nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
|
@@ -1,108 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass, field
|
|
3
|
-
from typing import Dict, List, Optional, Union
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
@dataclass
|
|
7
|
-
class VisionConfig:
|
|
8
|
-
model_type: str = "qwen2_5_vl"
|
|
9
|
-
depth: int = 32
|
|
10
|
-
hidden_size: int = 1280
|
|
11
|
-
intermediate_size: int = 3420
|
|
12
|
-
out_hidden_size: int = 1536
|
|
13
|
-
num_heads: int = 16
|
|
14
|
-
image_size: int = 384
|
|
15
|
-
patch_size: int = 14
|
|
16
|
-
vocab_size: int = 32000
|
|
17
|
-
mlp_ratio: float = 4.0
|
|
18
|
-
in_channels: int = 3
|
|
19
|
-
layer_norm_eps: float = 1e-6
|
|
20
|
-
spatial_patch_size: int = 14
|
|
21
|
-
spatial_merge_size: int = 2
|
|
22
|
-
tokens_per_second: int = 2
|
|
23
|
-
temporal_patch_size: int = 2
|
|
24
|
-
window_size: int = 112
|
|
25
|
-
patch_size: int = 14
|
|
26
|
-
fullatt_block_indexes: list[int] = field(default_factory=lambda: [7, 15, 23, 31])
|
|
27
|
-
|
|
28
|
-
@classmethod
|
|
29
|
-
def from_dict(cls, params):
|
|
30
|
-
return cls(
|
|
31
|
-
**{
|
|
32
|
-
k: v
|
|
33
|
-
for k, v in params.items()
|
|
34
|
-
if k in inspect.signature(cls).parameters
|
|
35
|
-
}
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
@dataclass
|
|
40
|
-
class TextConfig:
|
|
41
|
-
model_type: str
|
|
42
|
-
hidden_size: int
|
|
43
|
-
num_hidden_layers: int
|
|
44
|
-
intermediate_size: int
|
|
45
|
-
num_attention_heads: int
|
|
46
|
-
rms_norm_eps: float
|
|
47
|
-
vocab_size: int
|
|
48
|
-
num_key_value_heads: Optional[int] = None
|
|
49
|
-
max_position_embeddings: Optional[int] = 128000
|
|
50
|
-
rope_theta: float = 1000000.0
|
|
51
|
-
rope_traditional: bool = False
|
|
52
|
-
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
53
|
-
tie_word_embeddings: bool = True
|
|
54
|
-
|
|
55
|
-
def __post_init__(self):
|
|
56
|
-
if self.num_key_value_heads is None:
|
|
57
|
-
self.num_key_value_heads = self.num_attention_heads
|
|
58
|
-
|
|
59
|
-
if self.rope_scaling:
|
|
60
|
-
required_keys = {"mrope_section", "type"}
|
|
61
|
-
if not all(key in self.rope_scaling for key in required_keys):
|
|
62
|
-
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
63
|
-
|
|
64
|
-
if not self.rope_scaling["type"] in ["mrope", "default"]:
|
|
65
|
-
raise ValueError(f"rope_scaling type must be 'mrope' or 'default'")
|
|
66
|
-
|
|
67
|
-
@classmethod
|
|
68
|
-
def from_dict(cls, params):
|
|
69
|
-
return cls(
|
|
70
|
-
**{
|
|
71
|
-
k: v
|
|
72
|
-
for k, v in params.items()
|
|
73
|
-
if k in inspect.signature(cls).parameters
|
|
74
|
-
}
|
|
75
|
-
)
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
@dataclass
|
|
79
|
-
class ModelConfig:
|
|
80
|
-
text_config: TextConfig
|
|
81
|
-
vision_config: VisionConfig
|
|
82
|
-
model_type: str
|
|
83
|
-
ignore_index: int = -100
|
|
84
|
-
image_token_id: int = 151655
|
|
85
|
-
video_token_id: int = 151656
|
|
86
|
