nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,503 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- hidden_size: int
14
- num_attention_heads: int
15
- patch_size: int
16
- num_hidden_layers: int = 12
17
- intermediate_size: int = 3072
18
- image_size: int = 224
19
- num_channels: int = 3
20
- layer_norm_eps: float = 1e-6
21
-
22
- @classmethod
23
- def from_dict(cls, params):
24
- return cls(
25
- **{
26
- k: v
27
- for k, v in params.items()
28
- if k in inspect.signature(cls).parameters
29
- }
30
- )
31
-
32
-
33
- def check_array_shape(arr):
34
- shape = arr.shape
35
-
36
- # Check if the shape has 4 dimensions
37
- if len(shape) != 4:
38
- return False
39
-
40
- out_channels, kH, KW, _ = shape
41
-
42
- # Check if out_channels is the largest, and kH and KW are the same
43
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
44
- return True
45
- else:
46
- return False
47
-
48
-
49
- class Attention(nn.Module):
50
- def __init__(
51
- self,
52
- dims: int,
53
- num_heads: int,
54
- query_input_dims: Optional[int] = None,
55
- key_input_dims: Optional[int] = None,
56
- value_input_dims: Optional[int] = None,
57
- value_dims: Optional[int] = None,
58
- value_output_dims: Optional[int] = None,
59
- bias: bool = True,
60
- ):
61
- super().__init__()
62
-
63
- if (dims % num_heads) != 0:
64
- raise ValueError(
65
- "The input feature dimensions should be divisible by the "
66
- f"number of heads ({dims} % {num_heads}) != 0"
67
- )
68
-
69
- query_input_dims = query_input_dims or dims
70
- key_input_dims = key_input_dims or dims
71
- value_input_dims = value_input_dims or key_input_dims
72
- value_dims = value_dims or dims
73
- value_output_dims = value_output_dims or dims
74
-
75
- self.num_heads = num_heads
76
- head_dim = dims // num_heads
77
- self.scale = head_dim**-0.5
78
-
79
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
80
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
81
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
82
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
83
-
84
- def __call__(self, x, mask=None):
85
- queries = self.q_proj(x)
86
- keys = self.k_proj(x)
87
- values = self.v_proj(x)
88
-
89
- num_heads = self.num_heads
90
- B, L, D = queries.shape
91
- _, S, _ = keys.shape
92
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
93
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
94
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
95
-
96
- output = mx.fast.scaled_dot_product_attention(
97
- queries, keys, values, scale=self.scale, mask=mask
98
- )
99
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
100
- return self.out_proj(output)
101
-
102
-
103
- class MLP(nn.Module):
104
- def __init__(self, config: VisionConfig):
105
- super().__init__()
106
- self.activation_fn = nn.GELU(approx="precise")
107
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
108
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
109
-
110
- def __call__(self, x: mx.array) -> mx.array:
111
- x = self.fc1(x)
112
- x = self.activation_fn(x)
113
- x = self.fc2(x)
114
- return x
115
-
116
-
117
- class EncoderLayer(nn.Module):
118
- def __init__(self, config: VisionConfig):
119
- super().__init__()
120
- self.embed_dim = config.hidden_size
121
- self.self_attn = Attention(
122
- config.hidden_size, config.num_attention_heads, bias=True
123
- )
124
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
125
- self.mlp = MLP(config)
126
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
127
-
128
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
129
- r = self.self_attn(self.layer_norm1(x), mask)
130
- h = x + r
131
- r = self.mlp(self.layer_norm2(h))
132
- return h + r
133
-
134
-
135
- class Encoder(nn.Module):
136
- def __init__(self, config: VisionConfig):
137
- super().__init__()
138
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
139
-
140
- def __call__(
141
- self,
142
- x: mx.array,
143
- output_hidden_states: Optional[bool] = None,
144
- mask: Optional[mx.array] = None,
145
- ) -> mx.array:
146
- encoder_states = (x,) if output_hidden_states else None
147
- h = x
148
- for l in self.layers:
149
- x = l(x, mask=mask)
150
- if output_hidden_states:
151
- encoder_states = encoder_states + (x,)
152
-
153
- h = x
154
-
155
- return (h, encoder_states)
156
-
157
-
158
- def gaussian_blur_axis(image, sigma, axis):
159
- """
160
- Applies a 1D Gaussian blur along the given axis.
