nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
|
@@ -1,385 +0,0 @@
|
|
|
1
|
-
import glob
|
|
2
|
-
import inspect
|
|
3
|
-
import json
|
|
4
|
-
from dataclasses import dataclass
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
from typing import List, Optional, Tuple, Union
|
|
7
|
-
|
|
8
|
-
import mlx.core as mx
|
|
9
|
-
import mlx.nn as nn
|
|
10
|
-
import numpy as np
|
|
11
|
-
from huggingface_hub import snapshot_download
|
|
12
|
-
from PIL import Image
|
|
13
|
-
from transformers.image_processing_utils import BatchFeature
|
|
14
|
-
from transformers.image_utils import to_numpy_array
|
|
15
|
-
|
|
16
|
-
from ..base import BaseImageProcessor, expand2square
|
|
17
|
-
from .language import LanguageModel, TextConfig
|
|
18
|
-
from .vision import VisionConfig, VisionModel
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
@dataclass
|
|
22
|
-
class ProjectorConfig:
|
|
23
|
-
cls: str
|
|
24
|
-
model_type: str
|
|
25
|
-
params: dict
|
|
26
|
-
|
|
27
|
-
@classmethod
|
|
28
|
-
def from_dict(cls, params):
|
|
29
|
-
return cls(
|
|
30
|
-
**{
|
|
31
|
-
k: v
|
|
32
|
-
for k, v in params.items()
|
|
33
|
-
if k in inspect.signature(cls).parameters
|
|
34
|
-
}
|
|
35
|
-
)
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
@dataclass
|
|
39
|
-
class ModelConfig:
|
|
40
|
-
text_config: TextConfig
|
|
41
|
-
vision_config: VisionConfig
|
|
42
|
-
projector_config: ProjectorConfig
|
|
43
|
-
model_type: str
|
|
44
|
-
ignore_index: int = -100
|
|
45
|
-
image_token_index: int = 100015
|
|
46
|
-
vision_feature_select_strategy: str = "default"
|
|
47
|
-
select_layer: int = -1
|
|
48
|
-
pad_id: int = 100001
|
|
49
|
-
num_image_tokens: int = 576
|
|
50
|
-
vocab_size: int = 32000
|
|
51
|
-
eos_token_id: Optional[List[int]] = None
|
|
52
|
-
|
|
53
|
-
@classmethod
|
|
54
|
-
def from_dict(cls, params):
|
|
55
|
-
if "aligner_config" in params:
|
|
56
|
-
params["projector_config"] = params["aligner_config"]
|
|
57
|
-
del params["aligner_config"]
|
|
58
|
-
|
|
59
|
-
return cls(
|
|
60
|
-
**{
|
|
61
|
-
k: v
|
|
62
|
-
for k, v in params.items()
|
|
63
|
-
if k in inspect.signature(cls).parameters
|
|
64
|
-
}
|
|
65
|
-
)
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
class ImageProcessor(BaseImageProcessor):
|
|
69
|
-
model_input_names = ["pixel_values"]
|
|
70
|
-
|
|
71
|
-
def __init__(
|
|
72
|
-
self,
|
|
73
|
-
config,
|
|
74
|
-
image_size: int = 384,
|
|
75
|
-
min_size: int = 14,
|
|
76
|
-
image_mean: Union[Tuple[float, float, float], List[float]] = (
|
|
77
|
-
0.5,
|
|
78
|
-
0.5,
|
|
79
|
-
0.5,
|
|
80
|
-
),
|
|
81
|
-
image_std: Union[Tuple[float, float, float], List[float]] = (
|
|
82
|
-
0.5,
|
|
83
|
-
0.5,
|
|
84
|
-
0.5,
|
|
85
|
-
),
|
|
86
|
-
rescale_factor: float = 1.0 / 255.0,
|
|
87
|
-
do_normalize: bool = True,
|
|
88
|
-
**kwargs,
|
|
89
|
-
):
|
|
90
|
-
super().__init__(**kwargs)
|
|
91
|
-
if "high_res_cfg" in config["vision_config"]["params"]:
|
|
92
|
-
self.image_size = config["vision_config"]["params"]["high_res_cfg"][
|
|
93
|
-
"image_size"
|
|
94
|
-
]
|
|
95
|
-
self.image_mean = config["vision_config"]["params"]["high_res_cfg"][
|
|
96
|
-
"pixel_mean"
|
|
97
|
-
]
|
|
98
|
-
self.image_std = config["vision_config"]["params"]["high_res_cfg"][