-
vision_start_token_id: int = 151652
|
|
87
|
-
vision_end_token_id: int = 151653
|
|
88
|
-
vision_token_id: int = 151654
|
|
89
|
-
vision_feature_select_strategy: str = "default"
|
|
90
|
-
vision_feature_layer: int = -2
|
|
91
|
-
vocab_size: int = 32000
|
|
92
|
-
eos_token_id: Optional[List[int]] = None
|
|
93
|
-
|
|
94
|
-
@classmethod
|
|
95
|
-
def from_dict(cls, params):
|
|
96
|
-
# Copy text config parameters from root level
|
|
97
|
-
excluded_keys = {"vision_config"}
|
|
98
|
-
params["text_config"] = dict(
|
|
99
|
-
filter(lambda x: x[0] not in excluded_keys, params.items())
|
|
100
|
-
)
|
|
101
|
-
|
|
102
|
-
return cls(
|
|
103
|
-
**{
|
|
104
|
-
k: v
|
|
105
|
-
for k, v in params.items()
|
|
106
|
-
if k in inspect.signature(cls).parameters
|
|
107
|
-
}
|
|
108
|
-
)
|
|
@@ -1,490 +0,0 @@
|
|
|
1
|
-
from typing import Optional
|
|
2
|
-
|
|
3
|
-
import mlx.core as mx
|
|
4
|
-
import mlx.nn as nn
|
|
5
|
-
import numpy as np
|
|
6
|
-
|
|
7
|
-
from ..base import (
|
|
8
|
-
LanguageModelOutput,
|
|
9
|
-
create_attention_mask,
|
|
10
|
-
scaled_dot_product_attention,
|
|
11
|
-
)
|
|
12
|
-
from ..cache import KVCache
|
|
13
|
-
from .config import ModelConfig, TextConfig
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
class Qwen2RotaryEmbedding:
|
|
17
|
-
def __init__(self, dim, max_position_embeddings=2048, base=10000):
|
|
18
|
-
self.dim = dim
|
|
19
|
-
self.max_position_embeddings = max_position_embeddings
|
|
20
|
-
self.base = base
|
|
21
|
-
|
|
22
|
-
inv_freq = 1.0 / (
|
|
23
|
-
self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)
|
|
24
|
-
)
|
|
25
|
-
self.inv_freq = inv_freq
|
|
26
|
-
|
|
27
|
-
self._set_cos_sin_cache(seq_len=max_position_embeddings)
|
|
28
|
-
|
|
29
|
-
def _set_cos_sin_cache(self, seq_len):
|
|
30
|
-
self.max_seq_len_cached = seq_len
|
|
31
|
-
t = mx.arange(self.max_seq_len_cached).astype(mx.float32)
|
|
32
|
-
|
|
33
|
-
freqs = mx.outer(t, self.inv_freq)
|
|
34
|
-
emb = mx.concatenate((freqs, freqs), axis=-1)
|
|
35
|
-
self.cos_cached = mx.cos(emb)
|
|
36
|
-
self.sin_cached = mx.sin(emb)
|
|
37
|
-
|
|
38
|
-
def __call__(self, x, seq_len=None):
|
|
39
|
-
|
|
40
|
-
if seq_len > self.max_seq_len_cached:
|
|
41
|
-
self._set_cos_sin_cache(seq_len=seq_len)
|
|
42
|
-
|
|
43
|
-
return (
|
|
44
|
-
self.cos_cached[:seq_len].astype(x.dtype),
|
|
45
|
-
self.sin_cached[:seq_len].astype(x.dtype),
|
|
46
|
-
)
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
def rotate_half(x):
|
|
50
|
-
"""Rotates half the hidden dims of the input."""
|
|
51
|
-
x1 = x[..., : x.shape[-1] // 2]
|
|
52
|
-
x2 = x[..., x.shape[-1] // 2 :]
|
|
53
|
-
return mx.concatenate([-x2, x1], axis=-1)
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, position_ids, mrope_section):
|
|
57
|
-
"""
|
|
58
|
-
Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors.
|
|
59
|
-
Args:
|
|
60
|
-
q (mx.array): The query tensor.
|
|
61
|
-
k (mx.array): The key tensor.
