nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,701 +0,0 @@
1
- import contextlib
2
- import functools
3
- from dataclasses import dataclass
4
- from typing import (
5
- Any,
6
- Callable,
7
- Generator,
8
- List,
9
- Optional,
10
- Tuple,
11
- Union,
12
- )
13
-
14
- import mlx.core as mx
15
- import mlx.nn as nn
16
- from mlx.utils import tree_reduce
17
- from transformers import PreTrainedTokenizer
18
-
19
- from .cache import (
20
- QuantizedKVCache,
21
- load_prompt_cache,
22
- )
23
- from . import cache
24
- from .sample_utils import make_sampler
25
- from .tokenizer_utils import TokenizerWrapper
26
-
27
- DEFAULT_PROMPT = "hello"
28
- DEFAULT_MAX_TOKENS = 100
29
- DEFAULT_TEMP = 0.0
30
- DEFAULT_TOP_P = 1.0
31
- DEFAULT_MIN_P = 0.0
32
- DEFAULT_TOP_K = 0
33
- DEFAULT_XTC_PROBABILITY = 0.0
34
- DEFAULT_XTC_THRESHOLD = 0.0
35
- DEFAULT_MIN_TOKENS_TO_KEEP = 1
36
- DEFAULT_SEED = None
37
- DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
38
- DEFAULT_QUANTIZED_KV_START = 5000
39
-
40
-
41
- def str2bool(string):
42
- return string.lower() not in ["false", "f"]
43
-
44
-
45
- # A stream on the default device just for generation
46
- generation_stream = mx.new_stream(mx.default_device())
47
-
48
-
49
- @contextlib.contextmanager
50
- def wired_limit(model: nn.Module, streams: Optional[List[mx.Stream]] = None):
51
- """
52
- A context manager to temporarily change the wired limit.
53
-
54
- Note, the wired limit should not be changed during an async eval. If an
55
- async eval could be running pass in the streams to synchronize with prior
56
- to exiting the context manager.
57
- """
58
- model_bytes = tree_reduce(
59
- lambda acc, x: acc + x.nbytes if isinstance(x, mx.array) else acc, model, 0
60
- )
61
- max_rec_size = mx.metal.device_info()["max_recommended_working_set_size"]
62
- if model_bytes > 0.9 * max_rec_size:
63
- model_mb = model_bytes // 2**20
64
- max_rec_mb = max_rec_size // 2**20
65
- print(
66
- f"[WARNING] Generating with a model that requires {model_mb} MB "
67
- f"which is close to the maximum recommended size of {max_rec_mb} "
68
- "MB. This can be slow. See the documentation for possible work-arounds: "
69
- "https://github.com/ml-explore/mlx-lm/tree/main#large-models"
70
- )
71
- old_limit = mx.set_wired_limit(max_rec_size)
72
- try:
73
- yield None
74
- finally:
75
- if streams is not None:
76
- for s in streams:
77
- mx.synchronize(s)
78
- else:
79
- mx.synchronize()
80
- mx.set_wired_limit(old_limit)
81
-
82
-
83
- @dataclass
84
- class GenerationResponse:
85
- """
86
- The output of :func:`stream_generate`.
87
-
88
- Args:
89
- text (str): The next segment of decoded text. This can be an empty string.
90
- token (int): The next token.
91
- from_draft (bool): Whether the token was generated by the draft model.
92
- logprobs (mx.array): A vector of log probabilities.
93
- prompt_tokens (int): The number of tokens in the prompt.
94
- prompt_tps (float): The prompt processing tokens-per-second.
95
- generation_tokens (int): The number of generated tokens.
96
- generation_tps (float): The tokens-per-second for generation.
97
- peak_memory (float): The peak memory used so far in GB.
