, int):
358
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
359
-
360
- if isinstance(num_attention_heads, int):
361
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
362
-
363
- # down
364
- output_channel = block_out_channels[0]
365
-
366
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
367
- controlnet_block = zero_module(controlnet_block)
368
- self.controlnet_down_blocks.append(controlnet_block)
369
-
370
- for i, down_block_type in enumerate(down_block_types):
371
- input_channel = output_channel
372
- output_channel = block_out_channels[i]
373
- is_final_block = i == len(block_out_channels) - 1
374
-
375
- down_block = get_down_block(
376
- down_block_type,
377
- num_layers=layers_per_block,
378
- transformer_layers_per_block=transformer_layers_per_block[i],
379
- in_channels=input_channel,
380
- out_channels=output_channel,
381
- temb_channels=time_embed_dim,
382
- add_downsample=not is_final_block,
383
- resnet_eps=norm_eps,
384
- resnet_act_fn=act_fn,
385
- resnet_groups=norm_num_groups,
386
- cross_attention_dim=cross_attention_dim,
387
- num_attention_heads=num_attention_heads[i],
388
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
389
- downsample_padding=downsample_padding,
390
- use_linear_projection=use_linear_projection,
391
- only_cross_attention=only_cross_attention[i],
392
- upcast_attention=upcast_attention,
393
- resnet_time_scale_shift=resnet_time_scale_shift,
394
- )
395
- self.down_blocks.append(down_block)
396
-
397
- for _ in range(layers_per_block):
398
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
399
- controlnet_block = zero_module(controlnet_block)
400
- self.controlnet_down_blocks.append(controlnet_block)
401
-
402
- if not is_final_block:
403
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
404
- controlnet_block = zero_module(controlnet_block)
405
- self.controlnet_down_blocks.append(controlnet_block)
406
-
407
- # mid
408
- mid_block_channel = block_out_channels[-1]
409
-
410
- controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
411
- controlnet_block = zero_module(controlnet_block)
412
- self.controlnet_mid_block = controlnet_block
413
-
414
- if mid_block_type == "UNetMidBlock2DCrossAttn":
415
- self.mid_block = UNetMidBlock2DCrossAttn(
416
- transformer_layers_per_block=transformer_layers_per_block[-1],
417
- in_channels=mid_block_channel,
418
- temb_channels=time_embed_dim,
419
- resnet_eps=norm_eps,
420
- resnet_act_fn=act_fn,
421
- output_scale_factor=mid_block_scale_factor,
422
- resnet_time_scale_shift=resnet_time_scale_shift,
423
- cross_attention_dim=cross_attention_dim,
424
- num_attention_heads=num_attention_heads[-1],
425
- resnet_groups=norm_num_groups,
426
- use_linear_projection=use_linear_projection,
427
- upcast_attention=upcast_attention,
428
- )
429
- elif mid_block_type == "UNetMidBlock2D":
430
- self.mid_block = UNetMidBlock2D(
431
- in_channels=block_out_channels[-1],
432
- temb_channels=time_embed_dim,
433
- num_layers=0,
434
- resnet_eps=norm_eps,
435
- resnet_act_fn=act_fn,
436
- output_scale_factor=mid_block_scale_factor,
437
- resnet_groups=norm_num_groups,
438
- resnet_time_scale_shift=resnet_time_scale_shift,
439
- add_attention=False,
440
- )
441
- else:
442
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
443
-
444
- @classmethod
445
- def from_unet(
446
- cls,
447
- unet: UNet2DConditionModel,
448
- controlnet_conditioning_channel_order: str = "rgb",
449
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
450
- load_weights_from_unet: bool = True,
451
- conditioning_channels: int = 3,
452
- ):
453
- r"""
454
- Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
455
-
456
- Parameters:
457
- unet (`UNet2DConditionModel`):
458
- The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
459
- where applicable.