|
|
62
|
-
cos (mx.array): The cosine part of the rotary embedding.
|
|
63
|
-
sin (mx.array): The sine part of the rotary embedding.
|
|
64
|
-
mrope_section (List[int]): Multimodal rope section for channel dimension of temporal, height and width.
|
|
65
|
-
unsqueeze_dim (int, optional): Dimension to unsqueeze. Defaults to 1.
|
|
66
|
-
Returns:
|
|
67
|
-
tuple(mx.array): The rotated query and key tensors.
|
|
68
|
-
"""
|
|
69
|
-
|
|
70
|
-
mrope_section = np.cumsum(mrope_section * 2)[:-1].tolist()
|
|
71
|
-
cos = cos[position_ids]
|
|
72
|
-
sin = sin[position_ids]
|
|
73
|
-
|
|
74
|
-
cos = mx.concatenate(
|
|
75
|
-
[m[i % 3] for i, m in enumerate(mx.split(cos, mrope_section, axis=-1))], axis=-1
|
|
76
|
-
)[
|
|
77
|
-
:, None, :, :
|
|
78
|
-
] # unsqueeze dim 1
|
|
79
|
-
sin = mx.concatenate(
|
|
80
|
-
[m[i % 3] for i, m in enumerate(mx.split(sin, mrope_section, axis=-1))], axis=-1
|
|
81
|
-
)[:, None, :, :]
|
|
82
|
-
|
|
83
|
-
# Apply rotary embedding
|
|
84
|
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
85
|
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
86
|
-
|
|
87
|
-
return q_embed, k_embed
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
class Attention(nn.Module):
|
|
91
|
-
def __init__(self, args: TextConfig):
|
|
92
|
-
super().__init__()
|
|
93
|
-
|
|
94
|
-
dim = args.hidden_size
|
|
95
|
-
self.n_heads = n_heads = args.num_attention_heads
|
|
96
|
-
assert args.num_key_value_heads is not None
|
|
97
|
-
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
|
98
|
-
|
|
99
|
-
self.head_dim = head_dim = args.hidden_size // n_heads
|
|
100
|
-
self.scale = head_dim**-0.5
|
|
101
|
-
|
|
102
|
-
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
|
|
103
|
-
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
|
104
|
-
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
|
105
|
-
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
106
|
-
|
|
107
|
-
self.rope_scaling = args.rope_scaling
|
|
108
|
-
|
|
109
|
-
self.rotary_emb = Qwen2RotaryEmbedding(
|
|
110
|
-
head_dim,
|
|
111
|
-
max_position_embeddings=args.max_position_embeddings,
|
|
112
|
-
base=args.rope_theta,
|
|
113
|
-
)
|
|
114
|
-
|
|
115
|
-
def __call__(
|
|
116
|
-
self,
|
|
117
|
-
x: mx.array,
|
|
118
|
-
mask: Optional[mx.array] = None,
|
|
119
|
-
cache: Optional[KVCache] = None,
|
|
120
|
-
position_ids: Optional[mx.array] = None,
|
|
121
|
-
) -> mx.array:
|
|
122
|
-
B, L, D = x.shape
|
|
123
|
-
|
|
124
|
-
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
125
|
-
|
|
126
|
-
# Prepare the queries, keys and values for the attention computation
|
|
127
|
-
queries = queries.reshape(B, L, self.n_heads, self.head_dim).transpose(
|
|
128
|
-
0, 2, 1, 3
|
|
129
|
-
)
|
|
130
|
-
keys = keys.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(0, 2, 1, 3)
|
|
131
|
-
values = values.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(
|
|
132
|
-
0, 2, 1, 3
|
|
133
|
-
)
|
|
134
|
-
|
|
135
|
-
kv_seq_len = keys.shape[-2]
|
|
136
|
-
