diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -15,12 +15,11 @@
|
|
15
15
|
import inspect
|
16
16
|
from typing import Any, Callable, Dict, List, Optional, Union
|
17
17
|
|
18
|
-
import numpy as np
|
19
18
|
import torch
|
20
19
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
21
20
|
|
22
|
-
from ...image_processor import PipelineImageInput
|
23
|
-
from ...loaders import IPAdapterMixin,
|
21
|
+
from ...image_processor import PipelineImageInput
|
22
|
+
from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
24
23
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
25
24
|
from ...models.lora import adjust_lora_scale_text_encoder
|
26
25
|
from ...models.unets.unet_motion_model import MotionAdapter
|
@@ -34,7 +33,9 @@ from ...schedulers import (
|
|
34
33
|
)
|
35
34
|
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
36
35
|
from ...utils.torch_utils import randn_tensor
|
36
|
+
from ...video_processor import VideoProcessor
|
37
37
|
from ..free_init_utils import FreeInitMixin
|
38
|
+
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
38
39
|
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
39
40
|
from .pipeline_output import AnimateDiffPipelineOutput
|
40
41
|
|
@@ -52,14 +53,21 @@ EXAMPLE_DOC_STRING = """
|
|
52
53
|
>>> from io import BytesIO
|
53
54
|
>>> from PIL import Image
|
54
55
|
|
55
|
-
>>> adapter = MotionAdapter.from_pretrained(
|
56
|
-
|
57
|
-
|
56
|
+
>>> adapter = MotionAdapter.from_pretrained(
|
57
|
+
... "guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16
|
58
|
+
... )
|
59
|
+
>>> pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(
|
60
|
+
... "SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter
|
61
|
+
... ).to("cuda")
|
62
|
+
>>> pipe.scheduler = DDIMScheduler(
|
63
|
+
... beta_schedule="linear", steps_offset=1, clip_sample=False, timespace_spacing="linspace"
|
64
|
+
... )
|
65
|
+
|
58
66
|
|
59
67
|
>>> def load_video(file_path: str):
|
60
68
|
... images = []
|
61
|
-
|
62
|
-
... if file_path.startswith((
|
69
|
+
|
70
|
+
... if file_path.startswith(("http://", "https://")):
|
63
71
|
... # If the file_path is a URL
|
64
72
|
... response = requests.get(file_path)
|
65
73
|
... response.raise_for_status()
|
@@ -68,43 +76,26 @@ EXAMPLE_DOC_STRING = """
|
|
68
76
|
... else:
|
69
77
|
... # Assuming it's a local file path
|
70
78
|
... vid = imageio.get_reader(file_path)
|
71
|
-
|
79
|
+
|
72
80
|
... for frame in vid:
|
73
81
|
... pil_image = Image.fromarray(frame)
|
74
82
|
... images.append(pil_image)
|
75
|
-
|
83
|
+
|
76
84
|
... return images
|
77
85
|
|
78
|
-
|
79
|
-
>>>
|
86
|
+
|
87
|
+
>>> video = load_video(
|
88
|
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
|
89
|
+
... )
|
90
|
+
>>> output = pipe(
|
91
|
+
... video=video, prompt="panda playing a guitar, on a boat, in the ocean, high quality", strength=0.5
|
92
|
+
... )
|
80
93
|
>>> frames = output.frames[0]
|
81
94
|
>>> export_to_gif(frames, "animation.gif")
|
82
95
|
```
|
83
96
|
"""
|
84
97
|
|
85
98
|
|
86
|
-
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
|
87
|
-
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
88
|
-
batch_size, channels, num_frames, height, width = video.shape
|
89
|
-
outputs = []
|
90
|
-
for batch_idx in range(batch_size):
|
91
|
-
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
92
|
-
batch_output = processor.postprocess(batch_vid, output_type)
|
93
|
-
|
94
|
-
outputs.append(batch_output)
|
95
|
-
|
96
|
-
if output_type == "np":
|
97
|
-
outputs = np.stack(outputs)
|
98
|
-
|
99
|
-
elif output_type == "pt":
|
100
|
-
outputs = torch.stack(outputs)
|
101
|
-
|
102
|
-
elif not output_type == "pil":
|
103
|
-
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
|
104
|
-
|
105
|
-
return outputs
|
106
|
-
|
107
|
-
|
108
99
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
109
100
|
def retrieve_latents(
|
110
101
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
@@ -125,9 +116,10 @@ def retrieve_timesteps(
|
|
125
116
|
num_inference_steps: Optional[int] = None,
|
126
117
|
device: Optional[Union[str, torch.device]] = None,
|
127
118
|
timesteps: Optional[List[int]] = None,
|
119
|
+
sigmas: Optional[List[float]] = None,
|
128
120
|
**kwargs,
|
129
121
|
):
|
130
|
-
"""
|
122
|
+
r"""
|
131
123
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
132
124
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
133
125
|
|
@@ -135,19 +127,23 @@ def retrieve_timesteps(
|
|
135
127
|
scheduler (`SchedulerMixin`):
|
136
128
|
The scheduler to get timesteps from.