161
- This version works for arrays with any number of dimensions.
162
- """
163
- radius = int(3 * sigma)
164
- if radius < 1:
165
- return image
166
- x = mx.arange(-radius, radius + 1)
167
- kernel = mx.exp(-(x**2) / (2 * sigma**2))
168
- kernel = kernel / mx.sum(kernel)
169
-
170
- # MLX doesn't have a direct apply_along_axis equivalent,
171
- # so we'll implement the convolution differently based on the axis
172
-
173
- # Helper function to apply 1D convolution along specific axis
174
- def conv_1d(array, kernel, axis):
175
- # Reshape kernel to broadcast along the right dimensions
176
- kernel_shape = [1] * image.ndim
177
- kernel_shape[axis] = len(kernel)
178
- kernel_reshaped = kernel.reshape(kernel_shape)
179
-
180
- # Pad the array
181
- pad_width = [(0, 0)] * image.ndim
182
- pad_width[axis] = (radius, radius)
183
- padded = mx.pad(array, pad_width, mode="edge")
184
-
185
- # Perform convolution via sliding window sum
186
- result = mx.zeros_like(array)
187
- slices = [slice(None)] * padded.ndim
188
-
189
- for i in range(2 * radius + 1):
190
- slices[axis] = slice(i, i + array.shape[axis])
191
- result = result + padded[tuple(slices)] * kernel_reshaped
192
-
193
- return result
194
-
195
- return conv_1d(image, kernel, axis)
196
-
197
-
198
- def bilinear_interpolate(image, new_height, new_width, align_corners=False):
199
- """
200
- Performs bilinear interpolation on an array whose spatial dimensions are the first two.
201
- It supports extra dimensions (e.g. channels or batch dimensions that have been moved to the trailing axes).
202
- """
203
- # image is assumed to have shape (H, W, ...) where H and W are spatial dimensions.
204
- H_in, W_in = image.shape[0], image.shape[1]
205
-
206
- # Compute sampling positions in the input image.
207
- if new_height == 1:
208
- row_positions = mx.array([0.0])
209
- else:
210
- if align_corners:
211
- row_positions = mx.linspace(0, H_in - 1, new_height)
212
- else:
213
- row_positions = (mx.arange(new_height) + 0.5) * H_in / new_height - 0.5
214
-
215
- if new_width == 1:
216
- col_positions = mx.array([0.0])
217
- else:
218
- if align_corners:
219
- col_positions = mx.linspace(0, W_in - 1, new_width)
220
- else:
221
- col_positions = (mx.arange(new_width) + 0.5) * W_in / new_width - 0.5
222
-
223
- # Compute floor and ceil indices.
224
- row_floor = mx.floor(row_positions).astype(mx.int32)
225
- col_floor = mx.floor(col_positions).astype(mx.int32)
226
- row_ceil = row_floor + 1
227
- col_ceil = col_floor + 1
228
-
229
- row_floor = mx.clip(row_floor, 0, H_in - 1)
230
- row_ceil = mx.clip(row_ceil, 0, H_in - 1)
231
- col_floor = mx.clip(col_floor, 0, W_in - 1)
232
- col_ceil = mx.clip(col_ceil, 0, W_in - 1)
233
-
234
- row_weight = row_positions - row_floor # shape (new_height,)
235
- col_weight = col_positions - col_floor # shape (new_width,)
236
-
237
- # Use advanced indexing for gather operations
238
- # Create meshgrid for coordinates
239
- row_floor_grid, col_floor_grid = mx.meshgrid(row_floor, col_floor, indexing="ij")
240
- row_ceil_grid, col_floor_grid = mx.meshgrid(row_ceil, col_floor, indexing="ij")
241
- row_floor_grid, col_ceil_grid = mx.meshgrid(row_floor, col_ceil, indexing="ij")
242
- row_ceil_grid, col_ceil_grid = mx.meshgrid(row_ceil, col_ceil, indexing="ij")
243
-
244
- # Gather the four surrounding pixels using take_along_axis
245
- # For higher dimensional arrays, we'll need to reshape and broadcast
246
- extra_dims = image.ndim - 2
247
-
248
- def gather_pixels(row_indices, col_indices):
249
- # Flatten the spatial dimensions for gathering
250
- flat_indices = row_indices * W_in + col_indices
251
- flat_image = mx.reshape(image, (-1,) + image.shape[2:])
252
- # Gather and reshape back
253
- gathered = mx.take(flat_image, flat_indices.reshape(-1), axis=0)
254
- return mx.reshape(gathered, (new_height, new_width) + image.shape[2:])
255
-
256
- top_left = gather_pixels(row_floor_grid, col_floor_grid)
257
- top_right = gather_pixels(row_floor_grid, col_ceil_grid)
258
- bottom_left = gather_pixels(row_ceil_grid, col_floor_grid)
259
- bottom_right = gather_pixels(row_ceil_grid, col_ceil_grid)
260
-
261
- # Expand the weights to have shape (new_height, new_width, *[1]*extra_dims)
262
- r_weight = row_weight.reshape(new_height, 1, *([1] * extra_dims))
263
- c_weight = col_weight.reshape(1, new_width, *([1] * extra_dims))
264
-
265
- # Perform bilinear interpolation.
