diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,748 @@
1
+ # Copyright 2024 Genmo and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...loaders import Mochi1LoraLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import MochiTransformer3DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ is_torch_xla_available,
29
+ logging,
30
+ replace_example_docstring,
31
+ )
32
+ from ...utils.torch_utils import randn_tensor
33
+ from ...video_processor import VideoProcessor
34
+ from ..pipeline_utils import DiffusionPipeline
35
+ from .pipeline_output import MochiPipelineOutput
36
+
37
+
38
+ if is_torch_xla_available():
39
+ import torch_xla.core.xla_model as xm
40
+
41
+ XLA_AVAILABLE = True
42
+ else:
43
+ XLA_AVAILABLE = False
44
+
45
+
46
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
47
+
48
+ EXAMPLE_DOC_STRING = """
49
+ Examples:
50
+ ```py
51
+ >>> import torch
52
+ >>> from diffusers import MochiPipeline
53
+ >>> from diffusers.utils import export_to_video
54
+
55
+ >>> pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", torch_dtype=torch.bfloat16)
56
+ >>> pipe.enable_model_cpu_offload()
57
+ >>> pipe.enable_vae_tiling()
58
+ >>> prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
59
+ >>> frames = pipe(prompt, num_inference_steps=28, guidance_scale=3.5).frames[0]
60
+ >>> export_to_video(frames, "mochi.mp4")
61
+ ```
62
+ """
63
+
64
+
65
+ def calculate_shift(
66
+ image_seq_len,
67
+ base_seq_len: int = 256,
68
+ max_seq_len: int = 4096,
69
+ base_shift: float = 0.5,
70
+ max_shift: float = 1.16,
71
+ ):
72
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
73
+ b = base_shift - m * base_seq_len
74
+ mu = image_seq_len * m + b
75
+ return mu
76
+
77
+
78
+ # from: https://github.com/genmoai/models/blob/075b6e36db58f1242921deff83a1066887b9c9e1/src/mochi_preview/infer.py#L77
79
+ def linear_quadratic_schedule(num_steps, threshold_noise, linear_steps=None):
80
+ if linear_steps is None:
81
+ linear_steps = num_steps // 2
82
+ linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
83
+ threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
84
+ quadratic_steps = num_steps - linear_steps
85
+ quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
86
+ linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
87
+ const = quadratic_coef * (linear_steps**2)
88
+ quadratic_sigma_schedule = [
89
+ quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
90
+ ]
91
+ sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule
92
+ sigma_schedule = [1.0 - x for x in sigma_schedule]
93
+ return sigma_schedule
94
+
95
+
96
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
97
+ def retrieve_timesteps(
98
+ scheduler,
99
+ num_inference_steps: Optional[int] = None,
100
+ device: Optional[Union[str, torch.device]] = None,
101
+ timesteps: Optional[List[int]] = None,
102
+ sigmas: Optional[List[float]] = None,
103
+ **kwargs,
104
+ ):
105
+ r"""
106
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
107
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
108
+
109
+ Args:
110
+ scheduler (`SchedulerMixin`):
111
+ The scheduler to get timesteps from.
112
+ num_inference_steps (`int`):
113
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
114
+ must be `None`.
115
+ device (`str` or `torch.device`, *optional*):
116
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
117
+ timesteps (`List[int]`, *optional*):
118
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
119
+ `num_inference_steps` and `sigmas` must be `None`.
120
+ sigmas (`List[float]`, *optional*):
121
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
122
+ `num_inference_steps` and `timesteps` must be `None`.
123
+
124
+ Returns:
125
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
126
+ second element is the number of inference steps.
127
+ """
128
+ if timesteps is not None and sigmas is not None:
129
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
130
+ if timesteps is not None:
131
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
132
+ if not accepts_timesteps:
133
+ raise ValueError(
134
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
135
+ f" timestep schedules. Please check whether you are using the correct scheduler."