98
- finish_reason (str): The reason the response is being sent: "length", "stop" or `None`
99
- """
100
-
101
- text: str
102
- token: int
103
- logprobs: mx.array
104
- from_draft: bool
105
- prompt_tokens: int
106
- prompt_tps: float
107
- generation_tokens: int
108
- generation_tps: float
109
- peak_memory: float
110
- finish_reason: Optional[str] = None
111
-
112
-
113
- def maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits):
114
- if (
115
- kv_bits is not None
116
- and not isinstance(prompt_cache[0], cache.QuantizedKVCache)
117
- and prompt_cache[0].offset > quantized_kv_start
118
- ):
119
- for i in range(len(prompt_cache)):
120
- if isinstance(prompt_cache[i], cache.KVCache):
121
- prompt_cache[i] = prompt_cache[i].to_quantized(
122
- group_size=kv_group_size, bits=kv_bits
123
- )
124
-
125
-
126
- def generate_step(
127
- prompt: mx.array,
128
- model: nn.Module,
129
- *,
130
- max_tokens: int = 256,
131
- sampler: Optional[Callable[mx.array, mx.array]] = None,
132
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
133
- max_kv_size: Optional[int] = None,
134
- prompt_cache: Optional[Any] = None,
135
- prefill_step_size: int = 2048,
136
- kv_bits: Optional[int] = None,
137
- kv_group_size: int = 64,
138
- quantized_kv_start: int = 0,
139
- prompt_progress_callback: Optional[Callable[int, int]] = None,
140
- input_embeddings: Optional[mx.array] = None,
141
- ) -> Generator[Tuple[mx.array, mx.array], None, None]:
142
- """
143
- A generator producing token ids based on the given prompt from the model.
144
-
145
- Args:
146
- prompt (mx.array): The input prompt.
147
- model (nn.Module): The model to use for generation.
148
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
149
- generator. Default: ``256``.
150
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
151
- token from a vector of log probabilities. Default: ``None``.
152
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
153
- A list of functions that take tokens and logits and return the processed
154
- logits. Default: ``None``.
155
- max_kv_size (int, optional): Maximum size of the key-value cache. Old
156
- entries (except the first 4 tokens) will be overwritten.
157
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
158
- provided, the cache will be updated in place.
159
- prefill_step_size (int): Step size for processing the prompt.
160
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
161
- None implies no cache quantization. Default: ``None``.
162
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
163
- quantized_kv_start (int): Step to begin using a quantized KV cache.
164
- when ``kv_bits`` is non-None. Default: ``0``.
165
- prompt_progress_callback (Callable[int, int]): A call-back which takes the
166
- prompt tokens processed so far and the total number of prompt tokens.
167
- input_embeddings (mx.array, optional): Input embeddings to use in place of
168
- prompt tokens. Default: ``None``.
169
-
170
- Yields:
171
- Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
172
- """
173
- assert (prompt is not None) ^ (
174
- input_embeddings is not None
175
- ), "Exactly one of prompt or input_embeddings must be provided, not both"
176
-
177
- tokens = None
178
-
179
- # Create the KV cache for generation
180
- if prompt_cache is None:
181
- prompt_cache = cache.make_prompt_cache(
182
- model,
183
- max_kv_size=max_kv_size,
184
- )
185
-
186
- prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
187
-
188
- quantize_cache_fn = functools.partial(
189
- maybe_quantize_kv_cache,
190
- quantized_kv_start=quantized_kv_start,
191
- kv_group_size=kv_group_size,
192
- kv_bits=kv_bits,
193
- )
194
-
195
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
196
-
197
- def _model_call(y):
198
- if y.ndim == 3:
199
- return model(None, cache=prompt_cache, input_embeddings=y)
200
- else:
201
- return model(y, cache=prompt_cache)
202
-
203
- def _step(y):
204
- nonlocal tokens
205
-
206
- with mx.stream(generation_stream):
207
- logits = _model_call(y[None])
208
-
209
- logits = logits[:, -1, :]
210
-
211
- if logits_processors and input_embeddings is None:
212
- tokens = mx.concat([tokens, y]) if tokens is not None else y
213
- for processor in logits_processors:
214
- logits = processor(tokens, logits)
215
-
216
- quantize_cache_fn(prompt_cache)
217
-
218
