nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,928 +0,0 @@
1
- import copy
2
- import glob
3
- import importlib
4
- import inspect
5
- import json
6
- import logging
7
- import shutil
8
- from io import BytesIO
9
- from pathlib import Path
10
- from textwrap import dedent
11
- from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union
12
-
13
- import mlx.core as mx
14
- import mlx.nn as nn
15
- import numpy as np
16
- import requests
17
- import scipy.signal as signal
18
- import soundfile as sf
19
- from huggingface_hub import snapshot_download
20
- from mlx.utils import tree_flatten, tree_map_with_path, tree_reduce, tree_unflatten
21
- from mlx_lm.utils import quantize_model
22
- from PIL import Image, ImageOps
23
- from transformers import (
24
- AutoConfig,
25
- AutoProcessor,
26
- PreTrainedTokenizer,
27
- PreTrainedTokenizerFast,
28
- )
29
-
30
- from .models.base import BaseImageProcessor
31
- from .tokenizer_utils import load_tokenizer
32
- from .trainer import apply_lora_layers
33
-
34
- # Constants
35
- MODEL_REMAPPING = {"llava-qwen2": "llava_bunny", "bunny-llama": "llava_bunny"}
36
-
37
- MAX_FILE_SIZE_GB = 5
38
-
39
- MODEL_CONVERSION_DTYPES = ["float16", "bfloat16", "float32"]
40
-
41
-
42
- def skip_multimodal_module(path: str) -> bool:
43
- """
44
- Check if a multimodal module (vision/audio) should skip quantization.
45
-
46
- Args:
47
- path: The module path to check
48
-
49
- Returns:
50
- bool: True if the module is multimodal and should skip quantization, False otherwise
51
- """
52
- return (
53
- "vision_model" in path
54
- or "vision_tower" in path
55
- or "audio_model" in path
56
- or "audio_tower" in path
57
- )
58
-
59
-
60
- def get_model_and_args(config: dict):
61
- """
62
- Retrieve the model object based on the configuration.
63
-
64
- Args:
65
- config (dict): The model configuration.
66
-
67
- Returns:
68
- A tuple containing the Model class and the ModelArgs class.
69
- """
70
- model_type = config["model_type"]
71
- model_type = MODEL_REMAPPING.get(model_type, model_type)
72
- try:
73
- # ===== NEXAAI CHANGES BEGIN =====
74
- arch = importlib.import_module(f"vlm.modeling.models.{model_type}")
75
- # ===== NEXAAI CHANGES END =====
76
- except ImportError:
77
- msg = f"Model type {model_type} not supported."
78
- logging.error(msg)
79
- raise ValueError(msg)
80
-
81
- return arch, model_type
82
-
83
-
84
- def get_model_path(
85
- path_or_hf_repo: str, revision: Optional[str] = None, force_download: bool = False
86
- ) -> Path:
87
- """
88
- Ensures the model is available locally. If the path does not exist locally,
89
- it is downloaded from the Hugging Face Hub.
90
-
91
- Args:
92
- path_or_hf_repo (str): The local path or Hugging Face repository ID of the model.
93
- revision (str, optional): A revision id which can be a branch name, a tag, or a commit hash.
94
-
95
- Returns:
96
- Path: The path to the model.
97
- """
98
- model_path = Path(path_or_hf_repo)
99
- if not model_path.exists():
100
- model_path = Path(
101
- snapshot_download(
102
- repo_id=path_or_hf_repo,
103
- revision=revision,
104
- allow_patterns=[
105
- "*.json",
106
- "*.safetensors",
107
- "*.py",
108
- "*.model",
109
- "*.tiktoken",
110
- "*.txt",
111
- "*.jinja",
112
- ],
113
- force_download=force_download,
114
- )
115
- )
116
- return model_path
117
-
118
-
119
- def load_model(model_path: Path, lazy: bool = False, **kwargs) -> nn.Module:
120
- """
121
- Load and initialize the model from a given path.
122
-
123
- Args:
124
- model_path (Path): The path to load the model from.
