nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,1309 +0,0 @@
1
- # Copyright © 2023-2024 Apple Inc.
2
-
3
- from dataclasses import dataclass
4
- from typing import Any, Dict, List, Optional, Tuple, Union
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- import math
9
- import numpy as np
10
-
11
- import os
12
- import sys
13
-
14
- curr_dir = os.path.dirname(os.path.abspath(__file__))
15
- llm_common_dir = os.path.join(curr_dir, "llm_common")
16
- sys.path.append(llm_common_dir)
17
-
18
- # Try relative imports first, fallback to sys.path approach for Nuitka compatibility
19
- try:
20
- from .llm_common.base import (
21
- BaseModelArgs,
22
- create_attention_mask,
23
- scaled_dot_product_attention,
24
- )
25
- from .llm_common.rope_utils import initialize_rope
26
- except ImportError:
27
- # Fallback for Nuitka compiled environment
28
- from llm_common.base import (
29
- BaseModelArgs,
30
- create_attention_mask,
31
- scaled_dot_product_attention,
32
- )
33
- from llm_common.rope_utils import initialize_rope
34
- from switch_layers import SwitchGLU
35
-
36
-
37
- @dataclass
38
- class VisionConfig:
39
- hidden_size: int = 1152
40
- intermediate_size: int = 4304
41
- num_heads: int = 16
42
- num_hidden_layers: int = 27
43
- patch_size: int = 16
44
- temporal_patch_size: int = 2
45
- in_channels: int = 3
46
- hidden_act: str = "gelu_pytorch_tanh"
47
- spatial_merge_size: int = 2
48
- out_hidden_size: int = 2048
49
- num_position_embeddings: int = 2304
50
- deepstack_visual_indexes: List[int] = None
51
-
52
- def __post_init__(self):
53
- if self.deepstack_visual_indexes is None:
54
- self.deepstack_visual_indexes = [8, 16, 24]
55
-
56
-
57
- @dataclass
58
- class TextConfig(BaseModelArgs):
59
- model_type: str = "qwen3_vl_moe_text"
60
- hidden_size: int = 2048
61
- num_hidden_layers: int = 48
62
- intermediate_size: int = 6144
63
- num_attention_heads: int = 32
64
- num_key_value_heads: int = 4
65
- rms_norm_eps: float = 1e-6
66
- vocab_size: int = 152064
67
- max_position_embeddings: int = 128000
68
- rope_theta: float = 1000000.0
69
- head_dim: int = 128
70
- tie_word_embeddings: bool = False
71
- attention_bias: bool = False
72
- attention_dropout: float = 0.0
73
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
74
- # MoE specific parameters
75
- num_experts: int = 128
76
- num_experts_per_tok: int = 8
77
- moe_intermediate_size: int = 768
78
- shared_expert_intermediate_size: int = 0
79
- norm_topk_prob: bool = True
80
- decoder_sparse_step: int = 1
81
- max_window_layers: int = 48
82
- sliding_window: int = 32768
83
- mlp_only_layers: List[int] = None
84
- use_qk_norm: bool = True
85
- layer_types: List[str] = None
86
-
87
- def __post_init__(self):
88
- if self.rope_scaling is None:
89
- self.rope_scaling = {
90
- "mrope_interleaved": True,
91
- "mrope_section": [24, 20, 20],
92
- "rope_type": "default"
93
- }
94
- if self.mlp_only_layers is None:
95
- self.mlp_only_layers = []
96
- if self.layer_types is None:
97
- # This would need to be populated based on the actual model architecture
98
- self.layer_types = []
99
-
100
-
101
- @dataclass
102
- class ModelArgs(BaseModelArgs):
103
- vision_config: VisionConfig = None
104
- text_config: TextConfig = None
105
- image_token_id: int = 151655
106
- vision_start_token_id: int = 151652
107
- vision_end_token_id: int = 151653
108
-
109
- def __post_init__(self):
110
- if self.vision_config is None:
111
- self.vision_config = VisionConfig()
112
- if self.text_config is None:
113
- self.text_config = TextConfig()
114
-
115
-
116
- def rotate_half(x):
117
- x1 = x[..., : x.shape[-1] // 2]
118
- x2 = x[..., x.shape[-1] // 2 :]
119
- return mx.concatenate([-x2, x1], axis=-1)
120
-
121
-
122
- def apply_rotary_pos_emb_vision(q, k, cos, sin):
123
- cos = mx.expand_dims(cos, axis=-2)
124
- sin = mx.expand_dims(sin, axis=-2)
125
- q_embed = (q * cos) + (rotate_half(q) * sin)
126
- k_embed = (k * cos) + (rotate_half(k) * sin)
127
- return q_embed, k_embed
128
-
129
-
130
- def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
131
- cos = mx.expand_dims(cos, axis=unsqueeze_dim)
132
- sin = mx.expand_dims(sin, axis=unsqueeze_dim)
133
- q_embed = (q * cos) + (rotate_half(q) * sin)
134
- k_embed = (k * cos) + (rotate_half(k) * sin)
135
- return q_embed, k_embed
136
-
137
-
138
- class VisionMLP(nn.Module):
139
- def __init__(self, config: VisionConfig):
140
- super().__init__()
141
- self.hidden_size = config.hidden_size
142
- self.intermediate_size = config.intermediate_size
143
- self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
144
- self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
145
-
146
- def __call__(self, hidden_state):
147
- return self.linear_fc2(nn.gelu(self.linear_fc1(hidden_state)))
148
-
149
-
150
- class VisionPatchEmbed(nn.Module):
151
- def __init__(self, config: VisionConfig):
152
- super().__init__()
153
- self.patch_size = config.patch_size
154
- self.temporal_patch_size = config.temporal_patch_size
155
- self.in_channels = config.in_channels
156
- self.embed_dim = config.hidden_size
157
-
158
- kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
159
- self.proj = nn.Conv3d(
160
- self.in_channels,
161
- self.embed_dim,
162
- kernel_size=kernel_size,
163
- stride=kernel_size,
164
- bias=True
165
- )
166
-
167
- def __call__(self, hidden_states: mx.array) -> mx.array:
168
- target_dtype = self.proj.weight.dtype
169
-
170
- # Reshape to 5D: [batch, channels, temporal, height, width] (PyTorch format)
171
- # This matches the PyTorch ground truth exactly
172
- hidden_states = hidden_states.reshape(
173
- -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
174
- )
175
-
176
- # Convert to MLX format: [batch, temporal, height, width, channels]
177
- hidden_states = hidden_states.transpose(0, 2, 3, 4, 1)
178
-
179
- # Apply conv3d with target dtype and reshape to match PyTorch output
180
- hidden_states = self.proj(hidden_states.astype(target_dtype)).reshape(-1, self.embed_dim)
181
-
182
- return hidden_states
183
-
184
-
185
- class VisionRotaryEmbedding(nn.Module):
186
- def __init__(self, dim: int, theta: float = 10000.0):
187
- super().__init__()
188
- # Don't store inv_freq as a parameter since it causes loading issues
189