266
- result = (
267
- (1 - r_weight) * (1 - c_weight) * top_left
268
- + (1 - r_weight) * c_weight * top_right
269
- + r_weight * (1 - c_weight) * bottom_left
270
- + r_weight * c_weight * bottom_right
271
- )
272
- return result
273
-
274
-
275
- def resize_bilinear(image, new_size, align_corners=False, antialias=True):
276
- """
277
- Resizes an image (or embedding tensor) to new_size=(new_height, new_width)
278
- using bilinear interpolation with MLX.
279
-
280
- Supports:
281
- - 2D: (H, W)
282
- - 3D: (H, W, C)
283
- - 4D: (B, C, H, W) (assumed for typical image batches)
284
- """
285
- new_height, new_width = new_size
286
-
287
- # Convert numpy arrays to MLX arrays if needed
288
- if isinstance(image, np.ndarray):
289
- image = mx.array(image)
290
-
291
- if image.ndim == 2 or image.ndim == 3:
292
- # Assume spatial dims are the first two.
293
- resized = image
294
- H_in, W_in = image.shape[:2]
295
- if antialias:
296
- if new_height < H_in:
297
- scale_y = new_height / H_in
298
- sigma_y = (1 / scale_y - 1) / 2.0 # heuristic
299
- if sigma_y > 0:
300
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
301
- if new_width < W_in:
302
- scale_x = new_width / W_in
303
- sigma_x = (1 / scale_x - 1) / 2.0
304
- if sigma_x > 0:
305
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
306
- resized = bilinear_interpolate(
307
- resized, new_height, new_width, align_corners=align_corners
308
- )
309
- return resized
310
-
311
- elif image.ndim == 4:
312
- # Assume shape is (B, C, H, W) (typical PyTorch/MLX format).
313
- B, C, H_in, W_in = image.shape
314
- # Permute to bring spatial dims to the front: (H, W, B, C)
315
- image_perm = mx.transpose(image, (2, 3, 0, 1))
316
- resized = image_perm
317
- if antialias:
318
- if new_height < H_in:
319
- scale_y = new_height / H_in
320
- sigma_y = (1 / scale_y - 1) / 2.0
321
- if sigma_y > 0:
322
- resized = gaussian_blur_axis(resized, sigma_y, axis=0)
323
- if new_width < W_in:
324
- scale_x = new_width / W_in
325
- sigma_x = (1 / scale_x - 1) / 2.0
326
- if sigma_x > 0:
327
- resized = gaussian_blur_axis(resized, sigma_x, axis=1)
328
- resized = bilinear_interpolate(
329
- resized, new_height, new_width, align_corners=align_corners
330
- )
331
- # Permute back to (B, C, new_height, new_width)
332
- resized = mx.transpose(resized, (2, 3, 0, 1))
333
- return resized
334
-
335
- else:
336
- raise ValueError("Unsupported image dimensions.")
337
-
338
-
339
- class VisionEmbeddings(nn.Module):
340
- def __init__(self, config: VisionConfig):
341
- super().__init__()
342
- self.config = config
343
- self.embed_dim = config.hidden_size
344
- self.image_size = config.image_size
345
- self.patch_size = config.patch_size
346
-
347
- self.patch_embedding = nn.Conv2d(
348
- config.num_channels,
349
- config.hidden_size,
350
- kernel_size=self.patch_size,
351
- stride=self.patch_size,
352
- )
353
-
354
- self.num_patches = (self.image_size // self.patch_size) ** 2
355
- self.num_positions = self.num_patches
356
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
357
-
358
- @staticmethod
359
- def resize_positional_embeddings(
360
- positional_embeddings: mx.array,
361
- spatial_shapes: mx.array,
362
- max_length: int,
363
- ) -> mx.array:
364
- """
365
- Resize positional embeddings to image-specific size and pad to a fixed size.