|
|
99
|
-
"pixel_std"
|
|
100
|
-
]
|
|
101
|
-
self.do_normalize = False
|
|
102
|
-
else:
|
|
103
|
-
self.image_size = image_size
|
|
104
|
-
self.image_mean = image_mean
|
|
105
|
-
self.image_std = image_std
|
|
106
|
-
self.do_normalize = do_normalize
|
|
107
|
-
|
|
108
|
-
self.rescale_factor = rescale_factor
|
|
109
|
-
self.min_size = min_size
|
|
110
|
-
|
|
111
|
-
if image_mean is None:
|
|
112
|
-
self.background_color = (127, 127, 127)
|
|
113
|
-
else:
|
|
114
|
-
self.background_color = tuple([int(x * 255) for x in self.image_mean])
|
|
115
|
-
|
|
116
|
-
def resize(self, pil_img: Image) -> np.ndarray:
|
|
117
|
-
"""
|
|
118
|
-
|
|
119
|
-
Args:
|
|
120
|
-
pil_img (PIL.Image): [H, W, 3] in PIL.Image in RGB
|
|
121
|
-
|
|
122
|
-
Returns:
|
|
123
|
-
x (np.ndarray): [3, self.image_size, self.image_size]
|
|
124
|
-
"""
|
|
125
|
-
|
|
126
|
-
width, height = pil_img.size
|
|
127
|
-
max_size = max(width, height)
|
|
128
|
-
|
|
129
|
-
size = [
|
|
130
|
-
max(int(height / max_size * self.image_size), self.min_size),
|
|
131
|
-
max(int(width / max_size * self.image_size), self.min_size),
|
|
132
|
-
]
|
|
133
|
-
|
|
134
|
-
if width <= 0 or height <= 0 or size[0] <= 0 or size[1] <= 0:
|
|
135
|
-
print(f"orig size = {pil_img.size}, new size = {size}")
|
|
136
|
-
raise ValueError("Invalid size!")
|
|
137
|
-
|
|
138
|
-
pil_img = pil_img.resize(size=tuple(size[::-1]), resample=Image.BICUBIC)
|
|
139
|
-
|
|
140
|
-
pil_img = expand2square(pil_img, self.background_color)
|
|
141
|
-
x = to_numpy_array(pil_img)
|
|
142
|
-
|
|
143
|
-
# [H, W, 3] -> [3, H, W]
|
|
144
|
-
x = np.transpose(x, (2, 0, 1))
|
|
145
|
-
|
|
146
|
-
return x
|
|
147
|
-
|
|
148
|
-
def preprocess(self, images, **kwargs) -> BatchFeature:
|
|
149
|
-
# resize and pad to [self.image_size, self.image_size]
|
|
150
|
-
# then convert from [H, W, 3] to [3, H, W]
|
|
151
|
-
images: List[np.ndarray] = [self.resize(image) for image in images]
|
|
152
|
-
|
|
153
|
-
# resacle from [0, 255] -> [0, 1]
|
|
154
|
-
images = [
|
|
155
|
-
self.rescale(
|
|
156
|
-
image=image,
|
|
157
|
-
scale=self.rescale_factor,
|
|
158
|
-
input_data_format="channels_first",
|
|
159
|
-
)
|
|
160
|
-
for image in images
|
|
161
|
-
]
|
|
162
|
-
|
|
163
|
-
# normalize
|
|
164
|
-
if self.do_normalize:
|
|
165
|
-
images = [
|
|
166
|
-
self.normalize(
|
|
167
|
-
image=image,
|
|
168
|
-
mean=self.image_mean,
|
|
169
|
-
std=self.image_std,
|
|
170
|
-
input_data_format="channels_first",
|
|
171
|
-
)
|
|
172
|
-
for image in images
|
|
173
|
-
]
|
|
174
|
-
|
|
175
|
-
return images
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
class MlpProjector(nn.Module):
|
|
179
|
-
def __init__(self, config: ModelConfig):
|
|
180
|
-
super().__init__()
|
|
181
|
-
|
|
182
|
-
if config.projector_config.params["projector_type"] == "mlp_gelu":
|
|
183
|
-
self.layers = [
|
|
184
|
-
nn.Linear(
|
|
185
|
-
config.vision_config.hidden_size,
|
|
186
|
-
config.text_config.hidden_size,
|
|
187
|
-
bias=True,
|
|
188
|
-
)
|
|
189
|
-
]
|
|
190
|
-
mlp_depth = config.projector_config.params["depth"]
|
|
191
|
-
for _ in range(1, mlp_depth):
|
|
192
|
-
self.layers.append(nn.GELU())
|
|
193
|
-
self.layers.append(