|
|
137
|
-
if position_ids is None:
|
|
138
|
-
kv_seq_len += cache.offset + 1
|
|
139
|
-
position_ids = mx.arange(cache.offset, cache.offset + L)
|
|
140
|
-
position_ids = mx.expand_dims(position_ids, axis=0)
|
|
141
|
-
position_ids = mx.tile(position_ids, (3, 1, 1))
|
|
142
|
-
else:
|
|
143
|
-
kv_seq_len += cache.offset + 1 if cache is not None else 0
|
|
144
|
-
|
|
145
|
-
cos, sin = self.rotary_emb(values, kv_seq_len)
|
|
146
|
-
|
|
147
|
-
if mask is not None and isinstance(mask, mx.array):
|
|
148
|
-
mask = mask[..., : keys.shape[-2]]
|
|
149
|
-
queries, keys = apply_multimodal_rotary_pos_emb(
|
|
150
|
-
queries, keys, cos, sin, position_ids, self.rope_scaling["mrope_section"]
|
|
151
|
-
)
|
|
152
|
-
|
|
153
|
-
if cache is not None:
|
|
154
|
-
keys, values = cache.update_and_fetch(keys, values)
|
|
155
|
-
|
|
156
|
-
output = scaled_dot_product_attention(
|
|
157
|
-
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
158
|
-
)
|
|
159
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
160
|
-
return self.o_proj(output)
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
class MLP(nn.Module):
|
|
164
|
-
def __init__(self, dim, hidden_dim):
|
|
165
|
-
super().__init__()
|
|
166
|
-
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
167
|
-
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
168
|
-
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
169
|
-
|
|
170
|
-
def __call__(self, x) -> mx.array:
|
|
171
|
-
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
class Qwen2VLDecoderLayer(nn.Module):
|
|
175
|
-
def __init__(self, args: TextConfig):
|
|
176
|
-
super().__init__()
|
|
177
|
-
self.num_attention_heads = args.num_attention_heads
|
|
178
|
-
self.hidden_size = args.hidden_size
|
|
179
|
-
self.self_attn = Attention(args)
|
|
180
|
-
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
|
181
|
-
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
182
|
-
self.post_attention_layernorm = nn.RMSNorm(
|
|
183
|
-
args.hidden_size, eps=args.rms_norm_eps
|
|
184
|
-
)
|
|
185
|
-
self.args = args
|
|
186
|
-
|
|
187
|
-
def __call__(
|
|
188
|
-
self,
|
|
189
|
-
x: mx.array,
|
|
190
|
-
mask: Optional[mx.array] = None,
|
|
191
|
-
cache: Optional[KVCache] = None,
|
|
192
|
-
position_ids: Optional[mx.array] = None,
|
|
193
|
-
) -> mx.array:
|
|
194
|
-
r = self.self_attn(self.input_layernorm(x), mask, cache, position_ids)
|
|
195
|
-
h = x + r
|
|
196
|
-
r = self.mlp(self.post_attention_layernorm(h))
|
|
197
|
-
out = h + r
|
|
198
|
-
return out
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
class Qwen2Model(nn.Module):
|
|
202
|
-
def __init__(self, args: TextConfig):
|
|
203
|
-
super().__init__()
|
|
204
|
-
self.args = args
|
|
205
|
-
self.vocab_size = args.vocab_size
|
|
206
|
-
self.num_hidden_layers = args.num_hidden_layers
|
|
207
|
-
assert self.vocab_size > 0
|
|
208
|
-
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
209
|
-
self.layers = [
|
|
210
|
-
Qwen2VLDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