- self.dim = dim
190
- self.theta = theta
191
-
192
- def __call__(self, seqlen: int) -> mx.array:
193
- # Compute inv_freq on the fly
194
- inv_freq = 1.0 / (self.theta ** (mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim))
195
- seq = mx.arange(seqlen, dtype=inv_freq.dtype)
196
- freqs = mx.outer(seq, inv_freq)
197
- return freqs
198
-
199
-
200
- class VisionPatchMerger(nn.Module):
201
- def __init__(self, config: VisionConfig, use_postshuffle_norm=False):
202
- super().__init__()
203
- self.hidden_size = config.hidden_size * (config.spatial_merge_size ** 2)
204
- self.use_postshuffle_norm = use_postshuffle_norm
205
-
206
- norm_size = self.hidden_size if use_postshuffle_norm else config.hidden_size
207
- self.ln_q = nn.LayerNorm(norm_size, eps=1e-6)
208
- self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size)
209
- self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size)
210
-
211
- def __call__(self, x: mx.array) -> mx.array:
212
- if self.use_postshuffle_norm:
213
- x = self.ln_q(x.reshape(-1, self.hidden_size)).reshape(-1, self.hidden_size)
214
- else:
215
- x = self.ln_q(x).reshape(-1, self.hidden_size)
216
-
217
- x = self.linear_fc2(nn.gelu(self.linear_fc1(x)))
218
- return x
219
-
220
-
221
- class VisionAttention(nn.Module):
222
- def __init__(self, config: VisionConfig):
223
- super().__init__()
224
- self.dim = config.hidden_size
225
- self.num_heads = config.num_heads
226
- self.head_dim = self.dim // self.num_heads
227
- self.scaling = self.head_dim ** -0.5
228
-
229
- self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
230
- self.proj = nn.Linear(self.dim, self.dim)
231
-
232
- def __call__(
233
- self,
234
- hidden_states: mx.array,
235
- cu_seqlens: mx.array,
236
- rotary_pos_emb: Optional[mx.array] = None,
237
- position_embeddings: Optional[Tuple[mx.array, mx.array]] = None,
238
- **kwargs,
239
- ) -> mx.array:
240
- seq_length = hidden_states.shape[0]
241
- qkv = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1)
242
- qkv = qkv.transpose(1, 0, 2, 3)
243
- query_states, key_states, value_states = qkv[0], qkv[1], qkv[2]
244
-
245
- cos, sin = position_embeddings
246
- query_states, key_states = apply_rotary_pos_emb_vision(
247
- query_states, key_states, cos, sin
248
- )
249
-
250
- query_states = query_states.transpose(1, 0, 2)
251
- key_states = key_states.transpose(1, 0, 2)
252
- value_states = value_states.transpose(1, 0, 2)
253
-
254
- query_states = mx.expand_dims(query_states, axis=0)
255
- key_states = mx.expand_dims(key_states, axis=0)
256
- value_states = mx.expand_dims(value_states, axis=0)
257
-
258
- lengths = cu_seqlens[1:] - cu_seqlens[:-1]
259
-
260
- split_indices = []
261
- cumsum = 0
262
- for length in lengths[:-1]:
263
- cumsum += int(length)
264
- split_indices.append(cumsum)
265
-
266
- if split_indices:
267
- q_splits = mx.split(query_states, split_indices, axis=1)
268
- k_splits = mx.split(key_states, split_indices, axis=1)
269
- v_splits = mx.split(value_states, split_indices, axis=1)
270
- else:
271
- q_splits = [query_states]
272
- k_splits = [key_states]
273
- v_splits = [value_states]
274
-
275
- attn_outputs = []
276
- for q, k, v in zip(q_splits, k_splits, v_splits):
277
- attn_out = scaled_dot_product_attention(
278
- q, k, v,
279
- scale=self.scaling, mask=None, cache=None
280
- )
281
- attn_outputs.append(attn_out)
282
-
283
- attn_output = mx.concatenate(attn_outputs, axis=1)
284
-
285
- attn_output = attn_output[0].transpose(1, 0, 2)
286
- attn_output = attn_output.reshape(seq_length, -1)
287
- attn_output = self.proj(attn_output)
288
-
289
- return attn_output
290
-
291
-
292
- class VisionBlock(nn.Module):
293
- def __init__(self, config: VisionConfig):
294
- super().__init__()
295
- self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6)
296
- self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6)
297
- self.attn = VisionAttention(config)
298
- self.mlp = VisionMLP(config)
299
-
300
- def __call__(
301
- self,
302
- hidden_states: mx.array,
303
- cu_seqlens: mx.array,
304
- position_embeddings: Tuple[mx.array, mx.array],
305
- ) -> mx.array:
306
- hidden_states = hidden_states + self.attn(
307
- self.norm1(hidden_states),
308
- cu_seqlens=cu_seqlens,
309
- position_embeddings=position_embeddings,
310
- )
311
- hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
312
- return hidden_states
313
-
314
-
315
- class VisionModel(nn.Module):
316
- def __init__(self, config: VisionConfig):
317
- super().__init__()
318
- self.config = config
319
- self.spatial_merge_size = config.spatial_merge_size
320
- self.patch_size = config.patch_size
321
-
322
- self.patch_embed = VisionPatchEmbed(config)
323
- self.pos_embed = nn.Embedding(config.num_position_embeddings, config.hidden_size)
324
- self.num_grid_per_side = int(config.num_position_embeddings ** 0.5)
325
-
326
- head_dim = config.hidden_size // config.num_heads
327
- self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
328
-
329
- self.blocks = [VisionBlock(config) for _ in range(config.num_hidden_layers)]
330
- self.merger = VisionPatchMerger(config, use_postshuffle_norm=False)
331
-
332
- self.deepstack_visual_indexes = config.deepstack_visual_indexes
333
- self.deepstack_merger_list = [
334
- VisionPatchMerger(config, use_postshuffle_norm=True)
335
- for _ in range(len(config.deepstack_visual_indexes))
336
- ]
337
-
338
- def rot_pos_emb(self, grid_thw: mx.array) -> mx.array:
339
- merge_size = self.spatial_merge_size
340
-
341
- max_hw = int(grid_thw[:, 1:].max().item())
342
- freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2)
343
-
344
- pos_ids_parts = []
345
-
346
- for i in range(grid_thw.shape[0]):
347
- num_frames = int(grid_thw[i, 0].item())
348
- height = int(grid_thw[i, 1].item())
349
- width = int(grid_thw[i, 2].item())
350
-
351
- merged_h, merged_w = height // merge_size, width // merge_size
352
-
353
- block_rows = mx.arange(merged_h) # block row indices
354
- block_cols = mx.arange(merged_w) # block col indices
355
- intra_row = mx.arange(merge_size) # intra-block row offsets
356
- intra_col = mx.arange(merge_size) # intra-block col offsets
357
-
358
- # Compute full-resolution positions using broadcasting
359
- row_idx = block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None]
