nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
|
@@ -1,186 +0,0 @@
|
|
|
1
|
-
import mlx.core as mx
|
|
2
|
-
import numpy as np
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
def gaussian_blur_axis(image, sigma, axis):
|
|
6
|
-
"""
|
|
7
|
-
Applies a 1D Gaussian blur along the given axis.
|
|
8
|
-
This version works for arrays with any number of dimensions.
|
|
9
|
-
"""
|
|
10
|
-
radius = int(3 * sigma)
|
|
11
|
-
if radius < 1:
|
|
12
|
-
return image
|
|
13
|
-
x = mx.arange(-radius, radius + 1)
|
|
14
|
-
kernel = mx.exp(-(x**2) / (2 * sigma**2))
|
|
15
|
-
kernel = kernel / mx.sum(kernel)
|
|
16
|
-
|
|
17
|
-
# MLX doesn't have a direct apply_along_axis equivalent,
|
|
18
|
-
# so we'll implement the convolution differently based on the axis
|
|
19
|
-
|
|
20
|
-
# Helper function to apply 1D convolution along specific axis
|
|
21
|
-
def conv_1d(array, kernel, axis):
|
|
22
|
-
# Reshape kernel to broadcast along the right dimensions
|
|
23
|
-
kernel_shape = [1] * image.ndim
|
|
24
|
-
kernel_shape[axis] = len(kernel)
|
|
25
|
-
kernel_reshaped = kernel.reshape(kernel_shape)
|
|
26
|
-
|
|
27
|
-
# Pad the array
|
|
28
|
-
pad_width = [(0, 0)] * image.ndim
|
|
29
|
-
pad_width[axis] = (radius, radius)
|
|
30
|
-
padded = mx.pad(array, pad_width, mode="edge")
|
|
31
|
-
|
|
32
|
-
# Perform convolution via sliding window sum
|
|
33
|
-
result = mx.zeros_like(array)
|
|
34
|
-
slices = [slice(None)] * padded.ndim
|
|
35
|
-
|
|
36
|
-
for i in range(2 * radius + 1):
|
|
37
|
-
slices[axis] = slice(i, i + array.shape[axis])
|
|
38
|
-
result = result + padded[tuple(slices)] * kernel_reshaped
|
|
39
|
-
|
|
40
|
-
return result
|
|
41
|
-
|
|
42
|
-
return conv_1d(image, kernel, axis)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
def bilinear_interpolate(image, new_height, new_width, align_corners=False):
|
|
46
|
-
"""
|
|
47
|
-
Performs bilinear interpolation on an array whose spatial dimensions are the first two.
|
|
48
|
-
It supports extra dimensions (e.g. channels or batch dimensions that have been moved to the trailing axes).
|
|
49
|
-
"""
|
|
50
|
-
# image is assumed to have shape (H, W, ...) where H and W are spatial dimensions.
|
|
51
|
-
H_in, W_in = image.shape[0], image.shape[1]
|
|
52
|
-
|
|
53
|
-
# Compute sampling positions in the input image.
|
|
54
|
-
if new_height == 1:
|
|
55
|
-
row_positions = mx.array([0.0])
|
|
56
|
-
else:
|
|
57
|
-
if align_corners:
|
|
58
|
-
row_positions = mx.linspace(0, H_in - 1, new_height)
|
|
59
|
-
else:
|
|
60
|
-
row_positions = (mx.arange(new_height) + 0.5) * H_in / new_height - 0.5
|
|
61
|
-
|
|
62
|
-
if new_width == 1:
|
|
63
|
-
col_positions = mx.array([0.0])
|
|
64
|
-
else:
|
|
65
|
-
if align_corners:
|
|
66
|
-
col_positions = mx.linspace(0, W_in - 1, new_width)
|
|
67
|
-
else:
|
|
68
|
-
col_positions = (mx.arange(new_width) + 0.5) * W_in / new_width - 0.5
|
|
69
|
-
|
|
70
|
-
# Compute floor and ceil indices.
|
|
71
|
-
row_floor = mx.floor(row_positions).astype(mx.int32)
|
|
72
|
-
col_floor = mx.floor(col_positions).astype(mx.int32)
|
|
73
|
-
row_ceil = row_floor + 1
|
|
74
|
-
col_ceil = col_floor + 1
|
|
75
|
-
|
|
76
|
-
row_floor = mx.clip(row_floor, 0, H_in - 1)
|
|
77
|
-
row_ceil = mx.clip(row_ceil, 0, H_in - 1)
|
|
78
|
-
col_floor = mx.clip(col_floor, 0, W_in - 1)
|
|
79
|
-
col_ceil = mx.clip(col_ceil, 0, W_in - 1)
|
|
80
|
-
|
|
81
|
-
row_weight = row_positions - row_floor # shape (new_height,)
|
|
82
|
-
col_weight = col_positions - col_floor # shape (new_width,)
|
|
83
|
-
|
|
84
|
-
# Use advanced indexing for gather operations
|
|
85
|
-
# Create meshgrid for coordinates
|
|
86
|
-
row_floor_grid, col_floor_grid = mx.meshgrid(row_floor, col_floor, indexing="ij")
|
|
87
|
-
row_ceil_grid, col_floor_grid = mx.meshgrid(row_ceil, col_floor, indexing="ij")
|
|
88
|
-
row_floor_grid, col_ceil_grid = mx.meshgrid(row_floor, col_ceil, indexing="ij")
|
|
89
|
-
row_ceil_grid, col_ceil_grid = mx.meshgrid(row_ceil, col_ceil, indexing="ij")
|
|
90
|
-
|
|
91
|
-
# Gather the four surrounding pixels using take_along_axis
|
|
92
|
-
# For higher dimensional arrays, we'll need to reshape and broadcast
|
|
93
|
-
extra_dims = image.ndim - 2
|
|
94
|
-
|
|
95
|
-
def gather_pixels(row_indices, col_indices):
|
|
96
|
-
# Flatten the spatial dimensions for gathering
|
|
97
|
-
flat_indices = row_indices * W_in + col_indices
|
|
98
|
-
flat_image = mx.reshape(image, (-1,) + image.shape[2:])
|
|
99
|
-
# Gather and reshape back
|
|
100
|
-
gathered = mx.take(flat_image, flat_indices.reshape(-1), axis=0)
|
|
101
|
-
return mx.reshape(gathered, (new_height, new_width) + image.shape[2:])
|
|
102
|
-
|
|
103
|
-
top_left = gather_pixels(row_floor_grid, col_floor_grid)
|
|
104
|
-
top_right = gather_pixels(row_floor_grid, col_ceil_grid)
|
|
105
|
-
bottom_left = gather_pixels(row_ceil_grid, col_floor_grid)
|
|
106
|
-
bottom_right = gather_pixels(row_ceil_grid, col_ceil_grid)
|
|
107
|
-
|
|
108
|
-
# Expand the weights to have shape (new_height, new_width, *[1]*extra_dims)
|
|
109
|
-
r_weight = row_weight.reshape(new_height, 1, *([1] * extra_dims))
|
|
110
|
-
c_weight = col_weight.reshape(1, new_width, *([1] * extra_dims))
|
|
111
|
-
|
|
112
|
-
# Perform bilinear interpolation.
|
|
113
|
-
result = (
|
|
114
|
-
(1 - r_weight) * (1 - c_weight) * top_left
|
|
115
|
-
+ (1 - r_weight) * c_weight * top_right
|
|
116
|
-
+ r_weight * (1 - c_weight) * bottom_left
|
|
117
|
-
+ r_weight * c_weight * bottom_right
|
|
118
|
-
)
|
|
119
|
-
return result
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
def resize_bilinear(image, new_size, align_corners=False, antialias=True):
|
|
123
|
-
"""
|
|
124
|
-
Resizes an image (or embedding tensor) to new_size=(new_height, new_width)
|
|
125
|
-
using bilinear interpolation with MLX.
|
|
126
|
-
|
|
127
|
-
Supports:
|
|
128
|
-
- 2D: (H, W)
|
|
129
|
-
- 3D: (H, W, C)
|
|
130
|
-
- 4D: (B, C, H, W) (assumed for typical image batches)
|
|
131
|
-
"""
|
|
132
|
-
new_height, new_width = new_size
|
|
133
|
-
|
|
134
|
-
# Convert numpy arrays to MLX arrays if needed
|
|
135
|
-
if isinstance(image, np.ndarray):
|
|
136
|
-
image = mx.array(image)
|
|
137
|
-
|
|
138
|
-
if image.ndim == 2 or image.ndim == 3:
|
|
139
|
-
# Assume spatial dims are the first two.
|
|
140
|
-
resized = image
|
|
141
|
-
H_in, W_in = image.shape[:2]
|
|
142
|
-
if antialias:
|
|
143
|
-
if new_height < H_in:
|
|
144
|
-
scale_y = new_height / H_in
|
|
145
|
-
sigma_y = (1 / scale_y - 1) / 2.0 # heuristic
|
|
146
|
-
if sigma_y > 0:
|
|
147
|
-
resized = gaussian_blur_axis(resized, sigma_y, axis=0)
|
|
148
|
-
if new_width < W_in:
|
|
149
|
-
scale_x = new_width / W_in
|
|
150
|
-
sigma_x = (1 / scale_x - 1) / 2.0
|
|
151
|
-
if sigma_x > 0:
|
|
152
|
-
resized = gaussian_blur_axis(resized, sigma_x, axis=1)
|
|
153
|
-
resized = bilinear_interpolate(
|
|
154
|
-
resized, new_height, new_width, align_corners=align_corners
|
|
155
|
-
)
|
|
156
|
-
return resized
|
|
157
|
-
|
|
158
|
-
elif image.ndim == 4:
|
|
159
|
-
# Assume shape is (B, C, H, W) (typical PyTorch/MLX format).
|
|
160
|
-
B, C, H_in, W_in = image.shape
|
|
161
|
-
# Permute to bring spatial dims to the front: (H, W, B, C)
|
|
162
|
-
image_perm = mx.transpose(image, (2, 3, 0, 1))
|
|
163
|
-
resized = image_perm
|
|
164
|
-
if antialias:
|
|
165
|
-
if new_height < H_in:
|
|
166
|
-
scale_y = new_height / H_in
|
|
167
|
-
sigma_y = (1 / scale_y - 1) / 2.0
|
|
168
|
-
if sigma_y > 0:
|
|
169
|
-
resized = gaussian_blur_axis(resized, sigma_y, axis=0)
|
|
170
|
-
if new_width < W_in:
|
|
171
|
-
scale_x = new_width / W_in
|
|
172
|
-
sigma_x = (1 / scale_x - 1) / 2.0
|
|
173
|
-
if sigma_x > 0:
|
|
174
|
-
resized = gaussian_blur_axis(resized, sigma_x, axis=1)
|
|
175
|
-
resized = bilinear_interpolate(
|
|
176
|
-
resized, new_height, new_width, align_corners=align_corners
|
|
177
|
-
)
|
|
178
|
-
# Permute back to (B, C, new_height, new_width)
|
|
179
|
-
resized = mx.transpose(resized, (2, 3, 0, 1))
|
|
180
|
-
return resized
|
|
181
|
-
|
|
182
|
-
else:
|
|
183
|
-
raise ValueError("Unsupported image dimensions.")
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
#
|
|
@@ -1,233 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import Optional, Tuple
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
|
|
8
|
-
from ..base import (
|
|
9
|
-
LanguageModelOutput,
|
|
10
|
-
create_attention_mask,
|
|
11
|
-
scaled_dot_product_attention,
|
|
12
|
-
)
|
|
13
|
-
from ..cache import KVCache, RotatingKVCache
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
@dataclass
|
|
17
|
-
class TextConfig:
|
|
18
|
-
model_type: str
|
|
19
|
-
hidden_size: int = 8192
|
|
20
|
-
head_dim: int = 128
|
|
21
|
-
num_hidden_layers: int = 40
|
|
22
|
-
intermediate_size: int = 14336
|
|
23
|
-
num_attention_heads: int = 64
|
|
24
|
-
num_key_value_heads: int = 8
|
|
25
|
-
rope_theta: float = 50000.0
|
|
26
|
-
vocab_size: int = 256000
|
|
27
|
-
layer_norm_eps: float = 1e-05
|
|
28
|
-
logit_scale: float = 0.0625
|
|
29
|
-
attention_bias: bool = False
|
|
30
|
-
layer_norm_bias: bool = False
|
|
31
|
-
sliding_window: int = 4096
|
|
32
|
-
sliding_window_pattern: int = 4
|
|
33
|
-
max_position_embeddings: int = 4096
|
|
34
|
-
|
|
35
|
-
@classmethod
|
|
36
|
-
def from_dict(cls, params):
|
|
37
|
-
return cls(
|
|
38
|
-
**{
|
|
39
|
-
k: v
|
|
40
|
-
for k, v in params.items()
|
|
41
|
-
if k in inspect.signature(cls).parameters
|
|
42
|
-
}
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
class Attention(nn.Module):
|
|
47
|
-
def __init__(self, config: TextConfig, layer_idx: int):
|
|
48
|
-
super().__init__()
|
|
49
|
-
self.config = config
|
|
50
|
-
self.layer_idx = layer_idx
|
|
51
|
-
|
|
52
|
-
dim = config.hidden_size
|
|
53
|
-
self.n_heads = n_heads = config.num_attention_heads
|
|
54
|
-
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
55
|
-
self.head_dim = head_dim = config.head_dim
|
|
56
|
-
if (head_dim * n_heads) != dim:
|
|
57
|
-
raise ValueError(
|
|
58
|
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {dim}"
|
|
59
|
-
f" and `num_heads`: {n_heads})."