|
|
211
|
-
]
|
|
212
|
-
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
213
|
-
|
|
214
|
-
def __call__(
|
|
215
|
-
self,
|
|
216
|
-
inputs: mx.array,
|
|
217
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
218
|
-
mask: Optional[mx.array] = None,
|
|
219
|
-
cache=None,
|
|
220
|
-
position_ids: Optional[mx.array] = None,
|
|
221
|
-
):
|
|
222
|
-
if inputs_embeds is None:
|
|
223
|
-
h = self.embed_tokens(inputs)
|
|
224
|
-
else:
|
|
225
|
-
h = inputs_embeds
|
|
226
|
-
|
|
227
|
-
if cache is None:
|
|
228
|
-
cache = [None] * len(self.layers)
|
|
229
|
-
|
|
230
|
-
if mask is None:
|
|
231
|
-
mask = create_attention_mask(h, cache)
|
|
232
|
-
|
|
233
|
-
for layer, c in zip(self.layers, cache):
|
|
234
|
-
h = layer(h, mask, c, position_ids)
|
|
235
|
-
|
|
236
|
-
return self.norm(h)
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
class LanguageModel(nn.Module):
|
|
240
|
-
def __init__(self, args: TextConfig, config: ModelConfig):
|
|
241
|
-
super().__init__()
|
|
242
|
-
self.args = args
|
|
243
|
-
self.config = config
|
|
244
|
-
self.model_type = args.model_type
|
|
245
|
-
self.model = Qwen2Model(args)
|
|
246
|
-
self.rope_deltas = None
|
|
247
|
-
|
|
248
|
-
if not args.tie_word_embeddings:
|
|
249
|
-
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
250
|
-
|
|
251
|
-
def get_rope_index(
|
|
252
|
-
self,
|
|
253
|
-
input_ids: mx.array,
|
|
254
|
-
image_grid_thw: Optional[mx.array] = None,
|
|
255
|
-
video_grid_thw: Optional[mx.array] = None,
|
|
256
|
-
attention_mask: Optional[mx.array] = None,
|
|
257
|
-
):
|
|
258
|
-
# Calculate RoPE index for image/video tokens
|
|
259
|
-
batch_size, seq_length = input_ids.shape
|
|
260
|
-
position_ids = mx.arange(seq_length, dtype=mx.int32)
|
|
261
|
-
position_ids = mx.broadcast_to(position_ids[None, :], (batch_size, seq_length))
|
|
262
|
-
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
|
263
|
-
image_token_id = self.config.image_token_id
|
|
264
|
-
video_token_id = self.config.video_token_id
|
|
265
|
-
vision_start_token_id = self.config.vision_start_token_id
|
|
266
|
-
mrope_position_deltas = []
|
|
267
|
-
if input_ids is not None and (
|
|
268
|
-
image_grid_thw is not None or video_grid_thw is not None
|
|
269
|
-
):
|
|
270
|
-
total_input_ids = input_ids
|
|
271
|
-
if attention_mask is None:
|
|
272
|
-
attention_mask = mx.ones_like(input_ids)
|
|
273
|
-
position_ids = mx.ones(
|
|
274
|
-
(3, input_ids.shape[0], input_ids.shape[1]), dtype=input_ids.dtype
|
|
275
|
-
)
|
|
276
|
-
image_index, video_index = 0, 0
|
|
277
|
-
for i, input_ids in enumerate(total_input_ids):
|
|
278
|
-
input_ids = mx.where(
|
|
279
|
-
attention_mask[i] == 1, input_ids, mx.zeros_like(input_ids)
|
|
280
|
-
)
|
|
281
|
-
image_nums, video_nums = 0, 0
|
|
282
|
-
vision_start_indices = mx.sum(
|
|
283
|
-
mx.where(
|
|
284
|
-
input_ids == vision_start_token_id,
|
|
285
|
-
mx.arange(input_ids.shape[0]),
|
|
286
|
-
mx.zeros_like(input_ids),
|
|
287
|