360
- col_idx = block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :]
361
-
362
- row_idx = mx.broadcast_to(row_idx, (merged_h, merged_w, merge_size, merge_size)).reshape(-1)
363
- col_idx = mx.broadcast_to(col_idx, (merged_h, merged_w, merge_size, merge_size)).reshape(-1)
364
-
365
- coords = mx.stack([row_idx, col_idx], axis=-1)
366
-
367
- if num_frames > 1:
368
- coords = mx.tile(coords, (num_frames, 1))
369
-
370
- pos_ids_parts.append(coords)
371
-
372
- # Concatenate all coordinate parts
373
- pos_ids = mx.concatenate(pos_ids_parts, axis=0)
374
-
375
- embeddings = freq_table[pos_ids] # lookup rotary embeddings
376
- embeddings = embeddings.reshape(embeddings.shape[0], -1)
377
- return embeddings
378
-
379
- def fast_pos_embed_interpolate(self, grid_thw: mx.array):
380
- patch_pos_embeds = []
381
-
382
- for i in range(grid_thw.shape[0]):
383
- t = int(grid_thw[i, 0].item())
384
- h = int(grid_thw[i, 1].item())
385
- w = int(grid_thw[i, 2].item())
386
-
387
- # Simple position embedding interpolation
388
- h_idxs = mx.linspace(0, self.num_grid_per_side - 1, h)
389
- w_idxs = mx.linspace(0, self.num_grid_per_side - 1, w)
390
-
391
- h_idxs_floor = mx.floor(h_idxs).astype(mx.int32)
392
- w_idxs_floor = mx.floor(w_idxs).astype(mx.int32)
393
- h_idxs_ceil = mx.minimum(h_idxs_floor + 1, self.num_grid_per_side - 1)
394
- w_idxs_ceil = mx.minimum(w_idxs_floor + 1, self.num_grid_per_side - 1)
395
-
396
- dh = h_idxs - h_idxs_floor.astype(mx.float32)
397
- dw = w_idxs - w_idxs_floor.astype(mx.float32)
398
-
399
- base_h = h_idxs_floor * self.num_grid_per_side
400
- base_h_ceil = h_idxs_ceil * self.num_grid_per_side
401
-
402
- # Compute bilinear interpolation indices and weights
403
- indices_tl = (base_h[:, None] + w_idxs_floor[None, :]).reshape(-1)
404
- indices_tr = (base_h[:, None] + w_idxs_ceil[None, :]).reshape(-1)
405
- indices_bl = (base_h_ceil[:, None] + w_idxs_floor[None, :]).reshape(-1)
406
- indices_br = (base_h_ceil[:, None] + w_idxs_ceil[None, :]).reshape(-1)
407
-
408
- weights_tl = ((1 - dh)[:, None] * (1 - dw)[None, :]).reshape(-1)
409
- weights_tr = ((1 - dh)[:, None] * dw[None, :]).reshape(-1)
410
- weights_bl = (dh[:, None] * (1 - dw)[None, :]).reshape(-1)
411
- weights_br = (dh[:, None] * dw[None, :]).reshape(-1)
412
-
413
- # Get embeddings and interpolate
414
- pos_embed_tl = self.pos_embed(indices_tl) * weights_tl[:, None]
415
- pos_embed_tr = self.pos_embed(indices_tr) * weights_tr[:, None]
416
- pos_embed_bl = self.pos_embed(indices_bl) * weights_bl[:, None]
417
- pos_embed_br = self.pos_embed(indices_br) * weights_br[:, None]
418
-
419
- pos_embed = pos_embed_tl + pos_embed_tr + pos_embed_bl + pos_embed_br
420
-
421
- # Repeat for temporal dimension and apply spatial merging
422
- pos_embed = mx.tile(pos_embed, (t, 1))
423
-
424
- # Apply spatial merging pattern
425
- merge_size = self.config.spatial_merge_size
426
- pos_embed = pos_embed.reshape(t, h // merge_size, merge_size, w // merge_size, merge_size, -1)
427
- pos_embed = mx.transpose(pos_embed, (0, 1, 3, 2, 4, 5))
428
- pos_embed = pos_embed.reshape(-1, pos_embed.shape[-1])
429
-
430
- patch_pos_embeds.append(pos_embed)
431
-
432
- return mx.concatenate(patch_pos_embeds, axis=0)
433
-
434
- def __call__(self, hidden_states: mx.array, grid_thw: mx.array) -> Tuple[mx.array, List[mx.array]]:
435
- hidden_states = self.patch_embed(hidden_states)
436
-
437
- pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
438
- hidden_states = hidden_states + pos_embeds
439
-
440
- rotary_pos_emb = self.rot_pos_emb(grid_thw)
441
- seq_len = hidden_states.shape[0]
442
-
443
- emb = mx.concatenate([rotary_pos_emb, rotary_pos_emb], axis=-1)
444
- position_embeddings = (mx.cos(emb), mx.sin(emb))
445
-
446
- # Create cumulative sequence lengths (following HuggingFace implementation)
447
- # torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0])
448
- seq_lens_per_image = grid_thw[:, 1] * grid_thw[:, 2] # h * w for each image
449
- seq_lens = []
450
- for i, (seq_len, repeats) in enumerate(zip(seq_lens_per_image, grid_thw[:, 0])):
451
- seq_lens.extend([seq_len] * int(repeats))
452
- seq_lens = mx.array(seq_lens)
453
-
454
- # Then compute cumulative sum
455
- cu_seqlens = mx.cumsum(seq_lens)
456
- # Pad with 0 at the beginning
457
- cu_seqlens = mx.concatenate([mx.array([0]), cu_seqlens])
458
-
459
- deepstack_feature_lists = []
460
- for layer_num, blk in enumerate(self.blocks):
461
- hidden_states = blk(
462
- hidden_states,
463
- cu_seqlens=cu_seqlens,
464
- position_embeddings=position_embeddings,
465
- )
466
- if layer_num in self.deepstack_visual_indexes:
467
- idx = self.deepstack_visual_indexes.index(layer_num)
468
- deepstack_feature = self.deepstack_merger_list[idx](hidden_states)
469
- deepstack_feature_lists.append(deepstack_feature)
470
-
471
- hidden_states = self.merger(hidden_states)
472
- return hidden_states, deepstack_feature_lists
473
-
474
-
475
- class TextRotaryEmbedding(nn.Module):
476
- def __init__(self, config: TextConfig):
477
- super().__init__()
478
- self.config = config
479
- self.max_seq_len_cached = config.max_position_embeddings
480
- self.original_max_seq_len = config.max_position_embeddings
481
-
482
- # MRoPE configuration
483
- if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
484
- self.rope_type = config.rope_scaling.get("rope_type", "default")
485
- self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20])
486
- else:
487
- self.rope_type = "default"
488
- self.mrope_section = [24, 20, 20]
489
-
490
- # Store parameters for computing inv_freq on the fly
491
- self.head_dim = config.head_dim
492
- self.theta = config.rope_theta
493
-
494
- # Attention scaling (simplified - may need adjustment based on actual config)
495
- self.attention_scaling = 1.0
496
-
497
- def _get_inv_freq(self):
498
- """Compute inverse frequencies on the fly"""
499
- inv_freq = 1.0 / (self.theta ** (mx.arange(0, self.head_dim, 2).astype(mx.float32) / self.head_dim))
500
- # Expand for 3 dimensions (T, H, W)
501
- return mx.broadcast_to(inv_freq[None, :], (3, len(inv_freq)))
502
-
503
- def apply_interleaved_mrope(self, freqs, mrope_section):
504
- """Apply interleaved MRoPE to 3D rotary embeddings.