125
- lazy (bool): If False eval the model parameters to make sure they are
126
- loaded in memory before returning, otherwise they will be loaded
127
- when needed. Default: ``False``
128
- revision (str, optional): A revision id which can be a branch name,
129
- a tag, or a commit hash. Default: ``None``.
130
-
131
- Returns:
132
- nn.Module: The loaded and initialized model.
133
-
134
- Raises:
135
- FileNotFoundError: If the weight files (.safetensors) are not found.
136
- ValueError: If the model class or args class are not found or cannot be instantiated.
137
- """
138
- config = load_config(model_path, **kwargs)
139
- quantization = config.get("quantization", None)
140
-
141
- weight_files = glob.glob(str(model_path / "*.safetensors"))
142
- if not weight_files:
143
- logging.error(f"No safetensors found in {model_path}")
144
- message = f"""
145
- No safetensors found in {model_path}
146
- Create safetensors using the following code:
147
- ```
148
- from transformers import AutoModelForCausalLM, AutoProcessor
149
-
150
- model_id= "<huggingface_model_id>"
151
- model = AutoModelForCausalLM.from_pretrained(model_id)
152
- processor = AutoProcessor.from_pretrained(model_id)
153
-
154
- model.save_pretrained("<local_dir>")
155
- processor.save_pretrained("<local_dir>")
156
- ```
157
- Then use the <local_dir> as the --hf-path in the convert script.
158
- ```
159
- python -m mlx_vlm.convert --hf-path <local_dir> --mlx-path <mlx_dir>
160
- ```
161
- """
162
- raise FileNotFoundError(message)
163
-
164
- weights = {}
165
- for wf in weight_files:
166
- weights.update(mx.load(wf))
167
-
168
- model_class, model_type = get_model_and_args(config=config)
169
-
170
- # Initialize text and vision configs if not present
171
- config.setdefault("text_config", {})
172
- config.setdefault("vision_config", {})
173
- config.setdefault("audio_config", {})
174
-
175
- # Initialize model config and update it with module configs
176
- model_config = model_class.ModelConfig.from_dict(config)
177
- modules = ["text", "vision", "perceiver", "projector", "audio"]
178
- model_config = update_module_configs(model_config, model_class, config, modules)
179
-
180
- model = model_class.Model(model_config)
181
-
182
- # Sanitize weights
183
- weights = sanitize_weights(model, weights)
184
- weights = sanitize_weights(
185
- model_class.VisionModel, weights, model_config.vision_config
186
- )
187
- weights = sanitize_weights(
188
- model_class.LanguageModel, weights, model_config.text_config
189
- )
190
- if hasattr(model_class, "AudioModel"):
191
- weights = sanitize_weights(
192
- model_class.AudioModel, weights, model_config.audio_config
193
- )
194
-
195
- if (quantization := config.get("quantization", None)) is not None:
196
- # Handle legacy models which may or may not have vision quantized
197
- # TODO: Re-upload the models with the new quantization config and remove this
198
- skip_vision = config.get("vision_config", {}).get("skip_vision", False)
199
-
200
- def get_class_predicate(p, m):
201
- # Always skip vision and audio models
202
- if skip_multimodal_module(p) and skip_vision:
203
- return False
204
- # Handle custom per layer quantizations
205
- if p in config["quantization"]:
206
- return config["quantization"][p]
207
- if not hasattr(m, "to_quantized"):
208
- return False
209
- # Skip layers not divisible by 64
210
- if hasattr(m, "weight") and m.weight.size % 64 != 0:
211
- return False
212
- # Handle legacy models which may not have everything quantized
213
- return f"{p}.scales" in weights
214
-
215
- nn.quantize(
216
- model,
217
- group_size=quantization["group_size"],
218
- bits=quantization["bits"],
219
- class_predicate=get_class_predicate,
220
- )
221
-
222
- model.load_weights(list(weights.items()))
223
- if not lazy:
224
- mx.eval(model.parameters())
225
-
226
- model.eval()
227
- return model
228
-
229
-
230
- def sanitize_weights(model_obj, weights, config=None):
231
- """Helper function to sanitize weights if the model has a sanitize method"""
232
- if hasattr(model_obj, "sanitize"):
233
- if config is not None:
234
- model_obj = model_obj(config)
235
- weights = model_obj.sanitize(weights)
236
- return weights
237
-
238
-
239
- def update_module_configs(model_config, model_class, config, modules):
240
- """Updates configuration for model modules like text and vision modules.