136
+ )
137
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
138
+ timesteps = scheduler.timesteps
139
+ num_inference_steps = len(timesteps)
140
+ elif sigmas is not None:
141
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
142
+ if not accept_sigmas:
143
+ raise ValueError(
144
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
145
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
146
+ )
147
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
148
+ timesteps = scheduler.timesteps
149
+ num_inference_steps = len(timesteps)
150
+ else:
151
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
152
+ timesteps = scheduler.timesteps
153
+ return timesteps, num_inference_steps
154
+
155
+
156
+ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
157
+ r"""
158
+ The mochi pipeline for text-to-video generation.
159
+
160
+ Reference: https://github.com/genmoai/models
161
+
162
+ Args:
163
+ transformer ([`MochiTransformer3DModel`]):
164
+ Conditional Transformer architecture to denoise the encoded video latents.
165
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
166
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
167
+ vae ([`AutoencoderKL`]):
168
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
169
+ text_encoder ([`T5EncoderModel`]):
170
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
171
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
172
+ tokenizer (`CLIPTokenizer`):
173
+ Tokenizer of class
174
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
175
+ tokenizer (`T5TokenizerFast`):
176
+ Second Tokenizer of class
177
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
178
+ """
179
+
180
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
181
+ _optional_components = []
182
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
183
+
184
+ def __init__(
185
+ self,
186
+ scheduler: FlowMatchEulerDiscreteScheduler,
187
+ vae: AutoencoderKL,
188
+ text_encoder: T5EncoderModel,
189
+ tokenizer: T5TokenizerFast,
190
+ transformer: MochiTransformer3DModel,
191
+ force_zeros_for_empty_prompt: bool = False,
192
+ ):
193
+ super().__init__()
194
+
195
+ self.register_modules(
196
+ vae=vae,
197
+ text_encoder=text_encoder,
198
+ tokenizer=tokenizer,
199
+ transformer=transformer,
200
+ scheduler=scheduler,
201
+ )
202
+ # TODO: determine these scaling factors from model parameters
203
+ self.vae_spatial_scale_factor = 8
204
+ self.vae_temporal_scale_factor = 6
205
+ self.patch_size = 2
206
+
207
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_scale_factor)
208
+ self.tokenizer_max_length = (
209
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 256
210
+ )
211
+ self.default_height = 480
212
+ self.default_width = 848
213
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
214
+
215
+ def _get_t5_prompt_embeds(
216
+ self,
217
+ prompt: Union[str, List[str]] = None,
218
+ num_videos_per_prompt: int = 1,
219
+ max_sequence_length: int = 256,
220
+ device: Optional[torch.device] = None,
221
+ dtype: Optional[torch.dtype] = None,
222
+ ):
223
+ device = device or self._execution_device
224
+ dtype = dtype or self.text_encoder.dtype
225
+
226
+ prompt = [prompt] if isinstance(prompt, str) else prompt
227
+ batch_size = len(prompt)
228
+
229
+ text_inputs = self.tokenizer(
230
+ prompt,
231
+ padding="max_length",
232
+ max_length=max_sequence_length,
233
+ truncation=True,
234
+ add_special_tokens=True,
235
+ return_tensors="pt",
236
+ )
237
+
238
+ text_input_ids = text_inputs.input_ids
239
+ prompt_attention_mask = text_inputs.attention_mask
240
+ prompt_attention_mask = prompt_attention_mask.bool().to(device)
241
+
242
+ # The original Mochi implementation zeros out empty negative prompts
243
+ # but this can lead to overflow when placing the entire pipeline under the autocast context
244
+ # adding this here so that we can enable zeroing prompts if necessary
245
+ if self.config.force_zeros_for_empty_prompt and (prompt == "" or prompt[-1] == ""):
246
+ text_input_ids = torch.zeros_like(text_input_ids, device=device)
247
+ prompt_attention_mask = torch.zeros_like(prompt_attention_mask, dtype=torch.bool, device=device)
248
+
249
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
250
+
251
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
252
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
253
+ logger.warning(
254
+ "The following part of your input was truncated because `max_sequence_length` is set to "
255
+ f" {max_sequence_length} tokens: {removed_text}"
256
+ )
257
+
258
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
259
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
260
+
261
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
262
+ _, seq_len, _ = prompt_embeds.shape
263
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
264
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
265
+
266
+ prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
267
+ prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
268
+
269
+ return prompt_embeds, prompt_attention_mask
270
+
271
+ # Adapted from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
272
+ def encode_prompt(
273
+ self,
274
+ prompt: Union[str, List[str]],
275
+ negative_prompt: Optional[Union[str, List[str]]] = None,
276
+ do_classifier_free_guidance: bool = True,
277
+ num_videos_per_prompt: int = 1,
278
+ prompt_embeds: Optional[torch.Tensor] = None,
279
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
280
+ prompt_attention_mask: Optional[torch.Tensor] = None,
281
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
282
+ max_sequence_length: int = 256,
283
+ device: Optional[torch.device] = None,
284
+ dtype: Optional[torch.dtype] = None,
285
+ ):
286
+ r"""
287
+ Encodes the prompt into text encoder hidden states.