505
- Reorganizes frequency layout from chunked [TTT...HHH...WWW] to
506
- interleaved [THTHWHTHW...TT], preserving frequency continuity.
507
- args:
508
- x: (3, bs, seq_len, head_dim // 2)
509
- mrope_section: (3,)
510
- returns:
511
- x_t: (bs, seq_len, head_dim // 2)
512
- """
513
- freqs_t = freqs[0] # just overwrite the first dimension T
514
- for dim, offset in enumerate((1, 2), start=1): # H, W
515
- length = mrope_section[dim] * 3
516
- idx = slice(offset, length, 3)
517
- freqs_t[..., idx] = freqs[dim, ..., idx]
518
- return freqs_t
519
-
520
- def __call__(self, x: mx.array, position_ids: mx.array) -> mx.array:
521
- """
522
- Args:
523
- x: Input tensor for dtype reference
524
- position_ids: Position indices, shape (3, batch_size, seq_len) for MRoPE
525
-
526
- Returns:
527
- cos, sin: Cosine and sine embeddings
528
- """
529
- # Handle 2D position_ids by expanding to 3D for MRoPE
530
- if position_ids.ndim == 2:
531
- position_ids = mx.broadcast_to(position_ids[None, ...], (3, position_ids.shape[0], position_ids.shape[1]))
532
-
533
- batch_size, seq_len = position_ids.shape[1], position_ids.shape[2]
534
-
535
- # Expand inverse frequencies: (3, 1, 1, dim//2) -> (3, batch_size, 1, dim//2)
536
- inv_freq_expanded = mx.broadcast_to(
537
- self._get_inv_freq()[:, None, None, :],
538
- (3, batch_size, 1, self._get_inv_freq().shape[-1])
539
- )
540
-
541
- # Expand position ids: (3, batch_size, seq_len) -> (3, batch_size, seq_len, 1)
542
- position_ids_expanded = position_ids[..., None].astype(mx.float32)
543
-
544
- # Compute frequencies: (3, batch_size, seq_len, dim//2)
545
- freqs = inv_freq_expanded * position_ids_expanded
546
-
547
- # Apply interleaved MRoPE
548
- freqs = self.apply_interleaved_mrope(freqs, self.mrope_section)
549
-
550
- # Create embeddings
551
- emb = mx.concatenate([freqs, freqs], axis=-1) # (batch_size, seq_len, head_dim)
552
- cos = mx.cos(emb) * self.attention_scaling
553
- sin = mx.sin(emb) * self.attention_scaling
554
-
555
- return cos.astype(x.dtype), sin.astype(x.dtype)
556
-
557
-
558
- class TextAttention(nn.Module):
559
- def __init__(self, config: TextConfig, layer_idx: int):
560
- super().__init__()
561
- self.config = config
562
- self.layer_idx = layer_idx
563
-
564
- dim = config.hidden_size
565
- self.n_heads = config.num_attention_heads
566
- self.n_kv_heads = config.num_key_value_heads
567
- self.head_dim = config.head_dim
568
- self.scale = self.head_dim ** -0.5
569
-
570
- self.q_proj = nn.Linear(dim, self.n_heads * self.head_dim, bias=config.attention_bias)
571
- self.k_proj = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=config.attention_bias)
572
- self.v_proj = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=config.attention_bias)
573
- self.o_proj = nn.Linear(self.n_heads * self.head_dim, dim, bias=config.attention_bias)
574
-
575
- self.q_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
576
- self.k_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
577
-
578
- # Initialize rope directly
579
- self.rope = initialize_rope(
580
- config.head_dim,
581
- base=config.rope_theta,
582
- traditional=False,
583
- scaling_config=config.rope_scaling,
584
- max_position_embeddings=config.max_position_embeddings,
585
- )
586
-
587
- def __call__(
588
- self,
589
- hidden_states: mx.array,
590
- attention_mask: Optional[mx.array] = None,
591
- cache: Optional[Any] = None,
592
- cos: Optional[mx.array] = None,
593
- sin: Optional[mx.array] = None,
594
- rope_deltas: Optional[mx.array] = None,
595
- ) -> Tuple[mx.array, Optional[mx.array]]:
596
- B, L, D = hidden_states.shape
597
-
598
- queries = self.q_proj(hidden_states).reshape(B, L, self.n_heads, -1)
599
- keys = self.k_proj(hidden_states).reshape(B, L, self.n_kv_heads, -1)
600
- values = self.v_proj(hidden_states).reshape(B, L, self.n_kv_heads, -1)
601
-
602
- queries = self.q_norm(queries).transpose(0, 2, 1, 3)
603
- keys = self.k_norm(keys).transpose(0, 2, 1, 3)
604
- values = values.transpose(0, 2, 1, 3)
605
-
606
- # Apply rope directly to queries and keys
607
- if cos is not None and sin is not None:
608
- queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin)
609
- if cache is not None:
610
- keys, values = cache.update_and_fetch(keys, values)
611
- else:
612
- if cache is not None:
613
- queries = self.rope(queries, offset=cache.offset+rope_deltas)
614
- keys = self.rope(keys, offset=cache.offset+rope_deltas)
615
- keys, values = cache.update_and_fetch(keys, values)
616
- else:
617
- queries = self.rope(queries)
618
- keys = self.rope(keys)
619
-
620
- output = scaled_dot_product_attention(
621
- queries, keys, values, cache=cache, scale=self.scale, mask=attention_mask
622
- )
623
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
624
- return self.o_proj(output), None
625
-
626
-
627
- class TextMLP(nn.Module):
628
- def __init__(self, config: TextConfig):
629
- super().__init__()
630
- self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
631
- self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
632
- self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
633
-
634
- def __call__(self, x):
635
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
636
-
637
-
638
- # Add this custom MoE implementation to replace SwitchGLU usage
639
-
640
- class TextMoEExperts(nn.Module):
641
- def __init__(self, config: TextConfig):
642
- super().__init__()
643
- # Use the optimized SwitchGLU implementation for efficient expert computation
644
- self.switch_glu = SwitchGLU(
645
- input_dims=config.hidden_size,
646
- hidden_dims=config.moe_intermediate_size,
647
- num_experts=config.num_experts,
648
- activation=nn.SiLU(),
649
- bias=False
650
- )
651
-
652
- def __call__(self, hidden_states: mx.array, routing_weights: mx.array, router_indices: mx.array) -> mx.array:
653
- # Use the efficient SwitchGLU implementation
654
- # SwitchGLU handles the expert routing internally and is highly optimized
655
- expert_output = self.switch_glu(hidden_states, router_indices)
656
-
657
- # Apply routing weights and sum over experts (top_k dimension)
658
- weighted_output = expert_output * mx.expand_dims(routing_weights, -1)
659
- final_output = mx.sum(weighted_output, axis=-2)
660
-
661
- return final_output
662
-
663
- class TextSparseMoeBlock(nn.Module):
664
- def __init__(self, config: TextConfig):
665
- super().__init__()
666
- self.hidden_size = config.hidden_size
667
- self.num_experts = config.num_experts
668
- self.top_k = config.num_experts_per_tok
669