366
-
367
- Args:
368
- positional_embeddings (`torch.Tensor`):
369
- Position embeddings of shape (height, width, embed_dim)
370
- spatial_shapes (`torch.LongTensor`):
371
- Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
372
- max_length (`int`):
373
- Maximum length of the positional embeddings to pad resized positional embeddings to
374
-
375
- Returns:
376
- `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
377
- """
378
- batch_size = spatial_shapes.shape[0]
379
- embed_dim = positional_embeddings.shape[-1]
380
- source_dtype = positional_embeddings.dtype
381
-
382
- resulted_positional_embeddings = mx.zeros(
383
- (batch_size, max_length, embed_dim)
384
- ).astype(source_dtype)
385
-
386
- # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
387
- positional_embeddings = positional_embeddings.transpose(2, 0, 1).reshape(
388
- 1, embed_dim, -1
389
- )
390
-
391
- # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
392
- if positional_embeddings.device.type == "cpu":
393
- positional_embeddings = positional_embeddings.astype(mx.float32)
394
-
395
- for i in range(batch_size):
396
- # (1, dim, height, width) -> (1, dim, target_height, target_width)
397
- height, width = spatial_shapes[i]
398
- # Then upsample width dimension
399
- resized_embeddings = resize_bilinear(
400
- positional_embeddings,
401
- (height, width),
402
- align_corners=False,
403
- antialias=True,
404
- )
405
-
406
- # (1, dim, target_height, target_width) -> (target_height * target_width, dim)
407
- resized_embeddings = resized_embeddings.reshape(
408
- embed_dim, height * width
409
- ).transpose(0, 1)
410
-
411
- # Cast to original dtype
412
- resized_embeddings = resized_embeddings.astype(source_dtype)
413
-
414
- resulted_positional_embeddings[i, : height * width] = resized_embeddings
415
- resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
416
-
417
- return resulted_positional_embeddings
418
-
419
- def __call__(
420
- self, x: mx.array, spatial_shapes: Optional[mx.array] = None
421
- ) -> mx.array:
422
- batch_size = x.shape[0]
423
- patch_embeddings = self.patch_embedding(x)
424
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
425
- if spatial_shapes is None:
426
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
427
- embeddings = patch_embeddings
428
- embeddings += self.position_embedding(position_ids)
429
-
430
- else:
431
- # Get positional resized and padded positional embeddings
432
- positional_embeddings = self.position_embedding.weight.reshape(
433
- self.position_embedding_size, self.position_embedding_size, -1
434
- )
435
-
436
- resized_positional_embeddings = self.resize_positional_embeddings(
437
- positional_embeddings, spatial_shapes, max_length=x.shape[1]
438
- )
439
-
440
- # Add positional embeddings to patch embeddings
441
- embeddings = patch_embeds + resized_positional_embeddings
442
- return embeddings
443
-
444
-
445
- class SigLipVisionModel(nn.Module):
446
- def __init__(self, config: VisionConfig):
447
- super().__init__()
448
-
449
- self.embeddings = VisionEmbeddings(config)
450
- self.encoder = Encoder(config)
451
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
452
-
453
- def __call__(
454
- self,
455
- x: mx.array,
456
- spatial_shapes: mx.array,
457
- output_hidden_states: Optional[bool] = None,
458
- ) -> mx.array:
459
- x = self.embeddings(x, spatial_shapes)
460
- x = x.astype(self.embeddings.patch_embedding.weight.dtype)
461
- encoder_outputs = self.encoder(
462
- x=x, output_hidden_states=output_hidden_states, mask=None
463
- )
464
- pooler_output = self.post_layernorm(encoder_outputs[0])
465
- return pooler_output, x, encoder_outputs[-1]
466
-
467
-
468
- class VisionModel(nn.Module):
469
- def __init__(self, config: VisionConfig):
470
- super().__init__()
471
- self.model_type = config.model_type
472
- if self.model_type not in ["siglip_vision_model"]:
473
