nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,186 +0,0 @@
1
- import mlx.core as mx
2
- import numpy as np
3
-
4
-
5
- def gaussian_blur_axis(image, sigma, axis):
6
- """
7
- Applies a 1D Gaussian blur along the given axis.
8
- This version works for arrays with any number of dimensions.
9
- """
10
- radius = int(3 * sigma)
11
- if radius < 1:
12
- return image
13
- x = mx.arange(-radius, radius + 1)
14
- kernel = mx.exp(-(x**2) / (2 * sigma**2))
15
- kernel = kernel / mx.sum(kernel)
16
-
17
- # MLX doesn't have a direct apply_along_axis equivalent,
18
- # so we'll implement the convolution differently based on the axis
19
-
20
- # Helper function to apply 1D convolution along specific axis
21
- def conv_1d(array, kernel, axis):
22
- # Reshape kernel to broadcast along the right dimensions
23
- kernel_shape = [1] * image.ndim
24
- kernel_shape[axis] = len(kernel)
25
- kernel_reshaped = kernel.reshape(kernel_shape)
26
-
27
- # Pad the array
28
- pad_width = [(0, 0)] * image.ndim
29
- pad_width[axis] = (radius, radius)
30
- padded = mx.pad(array, pad_width, mode="edge")
31
-
32
- # Perform convolution via sliding window sum
33
- result = mx.zeros_like(array)
34
- slices = [slice(None)] * padded.ndim
35
-
36
- for i in range(2 * radius + 1):
37
- slices[axis] = slice(i, i + array.shape[axis])
38
- result = result + padded[tuple(slices)] * kernel_reshaped
39
-
40
- return result
41
-
42
- return conv_1d(image, kernel, axis)
43
-
44
-
45
- def bilinear_interpolate(image, new_height, new_width, align_corners=False):
46
- """
47
- Performs bilinear interpolation on an array whose spatial dimensions are the first two.
48
- It supports extra dimensions (e.g. channels or batch dimensions that have been moved to the trailing axes).
49
- """
50
- # image is assumed to have shape (H, W, ...) where H and W are spatial dimensions.
51
- H_in, W_in = image.shape[0], image.shape[1]
52
-
53
- # Compute sampling positions in the input image.
54
- if new_height == 1:
55
- row_positions = mx.array([0.0])
56
- else:
57
- if align_corners:
58
- row_positions = mx.linspace(0, H_in - 1, new_height)
59
- else:
60
- row_positions = (mx.arange(new_height) + 0.5) * H_in / new_height - 0.5
61
-
62
- if new_width == 1:
63
- col_positions = mx.array([0.0])
64
- else:
65
- if align_corners:
66
- col_positions = mx.linspace(0, W_in - 1, new_width)
67
- else:
68
- col_positions = (mx.arange(new_width) + 0.5) * W_in / new_width - 0.5
69
-
70
- # Compute floor and ceil indices.
71
- row_floor = mx.floor(row_positions).astype(mx.int32)
72
- col_floor = mx.floor(col_positions).astype(mx.int32)
73
- row_ceil = row_floor + 1
74
- col_ceil = col_floor + 1
75
-
76
- row_floor = mx.clip(row_floor, 0, H_in - 1)
77
- row_ceil = mx.clip(row_ceil, 0, H_in - 1)
78
- col_floor = mx.clip(col_floor, 0, W_in - 1)
79
- col_ceil = mx.clip(col_ceil, 0, W_in - 1)
80
-
81
- row_weight = row_positions - row_floor # shape (new_height,)
82
- col_weight = col_positions - col_floor # shape (new_width,)
83
-
84
- # Use advanced indexing for gather operations
85
- # Create meshgrid for coordinates
86
- row_floor_grid, col_floor_grid = mx.meshgrid(row_floor, col_floor, indexing="ij")
87
- row_ceil_grid, col_floor_grid = mx.meshgrid(row_ceil, col_floor, indexing="ij")
88
- row_floor_grid, col_ceil_grid = mx.meshgrid(row_floor, col_ceil, indexing="ij")
89
- row_ceil_grid, col_ceil_grid = mx.meshgrid(row_ceil, col_ceil, indexing="ij")
90
-
91
- # Gather the four surrounding pixels using take_along_axis
92
- # For higher dimensional arrays, we'll need to reshape and broadcast
93
- extra_dims = image.ndim - 2
94
-
95
- def gather_pixels(row_indices, col_indices):
96
- # Flatten the spatial dimensions for gathering
97
- flat_indices = row_indices * W_in + col_indices
98
- flat_image = mx.reshape(image, (-1,) + image.shape[2:])
99
- # Gather and reshape back
100
- gathered = mx.take(flat_image, flat_indices.reshape(-1), axis=0)
101
- return mx.reshape(gathered, (new_height, new_width) + image.shape[2:])
102
-
103
- top_left = gather_pixels(row_floor_grid, col_floor_grid)
104
- top_right = gather_pixels(row_floor_grid, col_ceil_grid)
105
- bottom_left = gather_pixels(row_ceil_grid, col_floor_grid)
106
- bottom_right = gather_pixels(row_ceil_grid, col_ceil_grid)
107
-
108
- # Expand the weights to have shape (new_height, new_width, *[1]*extra_dims)
109
- r_weight = row_weight.reshape(new_height, 1, *([1] * extra_dims))
110
- c_weight = col_weight.reshape(1, new_width, *([1] * extra_dims))
111
-
112
- # Perform bilinear interpolation.