241
-
242
- Args:
243
- model_config: The model configuration object that will be updated
244
- model_class: The model class containing component config classes
245
- config: Dictionary containing configuration parameters
246
- modules: List of module names to update configs for (e.g. ["text", "vision"])
247
-
248
- Returns:
249
- The updated model_config object
250
- """
251
- for config_name in modules:
252
- config_attr = f"{config_name}_config"
253
- if hasattr(model_config, config_attr):
254
- config_class = getattr(model_class, f"{config_name.title()}Config")
255
- setattr(
256
- model_config, config_attr, config_class.from_dict(config[config_attr])
257
- )
258
- return model_config
259
-
260
-
261
- def load(
262
- path_or_hf_repo: str,
263
- adapter_path: Optional[str] = None,
264
- lazy: bool = False,
265
- revision: Optional[str] = None,
266
- **kwargs,
267
- ) -> Tuple[nn.Module, Union[PreTrainedTokenizer, PreTrainedTokenizerFast]]:
268
- """
269
- Load the model and tokenizer from a given path or a huggingface repository.
270
-
271
- Args:
272
- path_or_hf_repo (Path): The path or the huggingface repository to load the model from.
273
- tokenizer_config (dict, optional): Configuration parameters specifically for the tokenizer.
274
- Defaults to an empty dictionary.
275
- adapter_path (str, optional): Path to the LoRA adapters. If provided, applies LoRA layers
276
- to the model. Default: ``None``.
277
- lazy (bool): If False eval the model parameters to make sure they are
278
- loaded in memory before returning, otherwise they will be loaded
279
- when needed. Default: ``False``
280
- revision (str, optional): A revision id which can be a branch name,
281
- a tag, or a commit hash. Default: ``None``.
282
- Returns:
283
- Tuple[nn.Module, TokenizerWrapper]: A tuple containing the loaded model and tokenizer.
284
-
285
- Raises:
286
- FileNotFoundError: If config file or safetensors are not found.
287
- ValueError: If model class or args class are not found.
288
- """
289
- force_download = kwargs.get("force_download", False)
290
- model_path = get_model_path(
291
- path_or_hf_repo, force_download=force_download, revision=revision
292
- )
293
- model = load_model(model_path, lazy, **kwargs)
294
- if adapter_path is not None:
295
- model = apply_lora_layers(model, adapter_path)
296
- model.eval()
297
-
298
- image_processor = load_image_processor(model_path, **kwargs)
299
-
300
- # Get the eos_token_id from the model config
301
- eos_token_id = getattr(model.config, "eos_token_id", None)
302
-
303
- processor = load_processor(model_path, True, eos_token_ids=eos_token_id, **kwargs)
304
-
305
- if image_processor is not None:
306
- processor.image_processor = image_processor
307
-
308
- return model, processor
309
-
310
-
311
- def load_config(model_path: Union[str, Path], **kwargs) -> dict:
312
- """Load model configuration from a path or Hugging Face repo.