- self.norm_topk_prob = config.norm_topk_prob
670
-
671
- self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=False)
672
- self.experts = TextMoEExperts(config)
673
-
674
- def __call__(self, x: mx.array) -> mx.array:
675
- batch_size, sequence_length, hidden_dim = x.shape
676
- x_flat = x.reshape(-1, hidden_dim)
677
-
678
- # Router computation
679
- router_logits = self.gate(x_flat)
680
- routing_weights = mx.softmax(router_logits, axis=-1, precise=True)
681
-
682
- # Top-k selection
683
- router_indices = mx.argpartition(-routing_weights, kth=self.top_k - 1, axis=-1)[..., :self.top_k]
684
- routing_weights = mx.take_along_axis(routing_weights, router_indices, axis=-1)
685
-
686
- if self.norm_topk_prob:
687
- routing_weights = routing_weights / mx.sum(routing_weights, axis=-1, keepdims=True)
688
-
689
- # Expert computation
690
- final_hidden_states = self.experts(x, routing_weights, router_indices)
691
-
692
- return final_hidden_states
693
-
694
-
695
- class TextDecoderLayer(nn.Module):
696
- def __init__(self, config: TextConfig, layer_idx: int):
697
- super().__init__()
698
- self.hidden_size = config.hidden_size
699
- self.self_attn = TextAttention(config, layer_idx)
700
-
701
- # Determine if this layer should use MoE
702
- use_moe = (
703
- layer_idx not in config.mlp_only_layers and
704
- config.num_experts > 0 and
705
- (layer_idx + 1) % config.decoder_sparse_step == 0
706
- )
707
-
708
- if use_moe:
709
- self.mlp = TextSparseMoeBlock(config)
710
- else:
711
- self.mlp = TextMLP(config)
712
-
713
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
714
- self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
715
-
716
- def __call__(
717
- self,
718
- hidden_states: mx.array,
719
- attention_mask: Optional[mx.array] = None,
720
- cache: Optional[Any] = None,
721
- cos: Optional[mx.array] = None,
722
- sin: Optional[mx.array] = None,
723
- rope_deltas: Optional[mx.array] = None,
724
- ) -> mx.array:
725
- residual = hidden_states
726
- hidden_states = self.input_layernorm(hidden_states)
727
-
728
- hidden_states, _ = self.self_attn(
729
- hidden_states=hidden_states,
730
- attention_mask=attention_mask,
731
- cache=cache,
732
- cos=cos,
733
- sin=sin,
734
- rope_deltas=rope_deltas,
735
- )
736
- hidden_states = residual + hidden_states
737
- residual = hidden_states
738
- hidden_states = self.post_attention_layernorm(hidden_states)
739
- hidden_states = self.mlp(hidden_states)
740
- hidden_states = residual + hidden_states
741
- return hidden_states
742
-
743
-
744
- class TextModel(nn.Module):
745
- def __init__(self, config: TextConfig):
746
- super().__init__()
747
- self.config = config
748
- self.vocab_size = config.vocab_size
749
-
750
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
751
- self.layers = [
752
- TextDecoderLayer(config, layer_idx)
753
- for layer_idx in range(config.num_hidden_layers)
754
- ]
755
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
756
- self.rotary_emb = TextRotaryEmbedding(config)
757
-
758
- def _deepstack_process(
759
- self,
760
- hidden_states: mx.array,
761
- visual_pos_masks: mx.array,
762
- deepstack_visual_embeds: mx.array,
763
- ) -> mx.array:
764
- if visual_pos_masks is None or deepstack_visual_embeds is None:
765
- return hidden_states
766
- B, L, D = hidden_states.shape
767
- mask_flat = visual_pos_masks.astype(mx.int32).reshape(-1)
768
- idx_flat = mx.cumsum(mask_flat, axis=0) - 1
769
- N = deepstack_visual_embeds.shape[0]
770
- idx_flat = mx.maximum(idx_flat, 0)
771
- eq = (idx_flat[:, None] == mx.arange(N)[None, :]).astype(hidden_states.dtype)
772
- add_flat = eq @ deepstack_visual_embeds.astype(hidden_states.dtype)
773
- add_flat = add_flat * mask_flat[:, None].astype(hidden_states.dtype)
774
- add = add_flat.reshape(B, L, D)
775
- return hidden_states + add
776
-
777
- def __call__(
778
- self,
779
- input_ids: Optional[mx.array] = None,
780
- inputs_embeds: Optional[mx.array] = None,
781
- attention_mask: Optional[mx.array] = None,
782
- cache=None,
783
- visual_pos_masks: Optional[mx.array] = None,
784
- deepstack_visual_embeds: Optional[List[mx.array]] = None,
785
- cos: Optional[mx.array] = None,
786
- sin: Optional[mx.array] = None,
787
- rope_deltas: Optional[mx.array] = None,
788
- ):
789
- if inputs_embeds is None:
790
- inputs_embeds = self.embed_tokens(input_ids)
791
-
792
- hidden_states = inputs_embeds
793
-
794
- if attention_mask is None:
795
- attention_mask = create_attention_mask(hidden_states, cache, return_array=True)
796
-
797
- if cache is None:
798
- cache = [None] * len(self.layers)
799
-
800
- for layer_idx, (decoder_layer, c) in enumerate(zip(self.layers, cache)):
801
- hidden_states = decoder_layer(
802
- hidden_states,
803
- attention_mask=attention_mask,
804
- cache=c,
805
- cos=cos,
806
- sin=sin,
807
- rope_deltas=rope_deltas,
808
- )
809
- if deepstack_visual_embeds is not None and layer_idx < len(deepstack_visual_embeds):
810
- hidden_states = self._deepstack_process(hidden_states, visual_pos_masks, deepstack_visual_embeds[layer_idx])
811
- hidden_states = self.norm(hidden_states)
812
- return hidden_states
813
-
814
-
815
- # Standalone Vision Model
816
- class VEGModel(nn.Module):
817
- def __init__(self, vision_config: VisionConfig):
818
- super().__init__()
819
- self.config = vision_config
820
- self.visual = VisionModel(vision_config)
821
-
822
- def __call__(self, pixel_values: mx.array, image_grid_thw: mx.array):
823
- return self.visual(pixel_values, image_grid_thw)
824
-
825
- def sanitize(self, weights):
826
- sanitized = {}
827
- for k, v in weights.items():
828
- if 'visual.' in k:
829
- # Remove prefixes to match our model structure
830
- clean_key = k.replace('model.visual.', '').replace('visual.', '')
831
- sanitized[f'visual.{clean_key}'] = v
832
- return sanitized
833
-
834
-
835
- # Pure LLM Model (no vision components)
836
- class LLMModel(nn.Module):
837
- def __init__(self, text_config: TextConfig):
838
- super().__init__()
839
- self.args = text_config
840
- self.config = text_config
841
- self.language_model = TextModel(text_config)
842
- if not text_config.tie_word_embeddings:
843
- self.lm_head = nn.Linear(text_config.hidden_size, text_config.vocab_size, bias=False)
844
-
845
- def get_rope_index(
846
- self,
847
- input_ids: Optional[mx.array] = None,
848
- image_grid_thw: Optional[mx.array] = None,
849
- attention_mask: Optional[mx.array] = None,
850
- ) -> Tuple[mx.array, mx.array]:
851
- """Simplified version for images only (no video support)."""