|
|
194
|
-
nn.Linear(
|
|
195
|
-
config.text_config.hidden_size,
|
|
196
|
-
config.text_config.hidden_size,
|
|
197
|
-
bias=True,
|
|
198
|
-
)
|
|
199
|
-
)
|
|
200
|
-
elif (
|
|
201
|
-
config.projector_config.params["projector_type"]
|
|
202
|
-
== "low_high_hybrid_split_mlp_gelu"
|
|
203
|
-
):
|
|
204
|
-
mlp_depth = config.projector_config.params["depth"]
|
|
205
|
-
self.high_up_proj = nn.Linear(
|
|
206
|
-
config.vision_config.hidden_size, config.text_config.hidden_size // 2
|
|
207
|
-
)
|
|
208
|
-
self.low_up_proj = nn.Linear(
|
|
209
|
-
config.vision_config.hidden_size, config.text_config.hidden_size // 2
|
|
210
|
-
)
|
|
211
|
-
|
|
212
|
-
self.layers = []
|
|
213
|
-
for _ in range(1, mlp_depth):
|
|
214
|
-
self.layers.append(nn.GELU())
|
|
215
|
-
self.layers.append(
|
|
216
|
-
nn.Linear(
|
|
217
|
-
config.text_config.hidden_size, config.text_config.hidden_size
|
|
218
|
-
)
|
|
219
|
-
)
|
|
220
|
-
|
|
221
|
-
else:
|
|
222
|
-
projector_type = config.projector_config.params["projector_type"]
|
|
223
|
-
raise ValueError(f"Unknown projector type: {projector_type}")
|
|
224
|
-
|
|
225
|
-
def __call__(self, x: Union[mx.array, Tuple]) -> mx.array:
|
|
226
|
-
|
|
227
|
-
if isinstance(x, tuple):
|
|
228
|
-
high_x, low_x = x
|
|
229
|
-
|
|
230
|
-
high_x = self.high_up_proj(high_x)
|
|
231
|
-
low_x = self.low_up_proj(low_x)
|
|
232
|
-
|
|
233
|
-
B, D = high_x.shape[0], high_x.shape[-1]
|
|
234
|
-
high_x = high_x.reshape(B, -1, D)
|
|
235
|
-
|
|
236
|
-
x = mx.concatenate([high_x, low_x], axis=-1)
|
|
237
|
-
|
|
238
|
-
for layer in self.layers:
|
|
239
|
-
x = layer(x)
|
|
240
|
-
|
|
241
|
-
return x
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
class Model(nn.Module):
|
|
245
|
-
def __init__(self, config: ModelConfig):
|
|
246
|
-
super().__init__()
|
|
247
|
-
self.config = config
|
|
248
|
-
self.vision_model = VisionModel(config.vision_config)
|
|
249
|
-
self.language_model = LanguageModel(config.text_config)
|
|
250
|
-
self.aligner = MlpProjector(config)
|
|
251
|
-
self.vision_feature_layer = config.select_layer
|
|
252
|
-
self.vision_feature_select_strategy = config.vision_feature_select_strategy
|
|
253
|
-
|
|
254
|
-
def add_image_token(
|
|
255
|
-
self,
|
|
256
|
-
image_indices: list,
|
|
257
|
-
input_ids: np.ndarray,
|
|
258
|
-
image_token_index: int,
|
|
259
|
-
num_image_tokens: int,
|
|
260
|
-
add_special_token: bool = False,
|
|
261
|
-
):
|
|
262
|
-
"""
|
|
263
|
-
Inserts image tokens into an array of input IDs at specified indices.
|
|
264
|
-
|
|
265
|
-
Args:
|
|
266
|
-
image_indices (List[int]): Indices where image tokens should be inserted.
|
|
267
|
-
input_ids (np.ndarray): Original array of input IDs, expected to be two-dimensional.
|
|
268
|
-
image_token_index (int): The ID used to represent an image token.
|
|
269
|
-
num_image_tokens (int): Number of image tokens to insert at each index.
|
|
270
|
-
add_special_token (bool): If True, adjusts the indices to include a special token.
|
|
271
|
-
|
|
272
|
-
Returns:
|
|
273
|
-
Tuple of (np.ndarray, np.ndarray):
|
|
274
|
-
- Updated array of input IDs with image tokens inserted.
|
|
275
|
-
- Array indicating the number of image tokens added at each position.