313
-
314
- Args:
315
- model_path: Local path or Hugging Face repo ID to load config from
316
- **kwargs: Additional keyword arguments to pass to the config loader
317
-
318
- Returns:
319
- dict: Model configuration
320
-
321
- Raises:
322
- FileNotFoundError: If config.json is not found at the path
323
- """
324
- if isinstance(model_path, str):
325
- model_path = get_model_path(model_path)
326
-
327
- try:
328
- return AutoConfig.from_pretrained(model_path, **kwargs).to_dict()
329
- except ValueError:
330
- try:
331
- with open(model_path / "config.json", encoding="utf-8") as f:
332
- return json.load(f)
333
- except FileNotFoundError as exc:
334
- raise FileNotFoundError(f"Config not found at {model_path}") from exc
335
-
336
-
337
- def load_image_processor(model_path: Union[str, Path], **kwargs) -> BaseImageProcessor:
338
- if isinstance(model_path, str):
339
- model_path = get_model_path(model_path)
340
-
341
- if not kwargs:
342
- config = load_config(model_path, trust_remote_code=True)
343
- else:
344
- config = load_config(model_path, **kwargs)
345
-
346
- model_class, _ = get_model_and_args(config)
347
- image_processor = None
348
-
349
- if hasattr(model_class, "ImageProcessor"):
350
- init_signature = inspect.signature(model_class.ImageProcessor.__init__)
351
-
352
- if "config" in init_signature.parameters:
353
- image_processor = model_class.ImageProcessor(config=config)
354
- else:
355
- image_processor = model_class.ImageProcessor()
356
-
357
- return image_processor
358
-
359
-
360
- def load_processor(
361
- model_path, add_detokenizer=True, eos_token_ids=None, **kwargs
362
- ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
363
- #import ipdb; ipdb.set_trace()
364
- config = load_config(model_path, **kwargs)
365
-
366
- if "qwen2_5_vl" == str(config.get("model_type", "")):
367
- from .processing_qwen2_5_vl import Qwen2_5_VLProcessor
368
- processor = Qwen2_5_VLProcessor.from_pretrained(model_path, **kwargs)
369
- elif "qwen2_vl" == str(config.get("model_type", "")):
370
- from .processing_qwen2_vl import Qwen2VLProcessor
371
- processor = Qwen2VLProcessor.from_pretrained(model_path, **kwargs)
372
- else:
373
- processor = AutoProcessor.from_pretrained(model_path, **kwargs)
374
-
375
- if add_detokenizer:
376
- detokenizer_class = load_tokenizer(model_path, return_tokenizer=False)
377
-
378
- # Get the tokenizer object
379
- tokenizer_obj = (
380
- processor.tokenizer if hasattr(processor, "tokenizer") else processor
381
- )
382
-
383
- # Instantiate the detokenizer
384
- processor.detokenizer = detokenizer_class(tokenizer_obj)
385
-
386
- # Determine the EOS token IDs, prioritizing the function argument
387
- final_eos_token_ids = (
388
- eos_token_ids if eos_token_ids is not None else tokenizer_obj.eos_token_ids
389
- )
390
-
391
- # Create and assign the StoppingCriteria
392
- criteria = StoppingCriteria(final_eos_token_ids, tokenizer_obj)
393
- if hasattr(processor, "tokenizer"):
394
- processor.tokenizer.stopping_criteria = criteria
395
- else:
396
- processor.stopping_criteria = criteria
397
-
398
- return processor
399
-
400
-
401
- def fetch_from_hub(
402
- model_path: Path, lazy: bool = False, **kwargs
403
- ) -> Tuple[nn.Module, dict, PreTrainedTokenizer]:
404
- model = load_model(model_path, lazy, **kwargs)
405
- config = load_config(model_path, **kwargs)
406
- processor = load_processor(
407
- model_path,
408
- add_detokenizer=False,
409
- eos_token_ids=config.get("eos_token_id", None),
410
- **kwargs,
411
- )
412
- return model, config, processor
413
-
414
-
415
- def make_shards(weights: dict, max_file_size_gb: int = MAX_FILE_SIZE_GB) -> list:
416
- """
417
- Splits the weights into smaller shards.
418
-
419
- Args:
420
- weights (dict): Model weights.
421
- max_file_size_gb (int): Maximum size of each shard in gigabytes.
422
-
423
- Returns:
424
- list: List of weight shards.
425
- """
426
- max_file_size_bytes = max_file_size_gb << 30
427
- shards = []
428
- shard, shard_size = {}, 0
429
- for k, v in weights.items():
430
- if shard_size + v.nbytes > max_file_size_bytes:
431
- shards.append(shard)
432
- shard, shard_size = {}, 0
433
- shard[k] = v
434
- shard_size += v.nbytes
435
- shards.append(shard)
436
- return shards
437
-
438
-
439
- def upload_to_hub(path: str, upload_repo: str, hf_path: str):
440
- """
441
- Uploads the model to Hugging Face hub.