-
)
|
|
288
|
-
)
|
|
289
|
-
vision_tokens = input_ids[vision_start_indices + 1]
|
|
290
|
-
image_nums = (vision_tokens == image_token_id).sum().item()
|
|
291
|
-
video_nums = (vision_tokens == video_token_id).sum().item()
|
|
292
|
-
input_tokens = input_ids.tolist()
|
|
293
|
-
llm_pos_ids_list: list = []
|
|
294
|
-
st = 0
|
|
295
|
-
remain_images, remain_videos = image_nums, video_nums
|
|
296
|
-
for _ in range(image_nums + video_nums):
|
|
297
|
-
if image_token_id in input_tokens and remain_images > 0:
|
|
298
|
-
ed_image = input_tokens.index(image_token_id, st)
|
|
299
|
-
else:
|
|
300
|
-
ed_image = len(input_tokens) + 1
|
|
301
|
-
if video_token_id in input_tokens and remain_videos > 0:
|
|
302
|
-
ed_video = input_tokens.index(video_token_id, st)
|
|
303
|
-
else:
|
|
304
|
-
ed_video = len(input_tokens) + 1
|
|
305
|
-
if ed_image < ed_video:
|
|
306
|
-
t, h, w = (
|
|
307
|
-
image_grid_thw[image_index][0],
|
|
308
|
-
image_grid_thw[image_index][1],
|
|
309
|
-
image_grid_thw[image_index][2],
|
|
310
|
-
)
|
|
311
|
-
image_index += 1
|
|
312
|
-
remain_images -= 1
|
|
313
|
-
ed = ed_image
|
|
314
|
-
else:
|
|
315
|
-
t, h, w = (
|
|
316
|
-
video_grid_thw[video_index][0],
|
|
317
|
-
video_grid_thw[video_index][1],
|
|
318
|
-
video_grid_thw[video_index][2],
|
|
319
|
-
)
|
|
320
|
-
video_index += 1
|
|
321
|
-
remain_videos -= 1
|
|
322
|
-
ed = ed_video
|
|
323
|
-
llm_grid_t, llm_grid_h, llm_grid_w = (
|
|
324
|
-
t.item(),
|
|
325
|
-
h.item() // spatial_merge_size,
|
|
326
|
-
w.item() // spatial_merge_size,
|
|
327
|
-
)
|
|
328
|
-
text_len = ed - st
|
|
329
|
-
st_idx = (
|
|
330
|
-
llm_pos_ids_list[-1].max() + 1
|
|
331
|
-
if len(llm_pos_ids_list) > 0
|
|
332
|
-
else 0
|
|
333
|
-
)
|
|
334
|
-
index = mx.arange(text_len).reshape(1, text_len)
|
|
335
|
-
index = mx.broadcast_to(index, (3, text_len))
|
|
336
|
-
index = index + st_idx
|
|
337
|
-
llm_pos_ids_list.append(index)
|
|
338
|
-
t_index = mx.arange(llm_grid_t).reshape(
|
|
339
|
-
llm_grid_t, 1
|
|
340
|
-
) # Equivalent to .view(-1, 1)
|
|
341
|
-
t_index = mx.broadcast_to(
|
|
342
|
-
t_index, (llm_grid_t, llm_grid_h * llm_grid_w)
|
|
343
|
-
) # Equivalent to expand()
|
|
344
|
-
t_index = t_index.flatten() # Flattens to 1D
|
|
345
|
-
|
|
346
|
-
h_index = mx.arange(llm_grid_h).reshape(
|
|
347
|
-
1, llm_grid_h, 1
|
|
348
|
-
) # Equivalent to .view(1, -1)
|
|
349
|
-
h_index = mx.broadcast_to(
|
|
350
|
-
h_index, (llm_grid_t, llm_grid_h, llm_grid_w)
|
|
351
|
-
) # Equivalent to expand()
|
|
352
|
-
h_index = h_index.flatten() # Flattens to 1D
|
|
353
|
-
|
|
354
|
-
w_index = mx.arange(llm_grid_w).reshape(
|
|
355
|
-
1, 1, llm_grid_w
|
|
356
|
-
) # Equivalent to .view(1, -1)
|
|
357
|
-
w_index = mx.broadcast_to(
|
|
358
|
-
w_index, (llm_grid_t, llm_grid_h, llm_grid_w)
|
|
359
|
-
) # Equivalent to expand()
|
|
360
|
-
w_index = w_index.flatten() # Flattens to 1D
|
|
361
|
-
|
|
362
|
-
llm_pos_ids_list.append(
|
|
363
|
-
mx.stack([t_index, h_index, w_index]) + text_len + st_idx