|
|
276
|
-
"""
|
|
277
|
-
input_slices = []
|
|
278
|
-
|
|
279
|
-
start = 0
|
|
280
|
-
flat_input_ids = input_ids.flatten()
|
|
281
|
-
|
|
282
|
-
for index in image_indices:
|
|
283
|
-
end = (index[0] + 1) if add_special_token else index[0]
|
|
284
|
-
|
|
285
|
-
input_slices.append(flat_input_ids[start:end])
|
|
286
|
-
input_slices.append(
|
|
287
|
-
np.full((num_image_tokens,), image_token_index, dtype=np.int64)
|
|
288
|
-
)
|
|
289
|
-
start = index[0] + 1 # Move start past the current image insertion point
|
|
290
|
-
|
|
291
|
-
input_slices.append(flat_input_ids[start:])
|
|
292
|
-
|
|
293
|
-
input_ids = np.concatenate(input_slices, axis=0)
|
|
294
|
-
num_image_tokens_array = np.array(
|
|
295
|
-
[num_image_tokens] * len(image_indices), dtype=np.int64
|
|
296
|
-
)
|
|
297
|
-
input_ids = input_ids.reshape(1, -1)
|
|
298
|
-
|
|
299
|
-
return input_ids, num_image_tokens_array
|
|
300
|
-
|
|
301
|
-
def get_input_embeddings(
|
|
302
|
-
self,
|
|
303
|
-
input_ids: Optional[mx.array] = None,
|
|
304
|
-
pixel_values: Optional[mx.array] = None,
|
|
305
|
-
):
|
|
306
|
-
if pixel_values is None:
|
|
307
|
-
return self.language_model.model.embed_tokens(input_ids)
|
|
308
|
-
|
|
309
|
-
image_token_index = self.config.image_token_index
|
|
310
|
-
num_image_tokens = self.config.num_image_tokens
|
|
311
|
-
|
|
312
|
-
image_token_mask = np.array(input_ids[0] == image_token_index).astype(bool)
|
|
313
|
-
image_indices = np.nonzero(image_token_mask)
|
|
314
|
-
|
|
315
|
-
input_ids, num_image_tokens = self.add_image_token(
|
|
316
|
-
image_indices=image_indices,
|
|
317
|
-
input_ids=np.array(input_ids),
|
|
318
|
-
image_token_index=image_token_index,
|
|
319
|
-
num_image_tokens=num_image_tokens,
|
|
320
|
-
)
|
|
321
|
-
|
|
322
|
-
input_ids = mx.array(input_ids)
|
|
323
|
-
|
|
324
|
-
# Get the input embeddings from the language model
|
|
325
|
-
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
326
|
-
|
|
327
|
-
# Get the ouptut hidden states from the vision model
|
|
328
|
-
if self.config.vision_config.cls == "HybridVisionTower":
|
|
329
|
-
hidden_states = self.vision_model(
|
|
330
|
-
pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
|
|
331
|
-
)
|
|
332
|
-
else:
|
|
333
|
-
hidden_states, _, _ = self.vision_model(
|
|
334
|
-
pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
|
|
335
|
-
)
|
|
336
|
-
|
|
337
|
-
# Pass image features through the multi-modal projector
|
|
338
|
-
image_features = self.aligner(hidden_states)
|
|
339
|
-
|
|
340
|
-
# Insert special image tokens in the input_ids
|
|
341
|
-
final_inputs_embeds = self._merge_input_ids_with_image_features(
|
|
342
|
-
image_features, inputs_embeds, input_ids
|
|
343
|
-
)
|
|
344
|
-
return final_inputs_embeds
|
|
345
|
-
|
|
346
|
-
def _merge_input_ids_with_image_features(
|
|
347
|
-
self, image_features, inputs_embeds, input_ids
|
|
348
|
-
):
|
|
349
|
-
image_token_index = self.config.image_token_index
|
|
350
|
-
|
|
351
|
-
# Positions of <image> tokens in input_ids, assuming batch size is 1
|
|
352
|
-
image_positions = np.where(input_ids[0] == image_token_index)[0].tolist()
|
|
353
|
-
text_segments = []
|
|
354
|
-
start_idx = 0
|
|
355
|
-
|
|
356
|
-
for position in image_positions:
|
|
357
|
-
text_segments.append(inputs_embeds[:, start_idx:position])
|
|
358
|
-
start_idx = position + 1
|
|
359
|
-
|
|
360
|
-
image_embeddings = mx.split(image_features, image_features.shape[0])
|
|
361
|
-
final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
|
|
362
|
-
final_embeddings += [inputs_embeds[:, start_idx:]]
|
|
363
|
-
|
|
364
|
-
# Create a final embedding of shape
|
|
365
|
-
# (1, num_image_patches*num_images + sequence_len, embed_dim)
|
|
366
|
-
return mx.concatenate(final_embeddings, axis=1)
|
|
367
|
-
|
|
368
|
-
@property
|
|
369
|
-
def layers(self):
|
|
370
|
-
return self.language_model.model.layers
|
|
371
|
-
|
|
372
|
-
def __call__(
|
|
373
|
-
self,
|
|
374
|
-
input_ids: mx.array,
|
|
375
|
-
pixel_values: mx.array,
|
|
376
|
-
mask: mx.array,
|
|
377
|
-
cache=None,
|
|
378
|
-
**kwargs,
|
|
379
|
-
):
|
|
380
|
-
|
|
381
|
-
input_embeddings = self.get_input_embeddings(input_ids, pixel_values)
|
|
382
|
-
logits = self.language_model(
|
|
383
|
-
input_ids, cache=cache, inputs_embeds=input_embeddings
|
|
384
|
-
)
|
|
385
|
-
return logits
|