- logprobs = logits - mx.logsumexp(logits, keepdims=True)
219
- y = sampler(logprobs)
220
- return y, logprobs.squeeze(0)
221
-
222
- using_embeddings = input_embeddings is not None
223
-
224
- y = input_embeddings if using_embeddings else prompt
225
- with mx.stream(generation_stream):
226
- total_prompt_tokens = y.shape[0]
227
- prompt_processed_tokens = 0
228
- while y.shape[0] > prefill_step_size:
229
- _model_call(y[:prefill_step_size][None])
230
- quantize_cache_fn(prompt_cache)
231
- mx.eval([c.state for c in prompt_cache])
232
- prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
233
- prompt_processed_tokens += prefill_step_size
234
- y = y[prefill_step_size:]
235
- mx.clear_cache()
236
-
237
- y, logprobs = _step(y)
238
-
239
- mx.async_eval(y, logprobs)
240
- n = 0
241
- while True:
242
- if n != max_tokens:
243
- next_y, next_logprobs = _step(y)
244
- mx.async_eval(next_y, next_logprobs)
245
- if n == 0:
246
- mx.eval(y)
247
- prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
248
- if n == max_tokens:
249
- break
250
- yield y.item(), logprobs
251
- if n % 256 == 0:
252
- mx.clear_cache()
253
- y, logprobs = next_y, next_logprobs
254
- n += 1
255
-
256
-
257
- def nexa_generate_step(
258
- model: nn.Module,
259
- *, # enforces explicit parameter naming
260
- prompt: Optional[mx.array] = None,
261
- max_tokens: int = 256,
262
- sampler: Optional[Callable[mx.array, mx.array]] = None,
263
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
264
- max_kv_size: Optional[int] = None,
265
- prompt_cache: Optional[Any] = None,
266
- prefill_step_size: int = 2048,
267
- kv_bits: Optional[int] = None,
268
- kv_group_size: int = 64,
269
- quantized_kv_start: int = 0,
270
- prompt_progress_callback: Optional[Callable[int, int]] = None,
271
- input_embeddings: Optional[mx.array] = None,
272
- visual_pos_masks: Optional[mx.array] = None,
273
- deepstack_visual_embeds: Optional[List[mx.array]] = None,
274
- cos: Optional[mx.array] = None,
275
- sin: Optional[mx.array] = None,
276
- rope_deltas: Optional[mx.array] = None,
277
- ) -> Generator[Tuple[mx.array, mx.array], None, None]:
278
- """
279
- A generator producing token ids based on the given prompt from the model.
280
-
281
- Args:
282
- prompt (mx.array): The input prompt.
283
- model (nn.Module): The model to use for generation.
284
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
285
- generator. Default: ``256``.
286
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
287
- token from a vector of log probabilities. Default: ``None``.
288
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
289
- A list of functions that take tokens and logits and return the processed
290
- logits. Default: ``None``.
291
- max_kv_size (int, optional): Maximum size of the key-value cache. Old
292
- entries (except the first 4 tokens) will be overwritten.
293
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
294
- provided, the cache will be updated in place.
295
- prefill_step_size (int): Step size for processing the prompt.
296
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
297
- None implies no cache quantization. Default: ``None``.
298
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
299
- quantized_kv_start (int): Step to begin using a quantized KV cache.
300
- when ``kv_bits`` is non-None. Default: ``0``.
301
- prompt_progress_callback (Callable[int, int]): A call-back which takes the
302
- prompt tokens processed so far and the total number of prompt tokens.
303
- input_embeddings (mx.array, optional): Input embeddings to use in place of
304
- prompt tokens. Default: ``None``.
305
-
306
- Yields:
307
- Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
308
- """
309
- assert (prompt is not None) ^ (
310
- input_embeddings is not None
311
- ), "Exactly one of prompt or input_embeddings must be provided, not both"
312
-
313
- tokens = None
314
-
315
- # Create the KV cache for generation
316
- if prompt_cache is None:
317
- prompt_cache = cache.make_prompt_cache(
318
- model,
319
- max_kv_size=max_kv_size,
320
- )
321
-
322
- prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
323
-
324
- quantize_cache_fn = functools.partial(
325
- maybe_quantize_kv_cache,
326
- quantized_kv_start=quantized_kv_start,
327
- kv_group_size=kv_group_size,
328
- kv_bits=kv_bits,
329
- )
330
-
331
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