288
+
289
+ Args:
290
+ prompt (`str` or `List[str]`, *optional*):
291
+ prompt to be encoded
292
+ negative_prompt (`str` or `List[str]`, *optional*):
293
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
294
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
295
+ less than `1`).
296
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
297
+ Whether to use classifier free guidance or not.
298
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
299
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
300
+ prompt_embeds (`torch.Tensor`, *optional*):
301
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
302
+ provided, text embeddings will be generated from `prompt` input argument.
303
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
304
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
305
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
306
+ argument.
307
+ device: (`torch.device`, *optional*):
308
+ torch device
309
+ dtype: (`torch.dtype`, *optional*):
310
+ torch dtype
311
+ """
312
+ device = device or self._execution_device
313
+
314
+ prompt = [prompt] if isinstance(prompt, str) else prompt
315
+ if prompt is not None:
316
+ batch_size = len(prompt)
317
+ else:
318
+ batch_size = prompt_embeds.shape[0]
319
+
320
+ if prompt_embeds is None:
321
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
322
+ prompt=prompt,
323
+ num_videos_per_prompt=num_videos_per_prompt,
324
+ max_sequence_length=max_sequence_length,
325
+ device=device,
326
+ dtype=dtype,
327
+ )
328
+
329
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
330
+ negative_prompt = negative_prompt or ""
331
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
332
+
333
+ if prompt is not None and type(prompt) is not type(negative_prompt):
334
+ raise TypeError(
335
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
336
+ f" {type(prompt)}."
337
+ )
338
+ elif batch_size != len(negative_prompt):
339
+ raise ValueError(
340
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
341
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
342
+ " the batch size of `prompt`."
343
+ )
344
+
345
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
346
+ prompt=negative_prompt,
347
+ num_videos_per_prompt=num_videos_per_prompt,
348
+ max_sequence_length=max_sequence_length,
349
+ device=device,
350
+ dtype=dtype,
351
+ )
352
+
353
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
354
+
355
+ def check_inputs(
356
+ self,
357
+ prompt,
358
+ height,
359
+ width,
360
+ callback_on_step_end_tensor_inputs=None,
361
+ prompt_embeds=None,
362
+ negative_prompt_embeds=None,
363
+ prompt_attention_mask=None,
364
+ negative_prompt_attention_mask=None,
365
+ ):
366
+ if height % 8 != 0 or width % 8 != 0:
367
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
368
+
369
+ if callback_on_step_end_tensor_inputs is not None and not all(
370
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
371
+ ):
372
+ raise ValueError(
373
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
374
+ )
375
+
376
+ if prompt is not None and prompt_embeds is not None:
377
+ raise ValueError(
378
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
379
+ " only forward one of the two."