- raise ValueError(f"Unsupported model type: {self.model_type}")
474
-
475
- self.vision_model = SigLipVisionModel(config)
476
-
477
- def __call__(
478
- self,
479
- x: mx.array,
480
- spatial_shapes: Optional[mx.array] = None,
481
- output_hidden_states: Optional[bool] = None,
482
- ) -> mx.array:
483
- return self.vision_model(x, spatial_shapes, output_hidden_states)
484
-
485
- def sanitize(self, weights):
486
- sanitized_weights = {}
487
- for k, v in weights.items():
488
- if "position_ids" in k:
489
- # Remove unused position_ids
490
- continue
491
- elif "patch_embedding.weight" in k:
492
- # PyTorch conv2d weight tensors have shape:
493
- # [out_channels, in_channels, kH, KW]
494
- # MLX conv2d expects the weight be of shape:
495
- # [out_channels, kH, KW, in_channels]
496
- if check_array_shape(v):
497
- sanitized_weights[k] = v
498
- else:
499
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
500
- else:
501
- sanitized_weights[k] = v
502
-
503
- return sanitized_weights
@@ -1,202 +0,0 @@
1
- import math
2
- from abc import ABC, abstractmethod
3
- from dataclasses import dataclass
4
- from typing import Any, Dict, List, Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- from mlx_lm.models.base import create_attention_mask, scaled_dot_product_attention
9
- from mlx_lm.models.cache import RotatingKVCache
10
- from PIL import Image
11
- from transformers.image_processing_utils import BaseImageProcessor as ImageProcessor
12
- from transformers.image_processing_utils import get_size_dict
13
- from transformers.image_utils import ChannelDimension, PILImageResampling
14
-
15
-
16
- @dataclass
17
- class LanguageModelOutput:
18
- logits: mx.array
19
- cross_attention_states: Optional[List[mx.array]] = None
20
- encoder_outputs: Optional[List[mx.array]] = None
21
-
22
-
23
- def expand2square(pil_img, background_color):
24
- width, height = pil_img.size
25
- if width == height:
26
- return pil_img
27
- elif width > height:
28
- result = Image.new(pil_img.mode, (width, width), background_color)
29
- result.paste(pil_img, (0, (width - height) // 2))
30
- return result
31
- else:
32
- result = Image.new(pil_img.mode, (height, height), background_color)
33
- result.paste(pil_img, ((height - width) // 2, 0))
34
- return result
35
-
36
-
37
- def check_array_shape(arr):
38
- shape = arr.shape
39
-
40
- # Check if the shape has 4 dimensions
41
- if len(shape) == 4:
42
- out_channels, kH, KW, _ = shape
43
- # Check if out_channels is the largest, and kH and KW are the same
44
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
45
- return True
46
- else:
47
- return False
48
- # Check if the shape has 3 dimensions
49
- elif len(shape) == 3:
50
- _, kW, out_channels = shape
51
- # Check if out_channels is the largest
52
- if kW >= out_channels:
53
- return True
54
- else:
55
- return False
56
- else:
57
- return False
58
-
59
-
60
- class BaseImageProcessor(ImageProcessor):
61
- def __init__(
62
- self,
63
- image_mean=(0.5, 0.5, 0.5),
64
- image_std=(0.5, 0.5, 0.5),
65
- size=(384, 384),
66
- crop_size: Dict[str, int] = None,
67
- resample=PILImageResampling.BICUBIC,
68
- rescale_factor=1 / 255,
69
- data_format=ChannelDimension.FIRST,
70
- ):
71
- crop_size = (
72
- crop_size if crop_size is not None else {"height": 384, "width": 384}
73
- )
74
- crop_size = get_size_dict(
75
- crop_size, default_to_square=True, param_name="crop_size"
76
- )
77
-
78
- self.image_mean = image_mean
79
- self.image_std = image_std
80
- self.size = size
81
- self.resample = resample
82
- self.rescale_factor = rescale_factor
83
- self.data_format = data_format
84
- self.crop_size = crop_size
85
-
86
- @abstractmethod
87
- def preprocess(self, images):
88
- pass
89
-
90
-
91
- # Add this code to visualize the chunked attention mask
92
- def visualize_attention_mask(mask):
93
- """Visualize attention mask with symbols for better readability."""