460
- """
461
- transformer_layers_per_block = (
462
- unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
463
- )
464
- encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
465
- encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
466
- addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
467
- addition_time_embed_dim = (
468
- unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
469
- )
470
-
471
- controlnet = cls(
78
+ flip_sin_to_cos=flip_sin_to_cos,
79
+ freq_shift=freq_shift,
80
+ down_block_types=down_block_types,
81
+ mid_block_type=mid_block_type,
82
+ only_cross_attention=only_cross_attention,
83
+ block_out_channels=block_out_channels,
84
+ layers_per_block=layers_per_block,
85
+ downsample_padding=downsample_padding,
86
+ mid_block_scale_factor=mid_block_scale_factor,
87
+ act_fn=act_fn,
88
+ norm_num_groups=norm_num_groups,
89
+ norm_eps=norm_eps,
90
+ cross_attention_dim=cross_attention_dim,
91
+ transformer_layers_per_block=transformer_layers_per_block,
472
92
  encoder_hid_dim=encoder_hid_dim,
473
93
  encoder_hid_dim_type=encoder_hid_dim_type,
94
+ attention_head_dim=attention_head_dim,
95
+ num_attention_heads=num_attention_heads,
96
+ use_linear_projection=use_linear_projection,
97
+ class_embed_type=class_embed_type,
474
98
  addition_embed_type=addition_embed_type,
475
99
  addition_time_embed_dim=addition_time_embed_dim,
476
- transformer_layers_per_block=transformer_layers_per_block,
477
- in_channels=unet.config.in_channels,
478
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
479
- freq_shift=unet.config.freq_shift,
480
- down_block_types=unet.config.down_block_types,
481
- only_cross_attention=unet.config.only_cross_attention,
482
- block_out_channels=unet.config.block_out_channels,
483
- layers_per_block=unet.config.layers_per_block,
484
- downsample_padding=unet.config.downsample_padding,
485
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
486
- act_fn=unet.config.act_fn,
487
- norm_num_groups=unet.config.norm_num_groups,
488
- norm_eps=unet.config.norm_eps,
489
- cross_attention_dim=unet.config.cross_attention_dim,
490
- attention_head_dim=unet.config.attention_head_dim,
491
- num_attention_heads=unet.config.num_attention_heads,
492
- use_linear_projection=unet.config.use_linear_projection,
493
- class_embed_type=unet.config.class_embed_type,
494
- num_class_embeds=unet.config.num_class_embeds,
495
- upcast_attention=unet.config.upcast_attention,
496
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
497
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
498
- mid_block_type=unet.config.mid_block_type,
100
+ num_class_embeds=num_class_embeds,
101
+ upcast_attention=upcast_attention,
102
+ resnet_time_scale_shift=resnet_time_scale_shift,
103
+ projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
499
104
  controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
500
105
  conditioning_embedding_out_channels=conditioning_embedding_out_channels,
501
- conditioning_channels=conditioning_channels,
502
- )
503
-
504
- if load_weights_from_unet:
505
- controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
506
- controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
507
- controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
508
-
509
- if controlnet.class_embedding:
510
- controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
511
-
512
- controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
513
- controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
514
-
515
- return controlnet
516
-
517
- @property
518
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
519
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
520
- r"""
521
- Returns:
522
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
523
- indexed by its weight name.
524
- """
525
- # set recursively
526
- processors = {}
527
-
528
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
529
- if hasattr(module, "get_processor"):
530
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
531
-
532
- for sub_name, child in module.named_children():
533
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
534
-
535
- return processors
536
-
537
- for name, module in self.named_children():
538
- fn_recursive_add_processors(name, module, processors)
539
-
540
- return processors
541
-
542
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
543
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
544
- r"""
545
- Sets the attention processor to use to compute attention.
546
-
547
- Parameters:
548
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
549
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
550
- for **all** `Attention` layers.
551
-
552
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
553
- processor. This is strongly recommended when setting trainable attention processors.
554
-
555
- """
556
- count = len(self.attn_processors.keys())
557
-
558
- if isinstance(processor, dict) and len(processor) != count:
559
- raise ValueError(
560
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
561
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
562
- )
563
-
564
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
565
- if hasattr(module, "set_processor"):
566
- if not isinstance(processor, dict):
567
- module.set_processor(processor)
568
- else:
569
- module.set_processor(processor.pop(f"{name}.processor"))
570
-
571
- for sub_name, child in module.named_children():
572
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
573
-
574
- for name, module in self.named_children():
575
- fn_recursive_attn_processor(name, module, processor)
576
-
577
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
578
- def set_default_attn_processor(self):
579
- """
580
- Disables custom attention processors and sets the default attention implementation.
581
- """
582
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
583
- processor = AttnAddedKVProcessor()
584
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
585
- processor = AttnProcessor()
586
- else:
587
- raise ValueError(
588
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
589
- )
590
-
591
- self.set_attn_processor(processor)
592
-
593
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
594
- def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
595
- r"""
596
- Enable sliced attention computation.
597
-
598
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
599
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
600
-
601
- Args:
602
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
603
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
604
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
605
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
606
- must be a multiple of `slice_size`.