|
137
129
|
num_inference_steps (`int`):
|
138
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
139
|
-
|
130
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
131
|
+
must be `None`.
|
140
132
|
device (`str` or `torch.device`, *optional*):
|
141
133
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
142
134
|
timesteps (`List[int]`, *optional*):
|
143
|
-
|
144
|
-
|
145
|
-
|
135
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
136
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
137
|
+
sigmas (`List[float]`, *optional*):
|
138
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
139
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
146
140
|
|
147
141
|
Returns:
|
148
142
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
149
143
|
second element is the number of inference steps.
|
150
144
|
"""
|
145
|
+
if timesteps is not None and sigmas is not None:
|
146
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
151
147
|
if timesteps is not None:
|
152
148
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
153
149
|
if not accepts_timesteps:
|
@@ -158,6 +154,16 @@ def retrieve_timesteps(
|
|
158
154
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
159
155
|
timesteps = scheduler.timesteps
|
160
156
|
num_inference_steps = len(timesteps)
|
157
|
+
elif sigmas is not None:
|
158
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
159
|
+
if not accept_sigmas:
|
160
|
+
raise ValueError(
|
161
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
162
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
163
|
+
)
|
164
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
165
|
+
timesteps = scheduler.timesteps
|
166
|
+
num_inference_steps = len(timesteps)
|
161
167
|
else:
|
162
168
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
163
169
|
timesteps = scheduler.timesteps
|
@@ -169,8 +175,9 @@ class AnimateDiffVideoToVideoPipeline(
|
|
169
175
|
StableDiffusionMixin,
|
170
176
|
TextualInversionLoaderMixin,
|
171
177
|
IPAdapterMixin,
|
172
|
-
|
178
|
+
StableDiffusionLoraLoaderMixin,
|
173
179
|
FreeInitMixin,
|
180
|
+
AnimateDiffFreeNoiseMixin,
|
174
181
|
):
|
175
182
|
r"""
|
176
183
|
Pipeline for video-to-video generation.
|
@@ -180,8 +187,8 @@ class AnimateDiffVideoToVideoPipeline(
|
|
180
187
|
|
181
188
|
The pipeline also inherits the following loading methods:
|
182
189
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
183
|
-
- [`~loaders.
|
184
|
-
- [`~loaders.
|
190
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
191
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
185
192
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
186
193
|
|
187
194
|
Args:
|
@@ -237,9 +244,8 @@ class AnimateDiffVideoToVideoPipeline(
|
|
237
244
|
image_encoder=image_encoder,
|
238
245
|
)
|
239
246
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
240
|
-
self.
|
247
|
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
|
241
248
|
|
242
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
|
243
249
|
def encode_prompt(
|
244
250
|
self,
|
245
251
|
prompt,
|
@@ -247,8 +253,8 @@ class AnimateDiffVideoToVideoPipeline(
|
|
247
253
|
num_images_per_prompt,
|
248
254
|
do_classifier_free_guidance,
|
249
255
|
negative_prompt=None,
|
250
|
-
prompt_embeds: Optional[torch.
|
251
|
-
negative_prompt_embeds: Optional[torch.
|
256
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
257
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
252
258
|
lora_scale: Optional[float] = None,
|
253
259
|
clip_skip: Optional[int] = None,
|
254
260
|
):
|
@@ -268,10 +274,10 @@ class AnimateDiffVideoToVideoPipeline(
|
|
268
274
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
269
275
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
270
276
|
less than `1`).
|
271
|
-
prompt_embeds (`torch.