380
+ )
381
+ elif prompt is None and prompt_embeds is None:
382
+ raise ValueError(
383
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
384
+ )
385
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
386
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
387
+
388
+ if prompt_embeds is not None and prompt_attention_mask is None:
389
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
390
+
391
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
392
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
393
+
394
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
395
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
396
+ raise ValueError(
397
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
398
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
399
+ f" {negative_prompt_embeds.shape}."
400
+ )
401
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
402
+ raise ValueError(
403
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
404
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
405
+ f" {negative_prompt_attention_mask.shape}."
406
+ )
407
+
408
+ def enable_vae_slicing(self):
409
+ r"""
410
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
411
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
412
+ """
413
+ self.vae.enable_slicing()
414
+
415
+ def disable_vae_slicing(self):
416
+ r"""
417
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
418
+ computing decoding in one step.
419
+ """
420
+ self.vae.disable_slicing()
421
+
422
+ def enable_vae_tiling(self):
423
+ r"""
424
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
425
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
426
+ processing larger images.
427
+ """
428
+ self.vae.enable_tiling()
429
+
430
+ def disable_vae_tiling(self):
431
+ r"""
432
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
433
+ computing decoding in one step.
434
+ """
435
+ self.vae.disable_tiling()
436
+
437
+ def prepare_latents(
438
+ self,
439
+ batch_size,
440
+ num_channels_latents,
441
+ height,
442
+ width,
443
+ num_frames,
444
+ dtype,
445
+ device,
446
+ generator,
447
+ latents=None,
448
+ ):
449
+ height = height // self.vae_spatial_scale_factor
450
+ width = width // self.vae_spatial_scale_factor
451
+ num_frames = (num_frames - 1) // self.vae_temporal_scale_factor + 1
452
+
453
+ shape = (batch_size, num_channels_latents, num_frames, height, width)
454
+
455
+ if latents is not None:
456
+ return latents.to(device=device, dtype=dtype)
457
+ if isinstance(generator, list) and len(generator) != batch_size:
458
+ raise ValueError(
459
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
460
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
461
+ )
462
+
463
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
464
+ latents = latents.to(dtype)
465
+ return latents
466
+
467
+ @property
468
+ def guidance_scale(self):
469
+ return self._guidance_scale
470
+
471
+ @property
472
+ def do_classifier_free_guidance(self):
473
+ return self._guidance_scale > 1.0
474
+
475
+ @property
476
+ def num_timesteps(self):
477
+ return self._num_timesteps
478
+
479
+ @property
480
+ def attention_kwargs(self):
481
+ return self._attention_kwargs
482
+
483
+ @property
484
+ def interrupt(self):
485
+ return self._interrupt
486
+
487
+ @torch.no_grad()
488
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
489
+ def __call__(
490
+ self,
491
+ prompt: Union[str, List[str]] = None,
492
+ negative_prompt: Optional[Union[str, List[str]]] = None,
493
+ height: Optional[int] = None,
494
+ width: Optional[int] = None,
495
+ num_frames: int = 19,
496
+ num_inference_steps: int = 64,
497
+ timesteps: List[int] = None,
498
+ guidance_scale: float = 4.5,
499
+ num_videos_per_prompt: Optional[int] = 1,
500
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
501
+ latents: Optional[torch.Tensor] = None,
502
+ prompt_embeds: Optional[torch.Tensor] = None,
503
+ prompt_attention_mask: Optional[torch.Tensor] = None,
504
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
505
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
506
+ output_type: Optional[str] = "pil",
507
+ return_dict: bool = True,
508
+ attention_kwargs: Optional[Dict[str, Any]] = None,
509
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
510
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
511
+ max_sequence_length: int = 256,
512
+ ):
513
+ r"""
514
+ Function invoked when calling the pipeline for generation.
515
+
516
+ Args:
517
+ prompt (`str` or `List[str]`, *optional*):
518
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
519
+ instead.
520
+ height (`int`, *optional*, defaults to `self.default_height`):
521
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
522
+ width (`int`, *optional*, defaults to `self.default_width`):
523
+ The width in pixels of the generated image. This is set to 848 by default for the best results.