113
- result = (
114
- (1 - r_weight) * (1 - c_weight) * top_left
115
- + (1 - r_weight) * c_weight * top_right
116
- + r_weight * (1 - c_weight) * bottom_left
117
- + r_weight * c_weight * bottom_right
118
- )
119
- return result
120
-
121
-
122
- def resize_bilinear(image, new_size, align_corners=False, antialias=True):
123
- """
124
- Resizes an image (or embedding tensor) to new_size=(new_height, new_width)
125
- using bilinear interpolation with MLX.
126
-
127
- Supports:
128
- - 2D: (H, W)
129
- - 3D: (H, W, C)
130
- - 4D: (B, C, H, W) (assumed for typical image batches)
131
- """
132
- new_height, new_width = new_size
133
-
134
- # Convert numpy arrays to MLX arrays if needed
135
- if isinstance(image, np.ndarray):
136
- image = mx.array(image)
137
-
138
- if image.ndim == 2 or image.ndim == 3:
139
- # Assume spatial dims are the first two.
140
- resized = image
141
- H_in, W_in = image.shape[:2]
142
- if antialias:
143
- if new_height < H_in:
144
- scale_y = new_height / H_in
145
- sigma_y = (1 / scale_y - 1) / 2.0 # heuristic
146
- if sigma_y > 0:
147
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
148
- if new_width < W_in:
149
- scale_x = new_width / W_in
150
- sigma_x = (1 / scale_x - 1) / 2.0
151
- if sigma_x > 0:
152
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
153
- resized = bilinear_interpolate(
154
- resized, new_height, new_width, align_corners=align_corners
155
- )
156
- return resized
157
-
158
- elif image.ndim == 4:
159
- # Assume shape is (B, C, H, W) (typical PyTorch/MLX format).
160
- B, C, H_in, W_in = image.shape
161
- # Permute to bring spatial dims to the front: (H, W, B, C)
162
- image_perm = mx.transpose(image, (2, 3, 0, 1))
163
- resized = image_perm
164
- if antialias:
165
- if new_height < H_in:
166
- scale_y = new_height / H_in
167
- sigma_y = (1 / scale_y - 1) / 2.0
168
- if sigma_y > 0:
169
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
170
- if new_width < W_in:
171
- scale_x = new_width / W_in
172
- sigma_x = (1 / scale_x - 1) / 2.0
173
- if sigma_x > 0:
174
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
175
- resized = bilinear_interpolate(
176
- resized, new_height, new_width, align_corners=align_corners
177
- )
178
- # Permute back to (B, C, new_height, new_width)
179
- resized = mx.transpose(resized, (2, 3, 0, 1))
180
- return resized
181
-
182
- else:
183
- raise ValueError("Unsupported image dimensions.")
184
-
185
-
186
- #
@@ -1,233 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional, Tuple
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache, RotatingKVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 8192
20
- head_dim: int = 128
21
- num_hidden_layers: int = 40
22
- intermediate_size: int = 14336
23
- num_attention_heads: int = 64
24
- num_key_value_heads: int = 8
25
- rope_theta: float = 50000.0
26
- vocab_size: int = 256000
27
- layer_norm_eps: float = 1e-05
28
- logit_scale: float = 0.0625
29
- attention_bias: bool = False
30
- layer_norm_bias: bool = False
31
- sliding_window: int = 4096
32
- sliding_window_pattern: int = 4
33
- max_position_embeddings: int = 4096
34
-
35
- @classmethod
36
- def from_dict(cls, params):
37
- return cls(
38
- **{
39
- k: v
40
- for k, v in params.items()
41
- if k in inspect.signature(cls).parameters
42
- }
43
- )
44
-
45
-
46
- class Attention(nn.Module):
47
- def __init__(self, config: TextConfig, layer_idx: int):
48
- super().__init__()
49
- self.config = config
50
- self.layer_idx = layer_idx
51
-
52
- dim = config.hidden_size
53
- self.n_heads = n_heads = config.num_attention_heads
54
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
55
- self.head_dim = head_dim = config.head_dim
56
- if (head_dim * n_heads) != dim:
57
- raise ValueError(
58
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {dim}"
59
- f" and `num_heads`: {n_heads})."