|
277
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
272
278
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
273
279
|
provided, text embeddings will be generated from `prompt` input argument.
|
274
|
-
negative_prompt_embeds (`torch.
|
280
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
275
281
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
276
282
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
277
283
|
argument.
|
@@ -283,7 +289,7 @@ class AnimateDiffVideoToVideoPipeline(
|
|
283
289
|
"""
|
284
290
|
# set lora scale so that monkey patched LoRA
|
285
291
|
# function of text encoder can correctly access it
|
286
|
-
if lora_scale is not None and isinstance(self,
|
292
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
287
293
|
self._lora_scale = lora_scale
|
288
294
|
|
289
295
|
# dynamically adjust the LoRA scale
|
@@ -292,7 +298,7 @@ class AnimateDiffVideoToVideoPipeline(
|
|
292
298
|
else:
|
293
299
|
scale_lora_layers(self.text_encoder, lora_scale)
|
294
300
|
|
295
|
-
if prompt is not None and isinstance(prompt, str):
|
301
|
+
if prompt is not None and isinstance(prompt, (str, dict)):
|
296
302
|
batch_size = 1
|
297
303
|
elif prompt is not None and isinstance(prompt, list):
|
298
304
|
batch_size = len(prompt)
|
@@ -415,9 +421,10 @@ class AnimateDiffVideoToVideoPipeline(
|
|
415
421
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
416
422
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
417
423
|
|
418
|
-
if
|
419
|
-
|
420
|
-
|
424
|
+
if self.text_encoder is not None:
|
425
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
426
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
427
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
421
428
|
|
422
429
|
return prompt_embeds, negative_prompt_embeds
|
423
430
|
|
@@ -450,6 +457,9 @@ class AnimateDiffVideoToVideoPipeline(
|
|
450
457
|
def prepare_ip_adapter_image_embeds(
|
451
458
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
452
459
|
):
|
460
|
+
image_embeds = []
|
461
|
+
if do_classifier_free_guidance:
|
462
|
+
negative_image_embeds = []
|
453
463
|
if ip_adapter_image_embeds is None:
|
454
464
|
if not isinstance(ip_adapter_image, list):
|
455
465
|
ip_adapter_image = [ip_adapter_image]
|
@@ -459,7 +469,6 @@ class AnimateDiffVideoToVideoPipeline(
|
|
459
469
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
460
470
|
)
|
461
471
|
|
462
|
-
image_embeds = []
|
463
472
|
for single_ip_adapter_image, image_proj_layer in zip(
|
464
473
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
465
474
|
):
|
@@ -467,46 +476,52 @@ class AnimateDiffVideoToVideoPipeline(
|
|
467
476
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
468
477
|
single_ip_adapter_image, device, 1, output_hidden_state
|
469
478
|
)
|
470
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
471
|
-
single_negative_image_embeds = torch.stack(
|
472
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
473
|
-
)
|
474
479
|
|
480
|
+
image_embeds.append(single_image_embeds[None, :])
|
475
481
|
if do_classifier_free_guidance:
|
476
|
-
|
477
|
-
single_image_embeds = single_image_embeds.to(device)
|
478
|
-
|
479
|
-
image_embeds.append(single_image_embeds)
|
482
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
480
483
|
else:
|
481
|
-
repeat_dims = [1]
|
482
|
-
image_embeds = []
|
483
484
|
for single_image_embeds in ip_adapter_image_embeds:
|
484
485
|
if do_classifier_free_guidance:
|
485
486
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
486
|
-
|
487
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
488
|
-
)
|
489
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
490
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
491
|
-
)
|
492
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
493
|
-
else:
|
494
|
-
single_image_embeds = single_image_embeds.repeat(
|
495
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
496
|
-
)
|
487
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
497
488
|
image_embeds.append(single_image_embeds)
|
498
489
|
|
499
|
-
|
490
|
+
ip_adapter_image_embeds = []
|
491
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
492
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
493
|
+
if do_classifier_free_guidance:
|
494
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
495
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
496
|
+
|
497
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
498
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
500
499
|
|
501
|
-
|
502
|
-
|
500
|
+
return ip_adapter_image_embeds