607
- """
608
- sliceable_head_dims = []
609
-
610
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
611
- if hasattr(module, "set_attention_slice"):
612
- sliceable_head_dims.append(module.sliceable_head_dim)
613
-
614
- for child in module.children():
615
- fn_recursive_retrieve_sliceable_dims(child)
616
-
617
- # retrieve number of attention layers
618
- for module in self.children():
619
- fn_recursive_retrieve_sliceable_dims(module)
620
-
621
- num_sliceable_layers = len(sliceable_head_dims)
622
-
623
- if slice_size == "auto":
624
- # half the attention head size is usually a good trade-off between
625
- # speed and memory
626
- slice_size = [dim // 2 for dim in sliceable_head_dims]
627
- elif slice_size == "max":
628
- # make smallest slice possible
629
- slice_size = num_sliceable_layers * [1]
630
-
631
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
632
-
633
- if len(slice_size) != len(sliceable_head_dims):
634
- raise ValueError(
635
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
636
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
637
- )
638
-
639
- for i in range(len(slice_size)):
640
- size = slice_size[i]
641
- dim = sliceable_head_dims[i]
642
- if size is not None and size > dim:
643
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
644
-
645
- # Recursively walk through all the children.
646
- # Any children which exposes the set_attention_slice method
647
- # gets the message
648
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
649
- if hasattr(module, "set_attention_slice"):
650
- module.set_attention_slice(slice_size.pop())
651
-
652
- for child in module.children():
653
- fn_recursive_set_attention_slice(child, slice_size)
654
-
655
- reversed_slice_size = list(reversed(slice_size))
656
- for module in self.children():
657
- fn_recursive_set_attention_slice(module, reversed_slice_size)
658
-
659
- def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
660
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
661
- module.gradient_checkpointing = value
662
-
663
- def forward(
664
- self,
665
- sample: torch.FloatTensor,
666
- timestep: Union[torch.Tensor, float, int],
667
- encoder_hidden_states: torch.Tensor,
668
- controlnet_cond: torch.FloatTensor,
669
- conditioning_scale: float = 1.0,
670
- class_labels: Optional[torch.Tensor] = None,
671
- timestep_cond: Optional[torch.Tensor] = None,
672
- attention_mask: Optional[torch.Tensor] = None,
673
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
674
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
675
- guess_mode: bool = False,
676
- return_dict: bool = True,
677
- ) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
678
- """
679
- The [`ControlNetModel`] forward method.
680
-
681
- Args:
682
- sample (`torch.FloatTensor`):
683
- The noisy input tensor.
684
- timestep (`Union[torch.Tensor, float, int]`):
685
- The number of timesteps to denoise an input.
686
- encoder_hidden_states (`torch.Tensor`):
687
- The encoder hidden states.
688
- controlnet_cond (`torch.FloatTensor`):
689
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
690
- conditioning_scale (`float`, defaults to `1.0`):
691
- The scale factor for ControlNet outputs.
692
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
693
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
694
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
695
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
696
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
697
- embeddings.
698
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
699
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
700
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
701
- negative values to the attention scores corresponding to "discard" tokens.
702
- added_cond_kwargs (`dict`):
703
- Additional conditions for the Stable Diffusion XL UNet.
704
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
705
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
706
- guess_mode (`bool`, defaults to `False`):
707
- In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
708
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
709
- return_dict (`bool`, defaults to `True`):
710
- Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
711
-
712
- Returns:
713
- [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
714
- If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
715
- returned where the first element is the sample tensor.
716
- """
717
- # check channel order
718
- channel_order = self.config.controlnet_conditioning_channel_order
719
-
720
- if channel_order == "rgb":
721
- # in rgb order by default
722
- ...
723
- elif channel_order == "bgr":
724
- controlnet_cond = torch.flip(controlnet_cond, dims=[1])
725
- else:
726
- raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
727
-
728
- # prepare attention_mask
729
- if attention_mask is not None:
730
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
731
- attention_mask = attention_mask.unsqueeze(1)
732
-
733
- # 1. time
734
- timesteps = timestep
735
- if not torch.is_tensor(timesteps):
736
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
737
- # This would be a good case for the `match` statement (Python 3.10+)
738
- is_mps = sample.device.type == "mps"
739
- if isinstance(timestep, float):
740
- dtype = torch.float32 if is_mps else torch.float64
741
- else:
742
- dtype = torch.int32 if is_mps else torch.int64
743
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
744
- elif len(timesteps.shape) == 0:
745
- timesteps = timesteps[None].to(sample.device)
746
-
747
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
748
- timesteps = timesteps.expand(sample.shape[0])
749
-
750
- t_emb = self.time_proj(timesteps)
751
-
752
- # timesteps does not contain any weights and will always return f32 tensors
753
- # but time_embedding might actually be running in fp16. so we need to cast here.