|
|
60
|
-
)
|
|
61
|
-
self.scale = head_dim**-0.5
|
|
62
|
-
|
|
63
|
-
attetion_bias = config.attention_bias
|
|
64
|
-
|
|
65
|
-
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias)
|
|
66
|
-
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
|
|
67
|
-
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
|
|
68
|
-
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias)
|
|
69
|
-
|
|
70
|
-
self.rope = nn.RoPE(head_dim, traditional=True, base=config.rope_theta)
|
|
71
|
-
|
|
72
|
-
self.use_sliding_window = (layer_idx + 1) % config.sliding_window_pattern != 0
|
|
73
|
-
|
|
74
|
-
def __call__(
|
|
75
|
-
self,
|
|
76
|
-
x: mx.array,
|
|
77
|
-
mask: Optional[mx.array] = None,
|
|
78
|
-
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
79
|
-
) -> mx.array:
|
|
80
|
-
B, L, D = x.shape
|
|
81
|
-
|
|
82
|
-
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
83
|
-
|
|
84
|
-
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
85
|
-
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
86
|
-
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
87
|
-
|
|
88
|
-
# Apply RoPE only if sliding window is enabled
|
|
89
|
-
if self.use_sliding_window:
|
|
90
|
-
if cache is None:
|
|
91
|
-
queries = self.rope(queries)
|
|
92
|
-
keys = self.rope(keys)
|
|
93
|
-
else:
|
|
94
|
-
queries = self.rope(queries, offset=cache.offset)
|
|
95
|
-
keys = self.rope(keys, offset=cache.offset)
|
|
96
|
-
|
|
97
|
-
if cache is not None:
|
|
98
|
-
keys, values = cache.update_and_fetch(keys, values)
|
|
99
|
-
|
|
100
|
-
if self.use_sliding_window and mask is not None and isinstance(mask, mx.array):
|
|
101
|
-
key_len = keys.shape[-2]
|
|
102
|
-
if mask.shape[-1] != key_len:
|
|
103
|
-
mask = mask[..., -key_len:]
|
|
104
|
-
|
|
105
|
-
output = scaled_dot_product_attention(
|
|
106
|
-
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
107
|
-
)
|
|
108
|
-
|
|
109
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
110
|
-
return self.o_proj(output)
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
class MLP(nn.Module):
|
|
114
|
-
def __init__(self, dim, hidden_dim):
|
|
115
|
-
super().__init__()
|
|
116
|
-
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
117
|
-
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
118
|
-
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
119
|
-
|
|
120
|
-
def __call__(self, x):
|
|
121
|
-
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
class TransformerBlock(nn.Module):
|
|
125
|
-
def __init__(self, config: TextConfig, layer_idx: int):
|
|
126
|
-
super().__init__()
|
|
127
|
-
self.hidden_size = config.hidden_size
|
|
128
|
-
self.n_heads = config.num_attention_heads
|
|
129
|
-
|
|
130
|
-
self.self_attn = Attention(config, layer_idx)
|
|
131
|
-
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
|
132
|
-
self.input_layernorm = nn.LayerNorm(
|
|
133
|
-
config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
|
|
134
|
-
)
|
|
135
|
-
self.config = config
|
|
136
|
-
|
|
137
|
-
def __call__(
|
|
138
|
-
self,
|
|
139
|
-
x: mx.array,
|
|
140
|
-
mask: Optional[mx.array] = None,
|
|
141
|
-