|
501
|
+
|
502
|
+
def encode_video(self, video, generator, decode_chunk_size: int = 16) -> torch.Tensor:
|
503
|
+
latents = []
|
504
|
+
for i in range(0, len(video), decode_chunk_size):
|
505
|
+
batch_video = video[i : i + decode_chunk_size]
|
506
|
+
batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator)
|
507
|
+
latents.append(batch_video)
|
508
|
+
return torch.cat(latents)
|
509
|
+
|
510
|
+
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
511
|
+
def decode_latents(self, latents, decode_chunk_size: int = 16):
|
503
512
|
latents = 1 / self.vae.config.scaling_factor * latents
|
504
513
|
|
505
514
|
batch_size, channels, num_frames, height, width = latents.shape
|
506
515
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
507
516
|
|
508
|
-
|
509
|
-
|
517
|
+
video = []
|
518
|
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
519
|
+
batch_latents = latents[i : i + decode_chunk_size]
|
520
|
+
batch_latents = self.vae.decode(batch_latents).sample
|
521
|
+
video.append(batch_latents)
|
522
|
+
|
523
|
+
video = torch.cat(video)
|
524
|
+
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
510
525
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
511
526
|
video = video.float()
|
512
527
|
return video
|
@@ -566,8 +581,8 @@ class AnimateDiffVideoToVideoPipeline(
|
|
566
581
|
raise ValueError(
|
567
582
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
568
583
|
)
|
569
|
-
elif prompt is not None and
|
570
|
-
raise ValueError(f"`prompt` has to be of type `str` or `
|
584
|
+
elif prompt is not None and not isinstance(prompt, (str, list, dict)):
|
585
|
+
raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}")
|
571
586
|
|
572
587
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
573
588
|
raise ValueError(
|
@@ -612,31 +627,20 @@ class AnimateDiffVideoToVideoPipeline(
|
|
612
627
|
|
613
628
|
def prepare_latents(
|
614
629
|
self,
|
615
|
-
video,
|
616
|
-
height,
|
617
|
-
width,
|
618
|
-
num_channels_latents,
|
619
|
-
batch_size,
|
620
|
-
timestep,
|
621
|
-
dtype,
|
622
|
-
device,
|
623
|
-
generator,
|
624
|
-
latents=None,
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
if not isinstance(video[0], list):
|
630
|
-
video = [video]
|
631
|
-
if latents is None:
|
632
|
-
video = torch.cat(
|
633
|
-
[self.image_processor.preprocess(vid, height=height, width=width).unsqueeze(0) for vid in video], dim=0
|
634
|
-
)
|
635
|
-
video = video.to(device=device, dtype=dtype)
|
636
|
-
num_frames = video.shape[1]
|
637
|
-
else:
|
638
|
-
num_frames = latents.shape[2]
|
639
|
-
|
630
|
+
video: Optional[torch.Tensor] = None,
|
631
|
+
height: int = 64,
|
632
|
+
width: int = 64,
|
633
|
+
num_channels_latents: int = 4,
|
634
|
+
batch_size: int = 1,
|
635
|
+
timestep: Optional[int] = None,
|
636
|
+
dtype: Optional[torch.dtype] = None,
|
637
|
+
device: Optional[torch.device] = None,
|
638
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
639
|
+
latents: Optional[torch.Tensor] = None,
|
640
|
+
decode_chunk_size: int = 16,
|
641
|
+
add_noise: bool = False,
|
642
|
+
) -> torch.Tensor:
|
643
|
+
num_frames = video.shape[1] if latents is None else latents.shape[2]
|
640
644
|
shape = (
|
641
645
|
batch_size,
|
642
646
|
num_channels_latents,
|
@@ -658,20 +662,12 @@ class AnimateDiffVideoToVideoPipeline(
|
|
658
662
|
self.vae.to(dtype=torch.float32)
|
659
663
|
|
660
664
|
if isinstance(generator, list):
|
661
|
-
if len(generator) != batch_size:
|
662
|
-
raise ValueError(
|
663
|
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
664
|
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
665
|
-
)
|
666
|
-
|
667
665
|
init_latents = [
|
668
|
-
|
666
|
+
self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0)
|
669
667
|
for i in range(batch_size)
|
670
668
|
]
|
671
669
|
else:
|
672
|
-
init_latents = [
|
673
|
-
retrieve_latents(self.vae.encode(vid), generator=generator).unsqueeze(0) for vid in video
|
674
|
-
]
|
670
|
+
init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video]
|
675
671
|
|
676
672
|
init_latents = torch.cat(init_latents, dim=0)
|
677
673
|
|
@@ -702,8 +698,13 @@ class AnimateDiffVideoToVideoPipeline(
|
|
702
698
|
if shape != latents.shape:
|
703
699
|
# [B, C, F, H, W]
|
704
700
|
raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
|
701
|
+
|
705
702
|
latents = latents.to(device, dtype=dtype)
|
706
703
|
|
704
|
+
if add_noise:
|
705
|
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
706
|
+
latents = self.scheduler.add_noise(latents, noise, timestep)
|
707
|
+
|
707
708
|
return latents