60
- )
61
- self.scale = head_dim**-0.5
62
-
63
- attetion_bias = config.attention_bias
64
-
65
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias)
66
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
67
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
68
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias)
69
-
70
- self.rope = nn.RoPE(head_dim, traditional=True, base=config.rope_theta)
71
-
72
- self.use_sliding_window = (layer_idx + 1) % config.sliding_window_pattern != 0
73
-
74
- def __call__(
75
- self,
76
- x: mx.array,
77
- mask: Optional[mx.array] = None,
78
- cache: Optional[Tuple[mx.array, mx.array]] = None,
79
- ) -> mx.array:
80
- B, L, D = x.shape
81
-
82
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
83
-
84
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
85
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
86
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
87
-
88
- # Apply RoPE only if sliding window is enabled
89
- if self.use_sliding_window:
90
- if cache is None:
91
- queries = self.rope(queries)
92
- keys = self.rope(keys)
93
- else:
94
- queries = self.rope(queries, offset=cache.offset)
95
- keys = self.rope(keys, offset=cache.offset)
96
-
97
- if cache is not None:
98
- keys, values = cache.update_and_fetch(keys, values)
99
-
100
- if self.use_sliding_window and mask is not None and isinstance(mask, mx.array):
101
- key_len = keys.shape[-2]
102
- if mask.shape[-1] != key_len:
103
- mask = mask[..., -key_len:]
104
-
105
- output = scaled_dot_product_attention(
106
- queries, keys, values, cache, scale=self.scale, mask=mask
107
- )
108
-
109
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
110
- return self.o_proj(output)
111
-
112
-
113
- class MLP(nn.Module):
114
- def __init__(self, dim, hidden_dim):
115
- super().__init__()
116
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
117
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
118
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
119
-
120
- def __call__(self, x):
121
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
122
-
123
-
124
- class TransformerBlock(nn.Module):
125
- def __init__(self, config: TextConfig, layer_idx: int):
126
- super().__init__()
127
- self.hidden_size = config.hidden_size
128
- self.n_heads = config.num_attention_heads
129
-
130
- self.self_attn = Attention(config, layer_idx)
131
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
132
- self.input_layernorm = nn.LayerNorm(
133
- config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
134
- )
135
- self.config = config
136
-
137
- def __call__(
138
- self,
139
- x: mx.array,
140
- mask: Optional[mx.array] = None,
141
- cache: Optional[Tuple[mx.array, mx.array]] = None,
142
- ) -> mx.array:
143
- h = self.input_layernorm(x)
144
- attn_h = self.self_attn(h, mask, cache)
145
- ff_h = self.mlp(h)
146
- return attn_h + ff_h + x
147
-
148
-
149
- class CohereModel(nn.Module):
150
- def __init__(self, config: TextConfig):
151
- super().__init__()
152
- self.config = config
153
- self.vocab_size = config.vocab_size
154
- self.num_hidden_layers = config.num_hidden_layers
155
- assert self.vocab_size > 0
156
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
157
- self.layers = [
158
- TransformerBlock(config, layer_idx=i)
159
- for i in range(config.num_hidden_layers)
160
- ]
161
- self.norm = nn.LayerNorm(
162
- config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
163
- )
164
-
165
- def __call__(
166
- self,
167
- inputs: mx.array,
168
- inputs_embeds: mx.array = None,
169
- mask: mx.array = None,
170
- cache=None,
171
- ):
172
- if inputs_embeds is None:
173
- h = self.embed_tokens(inputs)
174
- else:
175
- h = inputs_embeds
176
-
177
- if cache is None:
178
- cache = [None] * len(self.layers)
179
-
180
- if mask is None:
181
- j = self.config.sliding_window_pattern
182
- mask = create_attention_mask(h, cache[j - 1 : j])
183
-
184
- for layer, c in zip(self.layers, cache):
185
- h = layer(h, mask, c)
186
-
187
- return self.norm(h)
188
-
189
-
190
- class LanguageModel(nn.Module):
191
- def __init__(self, config: TextConfig):
192
- super().__init__()
193
- self.model_type = config.model_type
194
- self.model = CohereModel(config)
195
- self.config = config
196
-
197
- def __call__(
198
- self,
199
- inputs: mx.array,
200
- inputs_embeds: mx.array = None,
201
- mask: mx.array = None,
202
- cache=None,
203
- ):
204
- out = self.model(inputs, inputs_embeds, mask, cache)
205
- out = self.model.embed_tokens.as_linear(out)
206
- out = out * self.model.config.logit_scale
207
- return LanguageModelOutput(logits=out)
208
-
209
- def make_cache(self):
210
- caches = []
211
- for i in range(self.config.num_hidden_layers):
212
- if (
213
- i % self.config.sliding_window_pattern
214
- == self.config.sliding_window_pattern - 1
215
- ):
216
- caches.append(KVCache())
217
- else:
218
- caches.append(
219
- RotatingKVCache(max_size=self.config.sliding_window, keep=0)
220
- )
221
- return caches
222
-
223
- @property
224
- def layers(self):
225
- return self.model.layers
226
-
227
- @property
228
- def head_dim(self):
229
- return self.model.config.head_dim
230
-
231
- @property
232
- def n_kv_heads(self):
233
- return self.model.config.num_key_value_heads