332
-
333
- def _model_call(y):
334
- if y.ndim == 4:
335
- y = y[0]
336
- return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
337
- elif y.ndim == 3:
338
- return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
339
- else:
340
- return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
341
-
342
- def _step(y):
343
- nonlocal tokens
344
-
345
- with mx.stream(generation_stream):
346
- logits = _model_call(y[None])
347
-
348
- logits = logits[:, -1, :]
349
-
350
- if logits_processors and input_embeddings is None:
351
- tokens = mx.concat([tokens, y]) if tokens is not None else y
352
- for processor in logits_processors:
353
- logits = processor(tokens, logits)
354
-
355
- quantize_cache_fn(prompt_cache)
356
-
357
- logprobs = logits - mx.logsumexp(logits, keepdims=True)
358
- y = sampler(logprobs)
359
- return y, logprobs.squeeze(0)
360
-
361
- using_embeddings = input_embeddings is not None
362
-
363
- y = input_embeddings if using_embeddings else prompt
364
- with mx.stream(generation_stream):
365
- total_prompt_tokens = y.shape[0]
366
- prompt_processed_tokens = 0
367
- while y.shape[0] > prefill_step_size:
368
- _model_call(y[:prefill_step_size][None])
369
- quantize_cache_fn(prompt_cache)
370
- mx.eval([c.state for c in prompt_cache])
371
- prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
372
- prompt_processed_tokens += prefill_step_size
373
- y = y[prefill_step_size:]
374
- mx.clear_cache()
375
-
376
- y, logprobs = _step(y)
377
-
378
- mx.async_eval(y, logprobs)
379
- n = 0
380
- while True:
381
- if n != max_tokens:
382
- next_y, next_logprobs = _step(y)
383
- mx.async_eval(next_y, next_logprobs)
384
- if n == 0:
385
- mx.eval(y)
386
- prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
387
- if n == max_tokens:
388
- break
389
- yield y.item(), logprobs
390
- if n % 256 == 0:
391
- mx.clear_cache()
392
- y, logprobs = next_y, next_logprobs
393
- n += 1
394
-
395
-
396
-
397
- ## Explicit parameter naming means we need to specify the parameter names.
398
- def nexa_multimodal_generate_step(
399
- model: nn.Module,
400
- *, # enforces explicit parameter naming
401
- prompt: Optional[mx.array] = None,
402
- max_tokens: int = 256,
403
- sampler: Optional[Callable[mx.array, mx.array]] = None,
404
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
405
- max_kv_size: Optional[int] = None,
406
- prompt_cache: Optional[Any] = None,
407
- prefill_step_size: int = 2048,
408
- kv_bits: Optional[int] = None,
409
- kv_group_size: int = 64,
410
- quantized_kv_start: int = 0,
411
- prompt_progress_callback: Optional[Callable[int, int]] = None,
412
- input_embeddings: Optional[mx.array] = None,
413
- cos: Optional[mx.array] = None,
414
- sin: Optional[mx.array] = None,
415
- rope_deltas: Optional[mx.array] = None,
416
- ) -> Generator[Tuple[mx.array, mx.array], None, None]:
417
- """
418
- A generator producing token ids based on the given prompt from the model.
419
-
420
- Args:
421
- prompt (mx.array): The input prompt.
422
- model (nn.Module): The model to use for generation.
423
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
424
- generator. Default: ``256``.
425
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
426
- token from a vector of log probabilities. Default: ``None``.
427
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
428
- A list of functions that take tokens and logits and return the processed
429
- logits. Default: ``None``.
430
- max_kv_size (int, optional): Maximum size of the key-value cache. Old
431
- entries (except the first 4 tokens) will be overwritten.
432
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
433
- provided, the cache will be updated in place.
434
- prefill_step_size (int): Step size for processing the prompt.
435
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
436
- None implies no cache quantization. Default: ``None``.
437
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
438
- quantized_kv_start (int): Step to begin using a quantized KV cache.
439
- when ``kv_bits`` is non-None. Default: ``0``.
440
- prompt_progress_callback (Callable[int, int]): A call-back which takes the
441
- prompt tokens processed so far and the total number of prompt tokens.
442
- input_embeddings (mx.array, optional): Input embeddings to use in place of
443
- prompt tokens. Default: ``None``.