|
708
709
|
|
709
710
|
@property
|
@@ -729,6 +730,10 @@ class AnimateDiffVideoToVideoPipeline(
|
|
729
730
|
def num_timesteps(self):
|
730
731
|
return self._num_timesteps
|
731
732
|
|
733
|
+
@property
|
734
|
+
def interrupt(self):
|
735
|
+
return self._interrupt
|
736
|
+
|
732
737
|
@torch.no_grad()
|
733
738
|
def __call__(
|
734
739
|
self,
|
@@ -737,24 +742,27 @@ class AnimateDiffVideoToVideoPipeline(
|
|
737
742
|
height: Optional[int] = None,
|
738
743
|
width: Optional[int] = None,
|
739
744
|
num_inference_steps: int = 50,
|
745
|
+
enforce_inference_steps: bool = False,
|
740
746
|
timesteps: Optional[List[int]] = None,
|
747
|
+
sigmas: Optional[List[float]] = None,
|
741
748
|
guidance_scale: float = 7.5,
|
742
749
|
strength: float = 0.8,
|
743
750
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
744
751
|
num_videos_per_prompt: Optional[int] = 1,
|
745
752
|
eta: float = 0.0,
|
746
753
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
747
|
-
latents: Optional[torch.
|
748
|
-
prompt_embeds: Optional[torch.
|
749
|
-
negative_prompt_embeds: Optional[torch.
|
754
|
+
latents: Optional[torch.Tensor] = None,
|
755
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
756
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
750
757
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
751
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
758
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
752
759
|
output_type: Optional[str] = "pil",
|
753
760
|
return_dict: bool = True,
|
754
761
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
755
762
|
clip_skip: Optional[int] = None,
|
756
763
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
757
764
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
765
|
+
decode_chunk_size: int = 16,
|
758
766
|
):
|
759
767
|
r"""
|
760
768
|
The call function to the pipeline for generation.
|
@@ -771,6 +779,14 @@ class AnimateDiffVideoToVideoPipeline(
|
|
771
779
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
772
780
|
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
773
781
|
expense of slower inference.
|
782
|
+
timesteps (`List[int]`, *optional*):
|
783
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
784
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
785
|
+
passed will be used. Must be in descending order.
|
786
|
+
sigmas (`List[float]`, *optional*):
|
787
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
788
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
789
|
+
will be used.
|
774
790
|
strength (`float`, *optional*, defaults to 0.8):
|
775
791
|
Higher strength leads to more differences between original video and generated video.
|
776
792
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
@@ -785,30 +801,28 @@ class AnimateDiffVideoToVideoPipeline(
|
|
785
801
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
786
802
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
787
803
|
generation deterministic.
|
788
|
-
latents (`torch.
|
804
|
+
latents (`torch.Tensor`, *optional*):
|
789
805
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
790
806
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
791
807
|
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
792
808
|
`(batch_size, num_channel, num_frames, height, width)`.
|
793
|
-
prompt_embeds (`torch.
|
809
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
794
810
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
795
811
|
provided, text embeddings are generated from the `prompt` input argument.
|
796
|
-
negative_prompt_embeds (`torch.
|
812
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
797
813
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
798
814
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
799
815
|
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
800
816
|
Optional image input to work with IP Adapters.
|
801
|
-
ip_adapter_image_embeds (`List[torch.
|
802
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
803
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
804
|
-
if `do_classifier_free_guidance` is set to `True`.
|
805
|
-
|
817
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
818
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
819
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
820
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
821
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
806
822
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
807
|
-
The output format of the generated video. Choose between `torch.
|
808
|
-
`np.array`.