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
142
|
-
) -> mx.array:
|
|
143
|
-
h = self.input_layernorm(x)
|
|
144
|
-
attn_h = self.self_attn(h, mask, cache)
|
|
145
|
-
ff_h = self.mlp(h)
|
|
146
|
-
return attn_h + ff_h + x
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
class CohereModel(nn.Module):
|
|
150
|
-
def __init__(self, config: TextConfig):
|
|
151
|
-
super().__init__()
|
|
152
|
-
self.config = config
|
|
153
|
-
self.vocab_size = config.vocab_size
|
|
154
|
-
self.num_hidden_layers = config.num_hidden_layers
|
|
155
|
-
assert self.vocab_size > 0
|
|
156
|
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
157
|
-
self.layers = [
|
|
158
|
-
TransformerBlock(config, layer_idx=i)
|
|
159
|
-
for i in range(config.num_hidden_layers)
|
|
160
|
-
]
|
|
161
|
-
self.norm = nn.LayerNorm(
|
|
162
|
-
config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
|
|
163
|
-
)
|
|
164
|
-
|
|
165
|
-
def __call__(
|
|
166
|
-
self,
|
|
167
|
-
inputs: mx.array,
|
|
168
|
-
inputs_embeds: mx.array = None,
|
|
169
|
-
mask: mx.array = None,
|
|
170
|
-
cache=None,
|
|
171
|
-
):
|
|
172
|
-
if inputs_embeds is None:
|
|
173
|
-
h = self.embed_tokens(inputs)
|
|
174
|
-
else:
|
|
175
|
-
h = inputs_embeds
|
|
176
|
-
|
|
177
|
-
if cache is None:
|
|
178
|
-
cache = [None] * len(self.layers)
|
|
179
|
-
|
|
180
|
-
if mask is None:
|
|
181
|
-
j = self.config.sliding_window_pattern
|
|
182
|
-
mask = create_attention_mask(h, cache[j - 1 : j])
|
|
183
|
-
|
|
184
|
-
for layer, c in zip(self.layers, cache):
|
|
185
|
-
h = layer(h, mask, c)
|
|
186
|
-
|
|
187
|
-
return self.norm(h)
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
class LanguageModel(nn.Module):
|
|
191
|
-
def __init__(self, config: TextConfig):
|
|
192
|
-
super().__init__()
|
|
193
|
-
self.model_type = config.model_type
|
|
194
|
-
self.model = CohereModel(config)
|
|
195
|
-
self.config = config
|
|
196
|
-
|
|
197
|
-
def __call__(
|
|
198
|
-
self,
|
|
199
|
-
inputs: mx.array,
|
|
200
|
-
inputs_embeds: mx.array = None,
|
|
201
|
-
mask: mx.array = None,
|
|
202
|
-
cache=None,
|
|
203
|
-
):
|
|
204
|
-
out = self.model(inputs, inputs_embeds, mask, cache)
|
|
205
|
-
out = self.model.embed_tokens.as_linear(out)
|
|
206
|
-
out = out * self.model.config.logit_scale
|
|
207
|
-
return LanguageModelOutput(logits=out)
|
|
208
|
-
|
|
209
|
-
def make_cache(self):
|
|
210
|
-
caches = []
|
|
211
|
-
for i in range(self.config.num_hidden_layers):
|
|
212
|
-
if (
|
|
213
|
-
i % self.config.sliding_window_pattern
|
|
214
|
-
== self.config.sliding_window_pattern - 1
|
|
215
|
-
):
|
|
216
|
-
caches.append(KVCache())
|
|
217
|
-
else:
|
|
218
|
-
caches.append(
|
|
219
|
-
RotatingKVCache(max_size=self.config.sliding_window, keep=0)
|
|
220
|
-
)
|
|
221
|
-
return caches
|
|
222
|
-
|
|
223
|
-
@property
|
|
224
|
-
def layers(self):
|
|
225
|
-
return self.model.layers
|
|
226
|
-
|
|
227
|
-
@property
|
|
228
|
-
def head_dim(self):
|
|
229
|
-
return self.model.config.head_dim
|
|
230
|
-
|
|
231
|
-
@property
|
|
232
|
-
def n_kv_heads(self):
|
|
233
|
-
return self.model.config.num_key_value_heads
|