852
-
853
- spatial_merge_size = 2
854
- image_token_id = 151655
855
- vision_start_token_id = 151652
856
- mrope_position_deltas = []
857
-
858
- if input_ids is not None and image_grid_thw is not None:
859
- total_input_ids = input_ids
860
- if attention_mask is None:
861
- attention_mask = mx.ones_like(total_input_ids)
862
-
863
- batch_size, seq_len = input_ids.shape
864
- position_ids_list = []
865
- image_index = 0
866
-
867
- for i in range(batch_size):
868
- input_ids_seq = total_input_ids[i]
869
- mask_seq = attention_mask[i]
870
-
871
- # Use mask to get valid length
872
- valid_length = int(mx.sum(mask_seq).item())
873
- input_ids_seq = input_ids_seq[:valid_length]
874
-
875
- image_nums = 0
876
- # Find vision start tokens by iterating through the sequence
877
- vision_start_positions = []
878
- for pos in range(input_ids_seq.shape[0]):
879
- if input_ids_seq[pos].item() == vision_start_token_id:
880
- vision_start_positions.append(pos)
881
-
882
- if len(vision_start_positions) > 0:
883
- for pos in vision_start_positions:
884
- if pos + 1 < input_ids_seq.shape[0]:
885
- if input_ids_seq[pos + 1].item() == image_token_id:
886
- image_nums += 1
887
-
888
- input_tokens = input_ids_seq.tolist()
889
- llm_pos_ids_list = []
890
- st = 0
891
- remain_images = image_nums
892
-
893
- for _ in range(image_nums):
894
- ed_image = input_tokens.index(image_token_id, st)
895
-
896
- t = image_grid_thw[image_index, 0].item()
897
- h = image_grid_thw[image_index, 1].item()
898
- w = image_grid_thw[image_index, 2].item()
899
- image_index += 1
900
- remain_images -= 1
901
- ed = ed_image
902
-
903
- llm_grid_t = int(t)
904
- llm_grid_h = int(h) // spatial_merge_size
905
- llm_grid_w = int(w) // spatial_merge_size
906
- text_len = ed - st
907
-
908
- st_idx = llm_pos_ids_list[-1].max().item() + 1 if len(llm_pos_ids_list) > 0 else 0
909
- text_pos = mx.arange(text_len).reshape(1, -1)
910
- text_pos = mx.broadcast_to(text_pos, (3, text_len)) + st_idx
911
- llm_pos_ids_list.append(text_pos)
912
-
913
- # t_index is always 0 because llm_grid_t is always 1 for images
914
- t_index = mx.arange(llm_grid_t).reshape(-1, 1)
915
- t_index = mx.broadcast_to(t_index, (llm_grid_t, llm_grid_h * llm_grid_w)).reshape(-1)
916
-
917
- h_index = mx.arange(llm_grid_h).reshape(1, -1, 1)
918
- h_index = mx.broadcast_to(h_index, (llm_grid_t, llm_grid_h, llm_grid_w)).reshape(-1)
919
-
920
- w_index = mx.arange(llm_grid_w).reshape(1, 1, -1)
921
- w_index = mx.broadcast_to(w_index, (llm_grid_t, llm_grid_h, llm_grid_w)).reshape(-1)
922
-
923
- vision_pos = mx.stack([t_index, h_index, w_index]) + text_len + st_idx
924
- llm_pos_ids_list.append(vision_pos)
925
- st = ed + llm_grid_t * llm_grid_h * llm_grid_w
926
-
927
- if st < len(input_tokens):
928
- st_idx = llm_pos_ids_list[-1].max().item() + 1 if len(llm_pos_ids_list) > 0 else 0
929
- text_len = len(input_tokens) - st
930
- text_pos = mx.arange(text_len).reshape(1, -1)
931
- text_pos = mx.broadcast_to(text_pos, (3, text_len)) + st_idx
932
- llm_pos_ids_list.append(text_pos)
933
-
934
- llm_positions = mx.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
935
-
936
- # Create position_ids for this batch item, pad to seq_len
937
- batch_position_ids = mx.ones((3, seq_len), dtype=input_ids.dtype)
938
- valid_length = min(seq_len, llm_positions.shape[1])
939
-
940
- # Create new arrays for each dimension
941
- pos_dim0 = mx.concatenate([llm_positions[0, :valid_length],
942
- mx.ones(seq_len - valid_length, dtype=input_ids.dtype)])
943
- pos_dim1 = mx.concatenate([llm_positions[1, :valid_length],
944
- mx.ones(seq_len - valid_length, dtype=input_ids.dtype)])
945
- pos_dim2 = mx.concatenate([llm_positions[2, :valid_length],
946
- mx.ones(seq_len - valid_length, dtype=input_ids.dtype)])
947
-
948
- batch_position_ids = mx.stack([pos_dim0, pos_dim1, pos_dim2])
949
- position_ids_list.append(batch_position_ids)
950
-
951
- mrope_position_deltas.append(llm_positions.max().item() + 1 - len(total_input_ids[i]))
952
-
953
- # Stack all batch position_ids
954
- position_ids = mx.stack(position_ids_list, axis=1) # Shape: (3, batch_size, seq_len)
955
- mrope_position_deltas = mx.array(mrope_position_deltas).reshape(-1, 1)
956
- return position_ids, mrope_position_deltas
957
- else:
958
- if attention_mask is not None:
959
- position_ids = mx.cumsum(attention_mask.astype(mx.int32), axis=-1) - 1
960
- position_ids = mx.where(attention_mask == 0, 1, position_ids)
961
- position_ids = mx.expand_dims(position_ids, axis=0)
962
- position_ids = mx.broadcast_to(position_ids, (3, position_ids.shape[1], position_ids.shape[2]))
963
- max_position_ids = mx.max(mx.max(position_ids, axis=0, keepdims=False), axis=-1, keepdims=True)
964
- mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
965
- else:
966
- seq_len = input_ids.shape[1]
967
- batch_size = input_ids.shape[0]
968
- position_ids = mx.arange(seq_len).reshape(1, 1, -1)
969
- position_ids = mx.broadcast_to(position_ids, (3, batch_size, seq_len))
970
- mrope_position_deltas = mx.zeros((batch_size, 1), dtype=input_ids.dtype)
971
-
972
- return position_ids, mrope_position_deltas
973
-
974
- def __call__(
975
- self,
976
- inputs: mx.array = None,
977
- mask: mx.array = None,
978
- cache=None,
979
- inputs_embeds: Optional[mx.array] = None,
980
- visual_pos_masks: Optional[mx.array] = None,
981
- deepstack_visual_embeds: Optional[List[mx.array]] = None,
982
- cos: Optional[mx.array] = None,
983
- sin: Optional[mx.array] = None,
984
- rope_deltas: Optional[mx.array] = None,
985
- ):
986
- out = self.language_model(
987
- input_ids=inputs,
988
- inputs_embeds=inputs_embeds,
989
- attention_mask=mask,
990
- cache=cache,
991
- visual_pos_masks=visual_pos_masks,
992
- deepstack_visual_embeds=deepstack_visual_embeds,
993
- cos=cos,
994
- sin=sin,
995
- rope_deltas=rope_deltas,
996
- )
997
- if self.args.tie_word_embeddings:
998
- return self.language_model.embed_tokens.as_linear(out)
999
- else:
1000
- return self.lm_head(out)
1001
-
1002
- def sanitize(self, weights):
1003
- sanitized = {}
1004
- for k, v in weights.items():
1005
- if not ('visual.' in k):
1006
- # Handle key mapping from combined model to LLM-only model
1007
- clean_key = k
1008
-
1009
- # Remove model. prefix if present
1010
- if clean_key.startswith('model.'):
1011
- clean_key = clean_key[6:] # Remove 'model.'