94
- if mask is None:
95
- print("No mask")
96
- return
97
-
98
- seq_len = mask.shape[0]
99
-
100
- print(" ", end="")
101
- for i in range(seq_len):
102
- print(f"{i:2d} ", end="")
103
- print()
104
-
105
- for i in range(seq_len):
106
- print(f"Token {i:2d}: ", end="")
107
- for j in range(seq_len):
108
- if mask[i, j]:
109
- print(" ■ ", end="")
110
- else:
111
- print(" ⬚ ", end="")
112
- print()
113
-
114
-
115
- def check_activation_stats(name, tensor):
116
- """Helper function to check for anomalies and log stats."""
117
-
118
- print(f"--- Activation Stats: {name} ---")
119
- # Check for NaNs/Infs
120
- has_nan = mx.isnan(tensor).any()
121
- has_inf = mx.isinf(tensor).any()
122
- if has_nan:
123
- print(f"WARNING: Found NaN in {name}")
124
- if has_inf:
125
- print(f"WARNING: Found Inf in {name}")
126
-
127
- # Calculate and print stats (ensure computation happens)
128
- min_val = mx.min(tensor).item()
129
- max_val = mx.max(tensor).item()
130
- mean_val = mx.mean(tensor).item()
131
- std_val = mx.std(tensor).item()
132
- print(f" Shape: {tensor.shape}")
133
- print(f" Min: {min_val:.4f}, Max: {max_val:.4f}")
134
- print(f" Mean: {mean_val:.4f}, Std: {std_val:.4f}")
135
- print("-" * (len(name) + 24))
136
-
137
-
138
- def pixel_shuffle(input_tensor, shuffle_ratio):
139
- # input_tensor: [batch_size, num_patches, channels]
140
- batch_size, num_patches, channels = input_tensor.shape
141
- patch_size = int(math.sqrt(num_patches))
142
-
143
- input_tensor = input_tensor.reshape(batch_size, patch_size, patch_size, -1)
144
- batch_size, height, width, channels = input_tensor.shape
145
-
146
- reshaped_tensor = input_tensor.reshape(
147
- batch_size, height, int(width * shuffle_ratio), int(channels / shuffle_ratio)
148
- )
149
- reshaped_tensor = reshaped_tensor.transpose(0, 2, 1, 3)
150
-
151
- reshaped_tensor = reshaped_tensor.reshape(
152
- batch_size,
153
- int(height * shuffle_ratio),
154
- int(width * shuffle_ratio),
155
- int(channels / (shuffle_ratio**2)),
156
- )
157
- reshaped_tensor = reshaped_tensor.transpose(0, 2, 1, 3)
158
-
159
- output_tensor = reshaped_tensor.reshape(batch_size, -1, reshaped_tensor.shape[-1])
160
- return output_tensor
161
-
162
-
163
- def interpolate(pos_embed, size, mode="cubic", align_corners=False):
164
- """
165
- MLX implementation of PyTorch's F.interpolate with bicubic mode
166
-
167
- Args:
168
- pos_embed: MLX array with shape [B, C, H_src, W_src] or [C, H_src, W_src]
169
- size: Tuple (H_dst, W_dst) - target size
170
- align_corners: Boolean - whether to align corners
171
-
172
- Returns:
173
- Interpolated array with shape [B, C, H_dst, W_dst] or [C, H_dst, W_dst]
174
- """
175
- # Handle different input shapes
176
- input_dim = pos_embed.ndim
177
- original_shape = pos_embed.shape
178
-
179
- if input_dim == 3:
180
- # [C, H, W] -> [1, C, H, W]
181
- pos_embed = pos_embed.reshape(1, *original_shape)
182
-
183
- # Get source dimensions
184
- h_src, w_src = pos_embed.shape[-2:]
185
- h_dst, w_dst = size
186
-
187
- # Calculate scale factors
188
- scale_h = h_dst / h_src
189
- scale_w = w_dst / w_src
190
-
191
- # Create upsampler
192
- upsampler = nn.Upsample(
193
- scale_factor=(scale_h, scale_w), mode=mode, align_corners=align_corners
194
- )
195
-
196
- # Apply upsampling
197
- result = upsampler(pos_embed)
198
-
199
- # Return in the original dimension format
200
- if input_dim == 3:
201
- return result.reshape(original_shape[0], *size)
202
- return result