442
-
443
- Args:
444
- path (str): Local path to the model.
445
- upload_repo (str): Name of the HF repo to upload to.
446
- hf_path (str): Path to the original Hugging Face model.
447
- """
448
- import os
449
-
450
- from huggingface_hub import HfApi, ModelCard, logging
451
-
452
- from . import __version__
453
-
454
- card = ModelCard.load(hf_path)
455
- card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
456
- card.text = dedent(
457
- f"""
458
- # {upload_repo}
459
- This model was converted to MLX format from [`{hf_path}`]() using mlx-vlm version **{__version__}**.
460
- Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
461
- ## Use with mlx
462
-
463
- ```bash
464
- pip install -U mlx-vlm
465
- ```
466
-
467
- ```bash
468
- python -m mlx_vlm.generate --model {upload_repo} --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image>
469
- ```
470
- """
471
- )
472
- card.save(os.path.join(path, "README.md"))
473
-
474
- logging.set_verbosity_info()
475
-
476
- api = HfApi()
477
- api.create_repo(repo_id=upload_repo, exist_ok=True)
478
- api.upload_folder(
479
- folder_path=path,
480
- repo_id=upload_repo,
481
- repo_type="model",
482
- )
483
- print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
484
-
485
-
486
- def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: float):
487
- """
488
- Apply repetition penalty to specific logits based on the given context.
489
-
490
- Paper: https://arxiv.org/abs/1909.05858
491
-
492
- Args:
493
- logits (mx.array): The logits produced by the language model.
494
- generated_tokens (any): A list of N previous tokens.
495
- penalty (float): The repetition penalty factor to be applied.
496
-
497
- Returns:
498
- logits (mx.array): Logits with repetition penalty applied to generated tokens.
499
- """
500
- if len(generated_tokens) > 0:
501
- indices = mx.array([token for token in generated_tokens])
502
- selected_logits = logits[:, indices]
503
- selected_logits = mx.where(
504
- selected_logits < 0, selected_logits * penalty, selected_logits / penalty
505
- )
506
- logits[:, indices] = selected_logits
507
- return logits
508
-
509
-
510
- def save_weights(
511
- save_path: Union[str, Path],
512
- model: nn.Module,
513
- *,
514
- donate_weights: bool = False,
515
- ) -> None:
516
- """Save model weights into specified directory."""
517
- if isinstance(save_path, str):
518
- save_path = Path(save_path)
519
-
520
- weights = dict(tree_flatten(model.parameters()))
521
- del model
522
-
523
- save_path.mkdir(parents=True, exist_ok=True)
524
-
525
- shards = make_shards(weights)
526
- shards_count = len(shards)
527
- shard_file_format = (
528
- "model-{:05d}-of-{:05d}.safetensors"
529
- if shards_count > 1
530
- else "model.safetensors"
531
- )
532
-
533
- total_size = sum(v.nbytes for v in weights.values())
534
- index_data = {"metadata": {"total_size": total_size}, "weight_map": {}}
535
-
536
- # Write the weights and make sure no references are kept other than the
537
- # necessary ones
538
- if donate_weights:
539
- weights.clear()
540
- del weights
541
-
542
- for i in range(len(shards)):
543
- shard = shards[i]
544
- shards[i] = None
545
- shard_name = shard_file_format.format(i + 1, shards_count)
546
- shard_path = save_path / shard_name
547
-
548
- mx.save_safetensors(str(shard_path), shard, metadata={"format": "mlx"})
549
-
550
- for weight_name in shard.keys():
551
- index_data["weight_map"][weight_name] = shard_name
552
- del shard
553
-
554
- index_data["weight_map"] = {
555
- k: index_data["weight_map"][k] for k in sorted(index_data["weight_map"])
556
- }
557
-
558
- with open(save_path / "model.safetensors.index.json", "w") as f:
559
- json.dump(
560
- index_data,
561
- f,
562
- indent=4,
563
- )
564
-
565
-
566
- def save_config(
567
- config: dict,
568
- config_path: Union[str, Path],
569
- ) -> None:
570
- """Save the model configuration to the ``config_path``.
571
-
572
- The final configuration will be sorted before saving for better readability.