754
- # there might be better ways to encapsulate this.
755
- t_emb = t_emb.to(dtype=sample.dtype)
756
-
757
- emb = self.time_embedding(t_emb, timestep_cond)
758
- aug_emb = None
759
-
760
- if self.class_embedding is not None:
761
- if class_labels is None:
762
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
763
-
764
- if self.config.class_embed_type == "timestep":
765
- class_labels = self.time_proj(class_labels)
766
-
767
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
768
- emb = emb + class_emb
769
-
770
- if self.config.addition_embed_type is not None:
771
- if self.config.addition_embed_type == "text":
772
- aug_emb = self.add_embedding(encoder_hidden_states)
773
-
774
- elif self.config.addition_embed_type == "text_time":
775
- if "text_embeds" not in added_cond_kwargs:
776
- raise ValueError(
777
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
778
- )
779
- text_embeds = added_cond_kwargs.get("text_embeds")
780
- if "time_ids" not in added_cond_kwargs:
781
- raise ValueError(
782
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
783
- )
784
- time_ids = added_cond_kwargs.get("time_ids")
785
- time_embeds = self.add_time_proj(time_ids.flatten())
786
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
787
-
788
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
789
- add_embeds = add_embeds.to(emb.dtype)
790
- aug_emb = self.add_embedding(add_embeds)
791
-
792
- emb = emb + aug_emb if aug_emb is not None else emb
793
-
794
- # 2. pre-process
795
- sample = self.conv_in(sample)
796
-
797
- controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
798
- sample = sample + controlnet_cond
799
-
800
- # 3. down
801
- down_block_res_samples = (sample,)
802
- for downsample_block in self.down_blocks:
803
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
804
- sample, res_samples = downsample_block(
805
- hidden_states=sample,
806
- temb=emb,
807
- encoder_hidden_states=encoder_hidden_states,
808
- attention_mask=attention_mask,
809
- cross_attention_kwargs=cross_attention_kwargs,
810
- )
811
- else:
812
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
813
-
814
- down_block_res_samples += res_samples
815
-
816
- # 4. mid
817
- if self.mid_block is not None:
818
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
819
- sample = self.mid_block(
820
- sample,
821
- emb,
822
- encoder_hidden_states=encoder_hidden_states,
823
- attention_mask=attention_mask,
824
- cross_attention_kwargs=cross_attention_kwargs,
825
- )
826
- else:
827
- sample = self.mid_block(sample, emb)
828
-
829
- # 5. Control net blocks
830
-
831
- controlnet_down_block_res_samples = ()
832
-
833
- for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
834
- down_block_res_sample = controlnet_block(down_block_res_sample)
835
- controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
836
-
837
- down_block_res_samples = controlnet_down_block_res_samples
838
-
839
- mid_block_res_sample = self.controlnet_mid_block(sample)
840
-
841
- # 6. scaling
842
- if guess_mode and not self.config.global_pool_conditions:
843
- scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
844
- scales = scales * conditioning_scale
845
- down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
846
- mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
847
- else:
848
- down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
849
- mid_block_res_sample = mid_block_res_sample * conditioning_scale
850
-
851
- if self.config.global_pool_conditions:
852
- down_block_res_samples = [
853
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
854
- ]
855
- mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
856
-
857
- if not return_dict:
858
- return (down_block_res_samples, mid_block_res_sample)
859
-
860
- return ControlNetOutput(
861
- down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
106
+ global_pool_conditions=global_pool_conditions,
107
+ addition_embed_type_num_heads=addition_embed_type_num_heads,
862
108
  )
863
109
 
864
110
 
865
- def zero_module(module):
866
- for p in module.parameters():
867
- nn.init.zeros_(p)
868
- return module
111
+ class ControlNetConditioningEmbedding(ControlNetConditioningEmbedding):
112
+ def __init__(self, *args, **kwargs):
113
+ deprecation_message = "Importing `ControlNetConditioningEmbedding` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding`, instead."
114
+ deprecate("diffusers.models.controlnet.ControlNetConditioningEmbedding", "0.34", deprecation_message)
115
+ super().__init__(*args, **kwargs)