1012
-
1013
- # Map language_ prefixed keys to language_model structure
1014
- if clean_key.startswith('language_'):
1015
- if clean_key.startswith('language_layers.'):
1016
- clean_key = 'language_model.layers.' + clean_key[16:] # Map to language_model.layers.
1017
- elif clean_key.startswith('language_embed_tokens.'):
1018
- clean_key = 'language_model.embed_tokens.' + clean_key[22:] # Map to language_model.embed_tokens.
1019
- elif clean_key.startswith('language_norm.'):
1020
- clean_key = 'language_model.norm.' + clean_key[14:] # Map to language_model.norm.
1021
-
1022
- sanitized[clean_key] = v
1023
-
1024
- # Handle tied embeddings - remove lm_head if using tied embeddings
1025
- if self.args.tie_word_embeddings:
1026
- sanitized.pop("lm_head.weight", None)
1027
-
1028
- return sanitized
1029
-
1030
- @property
1031
- def layers(self):
1032
- return self.language_model.layers
1033
-
1034
-
1035
- # Combined Model (for compatibility and utility functions)
1036
- class Qwen3VLModel(nn.Module):
1037
- def __init__(self, args: ModelArgs):
1038
- super().__init__()
1039
- self.args = args
1040
- self.config = args
1041
- self.visual = VisionModel(args.vision_config)
1042
- self.language_model = TextModel(args.text_config)
1043
-
1044
- def sanitize(self, weights):
1045
- # Map weights to match the combined model structure
1046
- sanitized = {}
1047
- for k, v in weights.items():
1048
- # Remove 'model.' prefix if present to match our structure
1049
- clean_key = k.replace('model.', '') if k.startswith('model.') else k
1050
- sanitized[clean_key] = v
1051
- return sanitized
1052
-
1053
- def get_image_features(
1054
- self,
1055
- pixel_values: mx.array,
1056
- image_grid_thw: Optional[mx.array] = None
1057
- ):
1058
- image_embeds, deepstack_visual_embeds = self.visual(pixel_values, image_grid_thw)
1059
- # Split based on grid dimensions
1060
- if image_grid_thw is not None:
1061
- split_sizes = (mx.prod(image_grid_thw, axis=-1) // (self.visual.spatial_merge_size ** 2)).tolist()
1062
- # Convert sizes to indices for mx.split (cumulative sum, excluding the last)
1063
- split_indices = []
1064
- cumsum = 0
1065
- for size in split_sizes[:-1]: # Exclude last element
1066
- cumsum += size
1067
- split_indices.append(cumsum)
1068
-
1069
- if split_indices: # Only split if we have indices
1070
- image_embeds = mx.split(image_embeds, split_indices)
1071
- else:
1072
- image_embeds = [image_embeds] # Single image case
1073
- return image_embeds, deepstack_visual_embeds
1074
-
1075
-
1076
- def __call__(
1077
- self,
1078
- input_ids: mx.array = None,
1079
- attention_mask: Optional[mx.array] = None,
1080
- inputs_embeds: Optional[mx.array] = None,
1081
- pixel_values: Optional[mx.array] = None,
1082
- image_grid_thw: Optional[mx.array] = None,
1083
- cache=None,
1084
- visual_pos_masks: Optional[mx.array] = None,
1085
- deepstack_visual_embeds: Optional[List[mx.array]] = None,
1086
- cos: Optional[mx.array] = None,
1087
- sin: Optional[mx.array] = None,
1088
- rope_deltas: Optional[mx.array] = None,
1089
- ):
1090
- if inputs_embeds is None:
1091
- inputs_embeds = self.language_model.embed_tokens(input_ids)
1092
-
1093
- # Process images
1094
-
1095
- if pixel_values is not None:
1096
- image_embeds, deepstack_visual_embeds = self.get_image_features(
1097
- pixel_values, image_grid_thw
1098
- )
1099
-
1100
- # Create masks and embed visual features
1101
- if isinstance(image_embeds, list):
1102
- image_embeds = mx.concatenate(image_embeds, axis=0)
1103
-
1104
- # Find image token positions and replace with visual embeddings
1105
- image_mask = (input_ids == self.args.image_token_id)
1106
- visual_pos_masks = image_mask
1107
-
1108
- # Replace image tokens with visual embeddings
1109
- inputs_embeds = inputs_embeds.at[image_mask].set(
1110
- image_embeds.astype(inputs_embeds.dtype)
1111
- )
1112
-
1113
-
1114
- outputs = self.language_model(
1115
- inputs_embeds=inputs_embeds,
1116
- attention_mask=attention_mask,
1117
- cache=cache,
1118
- visual_pos_masks=visual_pos_masks,
1119
- deepstack_visual_embeds=deepstack_visual_embeds,
1120
- cos=cos,
1121
- sin=sin,
1122
- rope_deltas=rope_deltas,
1123
- )
1124
-
1125
- return outputs
1126
-
1127
-
1128
- def handle_multimodal_embeds(vision_model, llm_model, input_ids, pixel_values, image_grid_thw):
1129
- """
1130
- Handle the processing of multimodal embeddings including image features and position encoding.