573
-
574
- Args:
575
- config (dict): The model configuration.
576
- config_path (Union[str, Path]): Model configuration file path.
577
- """
578
- # Clean unused keys
579
- config.pop("_name_or_path", None)
580
- config.pop("torch_dtype", None)
581
-
582
- # sort the config for better readability
583
- config = dict(sorted(config.items()))
584
-
585
- # write the updated config to the config_path (if provided)
586
- with open(config_path, "w") as fid:
587
- json.dump(config, fid, indent=4)
588
-
589
-
590
- def load_image(image_source: Union[str, Path, BytesIO], timeout: int = 10):
591
- """
592
- Helper function to load an image from either a URL or file.
593
- """
594
- if isinstance(image_source, BytesIO) or Path(image_source).is_file():
595
- # for base64 encoded images
596
- try:
597
- image = Image.open(image_source)
598
- except IOError as e:
599
- raise ValueError(
600
- f"Failed to load image from {image_source} with error: {e}"
601
- ) from e
602
- elif image_source.startswith(("http://", "https://")):
603
- try:
604
- response = requests.get(image_source, stream=True, timeout=timeout)
605
- response.raise_for_status()
606
- image = Image.open(response.raw)
607
- except Exception as e:
608
- raise ValueError(
609
- f"Failed to load image from URL: {image_source} with error {e}"
610
- ) from e
611
- else:
612
- raise ValueError(
613
- f"The image {image_source} must be a valid URL or existing file."
614
- )
615
-
616
- image = ImageOps.exif_transpose(image)
617
- image = image.convert("RGB")
618
- return image
619
-
620
-
621
- def resize_image(img, max_size):
622
- ratio = min(max_size[0] / img.width, max_size[1] / img.height)
623
- new_size = (int(img.width * ratio), int(img.height * ratio))
624
- return img.resize(new_size)
625
-
626
-
627
- def process_image(img, resize_shape, image_processor):
628
- if isinstance(img, str):
629
- img = load_image(img)
630
- if resize_shape is not None and not isinstance(image_processor, BaseImageProcessor):
631
- img = resize_image(img, resize_shape)
632
- return img
633
-
634
-
635
- def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
636
- gcd = np.gcd(orig_sr, target_sr)
637
- up = target_sr // gcd
638
- down = orig_sr // gcd
639
- resampled = signal.resample_poly(audio, up, down, padtype="edge")
640
- return resampled
641
-
642
-
643
- def load_audio(
644
- file: str,
645
- sr: int,
646
- timeout: int = 10,
647
- ):
648
- """
649
- Helper function to load audio from either a URL or file.
650
- """
651
- if file.startswith(("http://", "https://")):
652
- try:
653
- response = requests.get(file, stream=True, timeout=timeout)
654
- response.raise_for_status()
655
- audio, sample_rate = sf.read(BytesIO(response.content), always_2d=True)
656
- except Exception as e:
657
- raise ValueError(
658
- f"Failed to load audio from URL: {file} with error {e}"
659
- ) from e
660
- else:
661
- audio, sample_rate = sf.read(file, always_2d=True)
662
-
663
- if sample_rate != sr:
664
- audio = resample_audio(audio, sample_rate, sr)
665
- return np.array(audio).mean(axis=1)
666
-
667
-
668
- def process_inputs(
669
- processor,
670
- prompts,
671
- images=None,
672
- audio=None,
673
- add_special_tokens=False,
674
- return_tensors="mlx",
675
- ):
676
- # Get the process method from the processor
677
- process_method = getattr(processor, "process", processor)
678
-
679
- # Prepare arguments
680
- args = {
681
- "text": prompts,
682
- "images": images,
683
- "padding": True,
684
- "return_tensors": return_tensors,
685
- }
686
-
687
- # Add special tokens if supported
688
- if "add_special_tokens" in inspect.signature(process_method).parameters:
689
- args["add_special_tokens"] = add_special_tokens