|
823
|
+
The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
|
809
824
|
return_dict (`bool`, *optional*, defaults to `True`):
|
810
|
-
Whether or not to return a [`AnimateDiffPipelineOutput`] instead
|
811
|
-
of a plain tuple.
|
825
|
+
Whether or not to return a [`AnimateDiffPipelineOutput`] instead of a plain tuple.
|
812
826
|
cross_attention_kwargs (`dict`, *optional*):
|
813
827
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
814
828
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
@@ -823,7 +837,9 @@ class AnimateDiffVideoToVideoPipeline(
|
|
823
837
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
824
838
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
825
839
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
826
|
-
`._callback_tensor_inputs` attribute of your
|
840
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
841
|
+
decode_chunk_size (`int`, defaults to `16`):
|
842
|
+
The number of frames to decode at a time when calling `decode_latents` method.
|
827
843
|
|
828
844
|
Examples:
|
829
845
|
|
@@ -858,9 +874,10 @@ class AnimateDiffVideoToVideoPipeline(
|
|
858
874
|
self._guidance_scale = guidance_scale
|
859
875
|
self._clip_skip = clip_skip
|
860
876
|
self._cross_attention_kwargs = cross_attention_kwargs
|
877
|
+
self._interrupt = False
|
861
878
|
|
862
879
|
# 2. Define call parameters
|
863
|
-
if prompt is not None and isinstance(prompt, str):
|
880
|
+
if prompt is not None and isinstance(prompt, (str, dict)):
|
864
881
|
batch_size = 1
|
865
882
|
elif prompt is not None and isinstance(prompt, list):
|
866
883
|
batch_size = len(prompt)
|
@@ -868,44 +885,29 @@ class AnimateDiffVideoToVideoPipeline(
|
|
868
885
|
batch_size = prompt_embeds.shape[0]
|
869
886
|
|
870
887
|
device = self._execution_device
|
888
|
+
dtype = self.dtype
|
871
889
|
|
872
|
-
# 3.
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
877
|
-
prompt,
|
878
|
-
device,
|
879
|
-
num_videos_per_prompt,
|
880
|
-
self.do_classifier_free_guidance,
|
881
|
-
negative_prompt,
|
882
|
-
prompt_embeds=prompt_embeds,
|
883
|
-
negative_prompt_embeds=negative_prompt_embeds,
|
884
|
-
lora_scale=text_encoder_lora_scale,
|
885
|
-
clip_skip=self.clip_skip,
|
886
|
-
)
|
887
|
-
|
888
|
-
# For classifier free guidance, we need to do two forward passes.
|
889
|
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
890
|
-
# to avoid doing two forward passes
|
891
|
-
if self.do_classifier_free_guidance:
|
892
|
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
893
|
-
|
894
|
-
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
895
|
-
image_embeds = self.prepare_ip_adapter_image_embeds(
|
896
|
-
ip_adapter_image,
|
897
|
-
ip_adapter_image_embeds,
|
898
|
-
device,
|
899
|
-
batch_size * num_videos_per_prompt,
|
900
|
-
self.do_classifier_free_guidance,
|
890
|
+
# 3. Prepare timesteps
|
891
|
+
if not enforce_inference_steps:
|
892
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
893
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
901
894
|
)
|
895
|
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
|
896
|
+
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
897
|
+
else:
|
898
|
+
denoising_inference_steps = int(num_inference_steps / strength)
|
899
|
+
timesteps, denoising_inference_steps = retrieve_timesteps(
|
900
|
+
self.scheduler, denoising_inference_steps, device, timesteps, sigmas
|
901
|
+
)
|
902
|
+
timesteps = timesteps[-num_inference_steps:]
|
903
|
+
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
902
904
|
|
903
|
-
# 4. Prepare
|
904
|
-
|
905
|
-
|
906
|
-
|
907
|
-
|
908
|
-
|
905
|
+
# 4. Prepare latent variables
|
906
|
+
if latents is None:
|
907
|
+
video = self.video_processor.preprocess_video(video, height=height, width=width)