524
+ num_frames (`int`, defaults to `19`):
525
+ The number of video frames to generate
526
+ num_inference_steps (`int`, *optional*, defaults to 50):
527
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
528
+ expense of slower inference.
529
+ timesteps (`List[int]`, *optional*):
530
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
531
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
532
+ passed will be used. Must be in descending order.
533
+ guidance_scale (`float`, defaults to `4.5`):
534
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
535
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
536
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
537
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
538
+ usually at the expense of lower image quality.
539
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
540
+ The number of videos to generate per prompt.
541
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
542
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
543
+ to make generation deterministic.
544
+ latents (`torch.Tensor`, *optional*):
545
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
546
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
547
+ tensor will ge generated by sampling using the supplied random `generator`.
548
+ prompt_embeds (`torch.Tensor`, *optional*):
549
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
550
+ provided, text embeddings will be generated from `prompt` input argument.
551
+ prompt_attention_mask (`torch.Tensor`, *optional*):
552
+ Pre-generated attention mask for text embeddings.
553
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
554
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
555
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
556
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
557
+ Pre-generated attention mask for negative text embeddings.
558
+ output_type (`str`, *optional*, defaults to `"pil"`):
559
+ The output format of the generate image. Choose between
560
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
561
+ return_dict (`bool`, *optional*, defaults to `True`):
562
+ Whether or not to return a [`~pipelines.mochi.MochiPipelineOutput`] instead of a plain tuple.
563
+ attention_kwargs (`dict`, *optional*):
564
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
565
+ `self.processor` in
566
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
567
+ callback_on_step_end (`Callable`, *optional*):
568
+ A function that calls at the end of each denoising steps during the inference. The function is called
569
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
570
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
571
+ `callback_on_step_end_tensor_inputs`.
572
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
573
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
574
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
575
+ `._callback_tensor_inputs` attribute of your pipeline class.
576
+ max_sequence_length (`int` defaults to `256`):
577
+ Maximum sequence length to use with the `prompt`.
578
+
579
+ Examples:
580
+
581
+ Returns:
582
+ [`~pipelines.mochi.MochiPipelineOutput`] or `tuple`:
583
+ If `return_dict` is `True`, [`~pipelines.mochi.MochiPipelineOutput`] is returned, otherwise a `tuple`
584
+ is returned where the first element is a list with the generated images.
585
+ """
586
+
587
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
588
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
589
+
590
+ height = height or self.default_height
591
+ width = width or self.default_width
592
+
593
+ # 1. Check inputs. Raise error if not correct
594
+ self.check_inputs(
595
+ prompt=prompt,
596
+ height=height,
597
+ width=width,
598
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
599
+ prompt_embeds=prompt_embeds,
600
+ negative_prompt_embeds=negative_prompt_embeds,
601
+ prompt_attention_mask=prompt_attention_mask,
602
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
603
+ )
604
+
605
+ self._guidance_scale = guidance_scale
606
+ self._attention_kwargs = attention_kwargs
607
+ self._interrupt = False
608
+
609
+ # 2. Define call parameters
610
+ if prompt is not None and isinstance(prompt, str):
611
+ batch_size = 1
612
+ elif prompt is not None and isinstance(prompt, list):
613
+ batch_size = len(prompt)
614
+ else:
615
+ batch_size = prompt_embeds.shape[0]
616
+
617
+ device = self._execution_device
618
+ # 3. Prepare text embeddings
619
+ (
620
+ prompt_embeds,
621