690
-
691
- # Add audio if provided and supported
692
- if audio is not None:
693
- if "audio" in inspect.signature(process_method).parameters:
694
- args["audio"] = audio
695
- else:
696
- raise ValueError(f"Processor {processor} does not support audio parameter")
697
-
698
- return process_method(**args)
699
-
700
-
701
- def process_inputs_with_fallback(
702
- processor, prompts, images, audio, add_special_tokens=False, return_tensors="mlx"
703
- ):
704
- # First attempt with specified return_tensors
705
- try:
706
- return process_inputs(
707
- processor,
708
- prompts=prompts,
709
- images=images,
710
- audio=audio,
711
- add_special_tokens=add_special_tokens,
712
- return_tensors=return_tensors,
713
- )
714
- except Exception as e:
715
- # Fallback to PyTorch tensors if MLX fails
716
- if return_tensors != "pt":
717
- try:
718
- return process_inputs(
719
- processor,
720
- prompts=prompts,
721
- images=images,
722
- audio=audio,
723
- add_special_tokens=add_special_tokens,
724
- return_tensors="pt",
725
- )
726
- except Exception as fallback_error:
727
- raise ValueError(
728
- f"Failed to process inputs with error: {fallback_error}"
729
- )
730
-
731
- raise ValueError(f"Failed to process inputs with error: {e}")
732
-
733
-
734
- def prepare_inputs(
735
- processor,
736
- images=None,
737
- audio=None,
738
- prompts=None,
739
- image_token_index=None,
740
- resize_shape=None,
741
- add_special_tokens=False,
742
- ):
743
-
744
- if not images and not audio:
745
- tokenizer = (
746
- processor.tokenizer if hasattr(processor, "tokenizer") else processor
747
- )
748
- inputs = tokenizer(prompts, add_special_tokens=add_special_tokens)
749
- input_ids = mx.array([inputs.input_ids])
750
- mask = mx.array([inputs.attention_mask])
751
- return {
752
- "input_ids": input_ids,
753
- "attention_mask": mask,
754
- }
755
-
756
- # Process images
757
- if images is not None:
758
- if not isinstance(images, list):
759
- images = [images]
760
-
761
- image_processor = (
762
- processor.image_processor if hasattr(processor, "image_processor") else None
763
- )
764
- images = [process_image(img, resize_shape, image_processor) for img in images]
765
-
766
- # Process audio
767
- if audio:
768
- if not isinstance(audio, list):
769
- audio = [audio]
770
-
771
- if len(audio) > 1:
772
- print(
773
- "\033[33mWarning\033[0m: Single prompt with multiple audio files is not supported yet. Using the first audio file.\n"
774
- )
775
- audio = audio[:1]
776
-
777
- audio = [
778
- load_audio(audio_file, sr=processor.feature_extractor.sampling_rate)
779
- for audio_file in audio
780
- ]
781
- else:
782
- audio = None
783
-
784
- model_inputs = {}
785
-
786
- if hasattr(processor, "image_processor") and isinstance(
787
- processor.image_processor, BaseImageProcessor
788
- ):
789
- if not isinstance(prompts, list):
790
- prompts = [prompts]
791
-
792
- processor.pad_token = processor.eos_token
793
- text_chunks = [
794
- [processor(chunk).input_ids for chunk in prompt.split("<image>")]
795
- for prompt in prompts
796
- ]
797
-
798
- # Find the maximum length for padding
799
- max_length = max(
800
- sum(len(chunk) for chunk in chunks) + 1 for chunks in text_chunks
801
- )
802
-
803
- # Pad and create input_ids
804
- input_ids = []
805
- for chunks in text_chunks:
806
- ids = chunks[0] + [image_token_index] + chunks[1]
807
- padding = [processor.pad_token_id] * (max_length - len(ids))
808
- input_ids.append(mx.array(ids + padding))
809
-
810
- model_inputs["input_ids"] = mx.array(input_ids)
811
- pixel_values = processor.image_processor.preprocess(images=images)
812
- model_inputs["pixel_values"] = mx.array(np.stack(pixel_values))
813