444
-
445
- Yields:
446
- Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
447
- """
448
- assert (prompt is not None) ^ (
449
- input_embeddings is not None
450
- ), "Exactly one of prompt or input_embeddings must be provided, not both"
451
-
452
- tokens = None
453
-
454
- # Create the KV cache for generation
455
- if prompt_cache is None:
456
- prompt_cache = cache.make_prompt_cache(
457
- model,
458
- max_kv_size=max_kv_size,
459
- )
460
-
461
- prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
462
-
463
- quantize_cache_fn = functools.partial(
464
- maybe_quantize_kv_cache,
465
- quantized_kv_start=quantized_kv_start,
466
- kv_group_size=kv_group_size,
467
- kv_bits=kv_bits,
468
- )
469
-
470
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
471
-
472
- def _model_call(y):
473
- if y.ndim == 3:
474
- return model(None, cache=prompt_cache, input_embeddings=y, cos=cos, sin=sin, rope_deltas=rope_deltas)
475
- else:
476
- return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
477
-
478
- def _step(y):
479
- nonlocal tokens
480
-
481
- with mx.stream(generation_stream):
482
- logits = _model_call(y[None])
483
-
484
- logits = logits[:, -1, :]
485
-
486
- if logits_processors and input_embeddings is None:
487
- tokens = mx.concat([tokens, y]) if tokens is not None else y
488
- for processor in logits_processors:
489
- logits = processor(tokens, logits)
490
-
491
- quantize_cache_fn(prompt_cache)
492
-
493
- logprobs = logits - mx.logsumexp(logits, keepdims=True)
494
- y = sampler(logprobs)
495
- return y, logprobs.squeeze(0)
496
-
497
- using_embeddings = input_embeddings is not None
498
-
499
- y = input_embeddings if using_embeddings else prompt
500
- with mx.stream(generation_stream):
501
- total_prompt_tokens = y.shape[0]
502
- prompt_processed_tokens = 0
503
- while y.shape[0] > prefill_step_size:
504
- _model_call(y[:prefill_step_size][None])
505
- quantize_cache_fn(prompt_cache)
506
- mx.eval([c.state for c in prompt_cache])
507
- prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
508
- prompt_processed_tokens += prefill_step_size
509
- y = y[prefill_step_size:]
510
- mx.clear_cache()
511
-
512
- y, logprobs = _step(y)
513
-
514
- mx.async_eval(y, logprobs)
515
- n = 0
516
- while True:
517
- if n != max_tokens:
518
- next_y, next_logprobs = _step(y)
519
- mx.async_eval(next_y, next_logprobs)
520
- if n == 0:
521
- mx.eval(y)
522
- prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
523
- if n == max_tokens:
524
- break
525
- yield y.item(), logprobs
526
- if n % 256 == 0:
527
- mx.clear_cache()
528
- y, logprobs = next_y, next_logprobs
529
- n += 1
530
-
531
-
532
-
533
-
534
-
535
- def speculative_generate_step(
536
- prompt: mx.array,
537
- model: nn.Module,
538
- draft_model: nn.Module,
539
- *,
540
- num_draft_tokens=2,
541
- max_tokens: int = 256,
542
- sampler: Optional[Callable[mx.array, mx.array]] = None,
543
- logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
544
- prompt_cache: Optional[Any] = None,
545
- prefill_step_size: int = 512,
546
- kv_bits: Optional[int] = None,
547
- kv_group_size: int = 64,
548
- quantized_kv_start: int = 0,
549
- ) -> Generator[Tuple[mx.array, mx.array, bool], None, None]:
550
- """
551
- A generator producing token ids based on the given prompt from the model.
552
-
553
- Args:
554
- prompt (mx.array): The input prompt.
555
- model (nn.Module): The model to use for generation.
556
- draft_model (nn.Module): The draft model for speculative decoding.
557
- num_draft_tokens (int, optional): The number of draft tokens for
558
- speculative decoding. Default: ``2``.
559
- max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
560
- generator. Default: ``256``.
561
- sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
562
- token from a vector of log probabilities. Default: ``None``.
563
- logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
564
- A list of functions that take tokens and logits and return the processed
565
- logits. Default: ``None``.
566
- prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
567
- provided, the cache will be updated in place. The cache must be trimmable.
568
- prefill_step_size (int): Step size for processing the prompt.
569
- kv_bits (int, optional): Number of bits to use for KV cache quantization.
570
- None implies no cache quantization. Default: ``None``.
571
- kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
572
- quantized_kv_start (int): Step to begin using a quantized KV cache.
573
- when ``kv_bits`` is non-None. Default: ``0``.