+ prompt_attention_mask,
622
+ negative_prompt_embeds,
623
+ negative_prompt_attention_mask,
624
+ ) = self.encode_prompt(
625
+ prompt=prompt,
626
+ negative_prompt=negative_prompt,
627
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
628
+ num_videos_per_prompt=num_videos_per_prompt,
629
+ prompt_embeds=prompt_embeds,
630
+ negative_prompt_embeds=negative_prompt_embeds,
631
+ prompt_attention_mask=prompt_attention_mask,
632
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
633
+ max_sequence_length=max_sequence_length,
634
+ device=device,
635
+ )
636
+ # 4. Prepare latent variables
637
+ num_channels_latents = self.transformer.config.in_channels
638
+ latents = self.prepare_latents(
639
+ batch_size * num_videos_per_prompt,
640
+ num_channels_latents,
641
+ height,
642
+ width,
643
+ num_frames,
644
+ prompt_embeds.dtype,
645
+ device,
646
+ generator,
647
+ latents,
648
+ )
649
+
650
+ if self.do_classifier_free_guidance:
651
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
652
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
653
+
654
+ # 5. Prepare timestep
655
+ # from https://github.com/genmoai/models/blob/075b6e36db58f1242921deff83a1066887b9c9e1/src/mochi_preview/infer.py#L77
656
+ threshold_noise = 0.025
657
+ sigmas = linear_quadratic_schedule(num_inference_steps, threshold_noise)
658
+ sigmas = np.array(sigmas)
659
+
660
+ timesteps, num_inference_steps = retrieve_timesteps(
661
+ self.scheduler,
662
+ num_inference_steps,
663
+ device,
664
+ timesteps,
665
+ sigmas,
666
+ )
667
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
668
+ self._num_timesteps = len(timesteps)
669
+
670
+ # 6. Denoising loop
671
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
672
+ for i, t in enumerate(timesteps):
673
+ if self.interrupt:
674
+ continue
675
+
676
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
677
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
678
+ timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
679
+
680
+ noise_pred = self.transformer(
681
+ hidden_states=latent_model_input,
682
+ encoder_hidden_states=prompt_embeds,
683
+ timestep=timestep,
684
+ encoder_attention_mask=prompt_attention_mask,
685
+ attention_kwargs=attention_kwargs,
686
+ return_dict=False,
687
+ )[0]
688
+ # Mochi CFG + Sampling runs in FP32
689
+ noise_pred = noise_pred.to(torch.float32)
690
+
691
+ if self.do_classifier_free_guidance:
692
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
693
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
694
+
695
+ # compute the previous noisy sample x_t -> x_t-1
696
+ latents_dtype = latents.dtype
697
+ latents = self.scheduler.step(noise_pred, t, latents.to(torch.float32), return_dict=False)[0]
698
+ latents = latents.to(latents_dtype)
699
+
700
+ if latents.dtype != latents_dtype:
701
+ if torch.backends.mps.is_available():
702
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
703
+ latents = latents.to(latents_dtype)
704
+
705
+ if callback_on_step_end is not None:
706
+ callback_kwargs = {}
707
+ for k in callback_on_step_end_tensor_inputs:
708
+ callback_kwargs[k] = locals()[k]
709
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
710
+
711
+ latents = callback_outputs.pop("latents", latents)
712
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
713
+
714
+ # call the callback, if provided
715
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
716
+ progress_bar.update()
717
+
718
+ if XLA_AVAILABLE:
719
+ xm.mark_step()
720
+
721
+ if output_type == "latent":
722
+ video = latents
723
+ else:
724
+ # unscale/denormalize the latents
725
+ # denormalize with the mean and std if available and not None
726
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
727
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
728
+ if has_latents_mean and has_latents_std:
729
+ latents_mean = (
730
+ torch.tensor(self.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(latents.device, latents.dtype)
731
+ )
732
+ latents_std = (
733
+ torch.tensor(self.vae.config.latents_std).view(1, 12, 1, 1, 1).to(latents.device, latents.dtype)
734
+ )
735
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
736
+ else:
737
+ latents = latents / self.vae.config.scaling_factor
738
+
739
+ video = self.vae.decode(latents, return_dict=False)[0]
740
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
741
+
742
+ # Offload all models
743
+ self.maybe_free_model_hooks()
744
+
745
+ if not return_dict:
746
+ return (video,)
747
+
748
+ return MochiPipelineOutput(frames=video)