1131
-
1132
- This function processes vision and text inputs to create unified embeddings that can be fed
1133
- into the language model. It handles:
1134
- - Vision feature extraction from pixel values
1135
- - Deepstack visual embedding collection
1136
- - Image token replacement in text embeddings
1137
- - Position encoding setup for MRoPE (Multi-dimensional RoPE)
1138
-
1139
- Args:
1140
- vision_model: The vision encoder model (VEGModel instance)
1141
- llm_model: The language model (LLMModel instance)
1142
- input_ids: Tokenized text input with image token placeholders [batch_size, seq_len]
1143
- pixel_values: Preprocessed image pixel data [num_patches, feature_dim]
1144
- image_grid_thw: Grid dimensions for each image [num_images, 3] (time, height, width)
1145
-
1146
- Returns:
1147
- tuple: (inputs_embeds, deepstack_visual_embeds, visual_pos_masks, cos, sin, rope_deltas)
1148
- - inputs_embeds: Combined text and image embeddings [batch_size, seq_len, hidden_size]
1149
- - deepstack_visual_embeds: Multi-layer visual features for deepstack processing
1150
- - visual_pos_masks: Boolean mask indicating image token positions
1151
- - cos: Cosine values for rotary position encoding
1152
- - sin: Sine values for rotary position encoding
1153
- - rope_deltas: Position offset deltas for rope computation
1154
- """
1155
- inputs_embeds = llm_model.language_model.embed_tokens(input_ids.squeeze(0))
1156
- deepstack_visual_embeds = None
1157
- visual_pos_masks = None
1158
- cos = None
1159
- sin = None
1160
- rope_deltas = 0
1161
-
1162
- if pixel_values is not None:
1163
- if pixel_values.ndim == 4:
1164
- pixel_values = mx.expand_dims(pixel_values, axis=2)
1165
-
1166
- # Process each image individually to prevent feature mixing
1167
- image_embeds_list = []
1168
- all_deepstack_embeds = []
1169
-
1170
- # Calculate cumulative indices for each image
1171
- cumulative_patches = 0
1172
-
1173
- for i in range(image_grid_thw.shape[0]):
1174
- # Calculate number of patches for current image
1175
- current_patches = int(image_grid_thw[i, 1] * image_grid_thw[i, 2])
1176
- start_idx = cumulative_patches
1177
- end_idx = cumulative_patches + current_patches
1178
- cumulative_patches += current_patches
1179
-
1180
- single_pixel_values = pixel_values[start_idx:end_idx]
1181
- single_grid_thw = image_grid_thw[i:i+1]
1182
-
1183
- # Use vision model directly
1184
- single_embeds, single_deepstack = vision_model(single_pixel_values, single_grid_thw)
1185
-
1186
- # Split based on grid dimensions
1187
- if single_grid_thw is not None:
1188
- split_sizes = (mx.prod(single_grid_thw, axis=-1) // (vision_model.visual.spatial_merge_size ** 2)).tolist()
1189
- split_indices = []
1190
- cumsum = 0
1191
- for size in split_sizes[:-1]:
1192
- cumsum += size
1193
- split_indices.append(cumsum)
1194
-
1195
- if split_indices:
1196
- single_embeds = mx.split(single_embeds, split_indices)
1197
- else:
1198
- single_embeds = [single_embeds]
1199
-
1200
- image_embeds_list.extend(single_embeds)
1201
-
1202
- # Collect deepstack embeddings
1203
- if i == 0:
1204
- all_deepstack_embeds = single_deepstack
1205
- else:
1206
- # Concatenate deepstack embeddings from different images
1207
- for j in range(len(all_deepstack_embeds)):
1208
- all_deepstack_embeds[j] = mx.concatenate([all_deepstack_embeds[j], single_deepstack[j]], axis=0)
1209
-
1210
- deepstack_visual_embeds = all_deepstack_embeds
1211
-
1212
- # Concatenate all image embeddings for processing
1213
- image_embeds = mx.concatenate(image_embeds_list, axis=0)
1214
-
1215
- # Find all image token positions
1216
- image_token_id = 151655 # Default image token ID
1217
- image_mask = (input_ids.squeeze(0) == image_token_id)
1218
- image_mask_np = np.array(image_mask)
1219
- image_token_positions = np.where(image_mask_np)[0]
1220
-
1221
- # Verify we have the correct number of image tokens
1222
- expected_total_tokens = sum(embed.shape[0] for embed in image_embeds_list)
1223
- assert len(image_token_positions) == expected_total_tokens, f"Expected {expected_total_tokens} image tokens, got {len(image_token_positions)}"
1224
-
1225
- # Replace image tokens with image embeddings
1226
- seq_len = inputs_embeds.shape[0]
1227
- result = inputs_embeds
1228
-
1229
- # Replace image tokens with image embeddings sequentially
1230
- embed_idx = 0
1231
- for img_embed in image_embeds_list:
1232
- for patch_idx in range(img_embed.shape[0]):
1233
- token_pos = image_token_positions[embed_idx]
1234
- pos_mask = mx.arange(seq_len) == token_pos
1235
- result = mx.where(
1236
- mx.expand_dims(pos_mask, axis=-1),
1237
- mx.expand_dims(img_embed[patch_idx], axis=0).astype(inputs_embeds.dtype),
1238
- result
1239
- )
1240
- embed_idx += 1
1241
-
1242
- inputs_embeds = result
1243
- position_ids, rope_deltas = llm_model.get_rope_index(input_ids, image_grid_thw)
1244
- cos, sin = llm_model.language_model.rotary_emb(inputs_embeds, position_ids)
1245
- if inputs_embeds.ndim == 2:
1246
- inputs_embeds = mx.expand_dims(inputs_embeds, axis=0)
1247
-
1248
- if image_mask is not None:
1249
- visual_pos_masks = image_mask
1250
-
1251
- return inputs_embeds, deepstack_visual_embeds, visual_pos_masks, cos, sin, rope_deltas
1252
-
1253
-
1254
- # Legacy Model wrapper (for backward compatibility)
1255
- class Model(nn.Module):
1256
- def __init__(self, args: ModelArgs):
1257
- super().__init__()
1258
- self.args = args
1259
- self.model = Qwen3VLModel(args)
1260
- if not args.text_config.tie_word_embeddings:
1261
- self.lm_head = nn.Linear(args.text_config.hidden_size, args.text_config.vocab_size, bias=False)
1262
-
1263
- def __call__(
1264
- self,
1265
- inputs: mx.array = None,
1266
- mask: mx.array = None,
1267
- cache=None,
1268
- inputs_embeds: Optional[mx.array] = None,
1269
- pixel_values: Optional[mx.array] = None,
1270
- image_grid_thw: Optional[mx.array] = None,
1271
- visual_pos_masks: Optional[mx.array] = None,
1272
- deepstack_visual_embeds: Optional[List[mx.array]] = None,
1273
- cos: Optional[mx.array] = None,
1274
- sin: Optional[mx.array] = None,
1275
- rope_deltas: Optional[mx.array] = None,
1276
- ):
1277
- out = self.model(
1278
- input_ids=inputs,
1279
- inputs_embeds=inputs_embeds,
1280
- attention_mask=mask,
1281
- cache=cache,
1282
- pixel_values=pixel_values,
1283
- image_grid_thw=image_grid_thw,
1284
- visual_pos_masks=visual_pos_masks,
1285
- deepstack_visual_embeds=deepstack_visual_embeds,
1286
- cos=cos,
1287
- sin=sin,
1288
- rope_deltas=rope_deltas,
1289
- )
1290
- if self.args.text_config.tie_word_embeddings:
1291
- return self.model.language_model.embed_tokens.as_linear(out)
1292
- else:
1293
- return self.lm_head(out)
1294
-
1295
- def sanitize(self, weights):
1296
- # Remove any unnecessary weights
1297
- sanitized = {}
1298
- for k, v in weights.items():
1299
- sanitized[k] = v
1300
-
1301
- # Handle tied embeddings - remove lm_head if using tied embeddings
1302
- if self.args.text_config.tie_word_embeddings:
1303
- sanitized.pop("lm_head.weight", None)
1304
-
1305
- return sanitized
1306
-
1307
- @property
1308
- def layers(self):
1309
- return self.model.language_model.layers