- model_inputs["attention_mask"] = mx.array(
814
- [(ids != processor.pad_token_id) for ids in input_ids]
815
- ).astype(mx.int32)
816
-
817
- else:
818
- if hasattr(processor, "tokenizer"):
819
- processor.tokenizer.pad_token = processor.tokenizer.eos_token
820
-
821
- inputs = process_inputs_with_fallback(
822
- processor,
823
- images=images,
824
- audio=audio,
825
- prompts=prompts,
826
- add_special_tokens=add_special_tokens,
827
- )
828
-
829
- if "images" in inputs:
830
- inputs["pixel_values"] = inputs["images"]
831
- inputs.pop("images")
832
-
833
- model_inputs["attention_mask"] = (
834
- mx.array(inputs["attention_mask"]) if "attention_mask" in inputs else None
835
- )
836
- # Convert inputs to model_inputs with mx.array if present
837
- for key, value in inputs.items():
838
- if key not in model_inputs and not isinstance(value, (str, list)):
839
- model_inputs[key] = mx.array(value)
840
-
841
- return model_inputs
842
-
843
-
844
- class StoppingCriteria:
845
- def __init__(self, eos_token_ids: List[int], tokenizer=None):
846
-
847
- if isinstance(eos_token_ids, int):
848
- self.eos_token_ids = [eos_token_ids]
849
- else:
850
- self.eos_token_ids = eos_token_ids
851
-
852
- self.tokenizer = tokenizer
853
-
854
- def add_eos_token_ids(self, new_eos_token_ids: Union[int, List[int]] = None):
855
- """
856
- Add new token IDs to the list of EOS token IDs.
857
-
858
- Args:
859
- new_eos_token_ids: Integer, string, or list of integers/strings representing token IDs to add.
860
- If strings are provided, they will be converted to integers if possible.
861
- """
862
- if new_eos_token_ids is None:
863
- return
864
-
865
- if self.tokenizer is None:
866
- raise ValueError("Processor is not provided")
867
-
868
- if new_eos_token_ids is not None:
869
- if isinstance(new_eos_token_ids, str):
870
- new_eos_token_ids = [new_eos_token_ids]
871
- new_eos_token_ids = [
872
- self.tokenizer.encode(" " + token, add_special_tokens=False)[-1]
873
- for token in new_eos_token_ids
874
- ]
875
- self.eos_token_ids.extend(new_eos_token_ids)
876
-
877
- def reset(self, eos_token_ids: List[int] = None):
878
- eos_token_ids = (
879
- eos_token_ids if eos_token_ids is not None else self.tokenizer.eos_token_ids
880
- )
881
-
882
- if isinstance(eos_token_ids, int):
883
- eos_token_ids = [eos_token_ids]
884
-
885
- if self.eos_token_ids != eos_token_ids:
886
- self.eos_token_ids = eos_token_ids
887
-
888
- def __call__(self, input_ids: mx.array) -> bool:
889
- return input_ids in self.eos_token_ids
890
-
891
-
892
- def print_array_report(t: mx.array, label: Optional[str]) -> dict:
893
- """
894
- Return a dictionary report of an MLX array similar to PyTorch's tensor representation.
895
- Args:
896
- arr: MLX array to analyze
897
- Returns:
898
- Dictionary containing shape, dtype, value representation, and statistics
899
- """
900
-
901
- from pprint import pprint
902
-
903
- # Get basic statistics
904
- mean_val = mx.mean(t)
905
- std_val = mx.std(t)
906
- min_val = mx.min(t)
907
- max_val = mx.max(t)
908
-
909
- report = {
910
- "shape": f"{tuple(t.shape)}",
911
- "dtype": str(t.dtype),
912
- "value": repr(t),
913
- "mean": f"array({mean_val}, dtype={t.dtype})",
914
- "std": f"array({std_val}, dtype={t.dtype})",
915
- "min": f"array({min_val}, dtype={t.dtype})",
916
- "max": f"array({max_val}, dtype={t.dtype})",
917
- "label": label if label else "array",
918
- }
919
-
920
- # Print each field, handling 'value' specially
921
- print("{")
922
- for key, value in report.items():
923
- if key == "value":
924
- print(f" '{key}': {value},") # No quotes around value
925
- else:
926
- print(f" '{key}': {repr(value)},")
927
- print("}")
928
- return report