|
908
|
+
# Move the number of frames before the number of channels.
|
909
|
+
video = video.permute(0, 2, 1, 3, 4)
|
910
|
+
video = video.to(device=device, dtype=dtype)
|
909
911
|
num_channels_latents = self.unet.config.in_channels
|
910
912
|
latents = self.prepare_latents(
|
911
913
|
video=video,
|
@@ -914,16 +916,67 @@ class AnimateDiffVideoToVideoPipeline(
|
|
914
916
|
num_channels_latents=num_channels_latents,
|
915
917
|
batch_size=batch_size * num_videos_per_prompt,
|
916
918
|
timestep=latent_timestep,
|
917
|
-
dtype=
|
919
|
+
dtype=dtype,
|
918
920
|
device=device,
|
919
921
|
generator=generator,
|
920
922
|
latents=latents,
|
923
|
+
decode_chunk_size=decode_chunk_size,
|
924
|
+
add_noise=enforce_inference_steps,
|
921
925
|
)
|
922
926
|
|
923
|
-
#
|
927
|
+
# 5. Encode input prompt
|
928
|
+
text_encoder_lora_scale = (
|
929
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
930
|
+
)
|
931
|
+
num_frames = latents.shape[2]
|
932
|
+
if self.free_noise_enabled:
|
933
|
+
prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
|
934
|
+
prompt=prompt,
|
935
|
+
num_frames=num_frames,
|
936
|
+
device=device,
|
937
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
938
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
939
|
+
negative_prompt=negative_prompt,
|
940
|
+
prompt_embeds=prompt_embeds,
|
941
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
942
|
+
lora_scale=text_encoder_lora_scale,
|
943
|
+
clip_skip=self.clip_skip,
|
944
|
+
)
|
945
|
+
else:
|
946
|
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
947
|
+
prompt,
|
948
|
+
device,
|
949
|
+
num_videos_per_prompt,
|
950
|
+
self.do_classifier_free_guidance,
|
951
|
+
negative_prompt,
|
952
|
+
prompt_embeds=prompt_embeds,
|
953
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
954
|
+
lora_scale=text_encoder_lora_scale,
|
955
|
+
clip_skip=self.clip_skip,
|
956
|
+
)
|
957
|
+
|
958
|
+
# For classifier free guidance, we need to do two forward passes.
|
959
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
960
|
+
# to avoid doing two forward passes
|
961
|
+
if self.do_classifier_free_guidance:
|
962
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
963
|
+
|
964
|
+
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
965
|
+
|
966
|
+
# 6. Prepare IP-Adapter embeddings
|
967
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
968
|
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
969
|
+
ip_adapter_image,
|
970
|
+
ip_adapter_image_embeds,
|
971
|
+
device,
|
972
|
+
batch_size * num_videos_per_prompt,
|
973
|
+
self.do_classifier_free_guidance,
|
974
|
+
)
|
975
|
+
|
976
|
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
924
977
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
925
978
|
|
926
|
-
#
|
979
|
+
# 8. Add image embeds for IP-Adapter
|
927
980
|
added_cond_kwargs = (
|
928
981
|
{"image_embeds": image_embeds}
|
929
982
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
@@ -943,9 +996,12 @@ class AnimateDiffVideoToVideoPipeline(
|
|
943
996
|
self._num_timesteps = len(timesteps)
|
944
997
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
945
998
|
|
946
|
-
#
|
947
|
-
with self.progress_bar(total=
|
999
|
+
# 9. Denoising loop
|
1000
|
+
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
948
1001
|
for i, t in enumerate(timesteps):
|
1002
|
+
if self.interrupt:
|
1003
|
+
continue
|
1004
|
+
|
949
1005
|
# expand the latents if we are doing classifier free guidance
|
950
1006
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
951
1007
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
@@ -981,14 +1037,14 @@ class AnimateDiffVideoToVideoPipeline(
|
|
981
1037
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
982
1038
|
progress_bar.update()
|
983
1039
|
|
984
|
-
#
|
1040
|
+
# 10. Post-processing
|
985
1041
|
if output_type == "latent":
|
986
1042
|
video = latents
|
987
1043
|
else:
|
988
|
-
video_tensor = self.decode_latents(latents)
|
989
|
-
video =
|
1044
|
+
video_tensor = self.decode_latents(latents, decode_chunk_size)
|
1045
|
+
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
990
1046
|
|
991
|
-
#
|
1047
|
+
# 11. Offload all models
|
992
1048
|
self.maybe_free_model_hooks()
|
993
1049
|
|
994
1050
|
if not return_dict:
|