574
-
575
- Yields:
576
- Tuple[mx.array, mx.array, bool]: One token, a vector of log probabilities,
577
- and a bool indicating if the token was generated by the draft model
578
- """
579
-
580
- y = prompt.astype(mx.uint32)
581
- prev_tokens = None
582
-
583
- # Create the KV cache for generation
584
- if prompt_cache is None:
585
- model_cache = cache.make_prompt_cache(model)
586
- draft_cache = cache.make_prompt_cache(draft_model)
587
- else:
588
- model_cache = prompt_cache[: len(model.layers)]
589
- draft_cache = prompt_cache[len(model.layers) :]
590
-
591
- sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
592
-
593
- quantize_cache_fn = functools.partial(
594
- maybe_quantize_kv_cache,
595
- quantized_kv_start=quantized_kv_start,
596
- kv_group_size=kv_group_size,
597
- kv_bits=kv_bits,
598
- )
599
-
600
- def _process_and_sample(tokens, logits):
601
- if logits_processors:
602
- for processor in logits_processors:
603
- logits = processor(tokens, logits)
604
-
605
- logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True)
606
- y = sampler(logprobs)
607
- return y, logprobs
608
-
609
- def _step(model, cache, y, n_predict=1):
610
- with mx.stream(generation_stream):
611
- logits = model(y[None], cache=cache)
612
- logits = logits[:, -n_predict:, :]
613
-
614
- quantize_cache_fn(cache)
615
- if logits_processors:
616
- nonlocal prev_tokens
617
- out_y, out_logprobs = [], []
618
- if n_predict > 1:
619
- y = y[: -(n_predict - 1)]
620
- for i in range(n_predict):
621
- prev_tokens = mx.concat([prev_tokens, y]) if prev_tokens is not None else y
622
- y, logprobs = _process_and_sample(prev_tokens, logits[:, i, :])
623
- out_y.append(y)
624
- out_logprobs.append(logprobs)
625
- return mx.concatenate(out_y, axis=0), mx.concatenate(out_logprobs, axis=0)
626
- else:
627
- return _process_and_sample(None, logits.squeeze(0))
628
-
629
- def _prefill(model, cache, y):
630
- while y.size > prefill_step_size:
631
- model(y[:prefill_step_size][None], cache=cache)
632
- quantize_cache_fn(cache)
633
- mx.eval([c.state for c in cache])
634
- y = y[prefill_step_size:]
635
- mx.clear_cache()
636
- return y
637
-
638
- def _rewind_cache(num_draft, num_accept):
639
- cache.trim_prompt_cache(model_cache, num_draft - num_accept)
640
- cache.trim_prompt_cache(draft_cache, max(num_draft - num_accept - 1, 0))
641
-
642
- def _draft_generate(y, num_draft):
643
- if num_draft == 0:
644
- return mx.array([], mx.uint32)
645
- ys = []
646
- for _ in range(num_draft):
647
- y, _ = _step(draft_model, draft_cache, y)
648
- mx.async_eval(y)
649
- ys.append(y)
650
- return mx.concatenate(ys)
651
-
652
- with mx.stream(generation_stream):
653
- draft_y = _prefill(draft_model, draft_cache, y)
654
- y = _prefill(model, model_cache, y)
655
-
656
- ntoks = 0
657
- # Set these so the finally block doesn't raise
658
- num_draft = 0
659
- n = 0
660
- try:
661
- while True:
662
- num_draft = min(max_tokens - ntoks, num_draft_tokens)
663
- draft_tokens = _draft_generate(draft_y, num_draft)
664
- if prev_tokens is not None:
665
- prev_tokens = prev_tokens[: prev_tokens.size - y.size - num_draft + 1]
666
- y = mx.concatenate([y, draft_tokens])
667
- tokens, logprobs = _step(model, model_cache, y, num_draft + 1)
668
- mx.eval(tokens, draft_tokens)
669
- draft_tokens = draft_tokens.tolist()
670
- tokens = tokens.tolist()
671
- n = 0
672
- while n < num_draft:
673
- tn, dtn, lpn = tokens[n], draft_tokens[n], logprobs[n]
674
- if tn != dtn:
675
- break
676
- n += 1
677
- ntoks += 1
678
- yield tn, lpn, True
679
- if ntoks == max_tokens:
680
- break
681
- if ntoks < max_tokens:
682
- ntoks += 1
683
- yield tokens[n], logprobs[n], False
684
-
685
- if ntoks == max_tokens:
686
- break
687
-
688
- y = mx.array([tokens[n]], mx.uint32)
689
- draft_y = y
690
-
691
- # If we accepted all the draft tokens, include the last
692
- # draft token in the next draft step since it hasn't been
693
- # processed yet by the draft model
694
- if n == num_draft:
695
- draft_y = mx.concatenate([mx.array(draft_tokens[-1:], mx.uint32), draft_y])
696
-
697
- if prev_tokens is not None:
698
- prev_tokens = prev_tokens[: -max(num_draft - n, 1)]
699
- _rewind_cache(num_draft, n)
700
- finally:
701
- _rewind_cache(num_draft, n)