|
|
364
|
-
)
|
|
365
|
-
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
|
366
|
-
if st < len(input_tokens):
|
|
367
|
-
st_idx = (
|
|
368
|
-
llm_pos_ids_list[-1].max() + 1
|
|
369
|
-
if len(llm_pos_ids_list) > 0
|
|
370
|
-
else 0
|
|
371
|
-
)
|
|
372
|
-
text_len = len(input_tokens) - st
|
|
373
|
-
|
|
374
|
-
t_index = mx.arange(text_len).reshape(
|
|
375
|
-
1, text_len
|
|
376
|
-
) # Equivalent to .view(-1, 1)
|
|
377
|
-
t_index = mx.broadcast_to(
|
|
378
|
-
t_index, (3, text_len)
|
|
379
|
-
) # Equivalent to expand(3, -1)
|
|
380
|
-
|
|
381
|
-
llm_pos_ids_list.append(t_index + st_idx)
|
|
382
|
-
|
|
383
|
-
llm_positions = mx.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
|
|
384
|
-
mask = mx.array(attention_mask[i] == 1)
|
|
385
|
-
expanded_mask = mx.expand_dims(mask, axis=0)
|
|
386
|
-
expanded_mask = mx.broadcast_to(expanded_mask, (3, 1, mask.shape[0]))
|
|
387
|
-
expanded_positions = mx.expand_dims(llm_positions, axis=1)
|
|
388
|
-
new_positions = mx.where(
|
|
389
|
-
expanded_mask, expanded_positions, position_ids[:, i : i + 1, :]
|
|
390
|
-
)
|
|
391
|
-
updated_position_ids = mx.concatenate(
|
|
392
|
-
[
|
|
393
|
-
position_ids[:, :i, :],
|
|
394
|
-
new_positions,
|
|
395
|
-
position_ids[:, i + 1 :, :],
|
|
396
|
-
],
|
|
397
|
-
axis=1,
|
|
398
|
-
)
|
|
399
|
-
position_ids = updated_position_ids
|
|
400
|
-
mrope_position_deltas.append(
|
|
401
|
-
llm_positions.max() + 1 - len(total_input_ids[i])
|
|
402
|
-
)
|
|
403
|
-
mrope_position_deltas = mx.array(mrope_position_deltas)[0]
|
|
404
|
-
return position_ids, mrope_position_deltas
|
|
405
|
-
else:
|
|
406
|
-
if attention_mask is not None:
|
|
407
|
-
position_ids = mx.cumsum(attention_mask.astype(mx.int64), axis=-1) - 1
|
|
408
|
-
position_ids = mx.where(
|
|
409
|
-
attention_mask == 0, mx.ones_like(position_ids), position_ids
|
|
410
|
-
)
|
|
411
|
-
position_ids = mx.expand_dims(position_ids[0], axis=0)
|
|
412
|
-
position_ids = mx.tile(position_ids, (3, 1, 1))
|
|
413
|
-
max_position_ids = position_ids.max(0, keepdims=False)[0].max(
|
|
414
|
-
-1, keepdims=True
|
|
415
|
-
)[0]
|
|
416
|
-
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
|
417
|
-
else:
|
|
418
|
-
position_ids = mx.arange(input_ids.shape[1]).reshape(1, -1)
|
|
419
|
-
position_ids = mx.broadcast_to(
|
|
420
|
-
position_ids, (3, input_ids.shape[0], input_ids.shape[1])
|
|
421
|
-
)
|
|
422
|
-
mrope_position_deltas = mx.zeros(
|
|
423
|
-
[input_ids.shape[0], 1],
|
|
424
|
-
dtype=input_ids.dtype,
|
|
425
|
-
)
|
|
426
|
-
return position_ids, mrope_position_deltas
|
|
427
|
-
|
|
428
|
-
def __call__(
|
|
429
|
-
self,
|
|
430
|
-
inputs: mx.array,
|
|
431
|
-
inputs_embeds: Optional[mx.array] = None,
|
|
432
|
-
mask: Optional[mx.array] = None,
|
|
433
|
-
cache=None,
|
|
434
|
-
**kwargs,
|
|
435
|
-
):
|
|
436
|
-
|
|
437
|
-
position_ids = kwargs.pop("position_ids", None)
|
|
438
|
-
pixel_values = kwargs.pop("pixel_values", None)
|
|
439
|
-
image_grid_thw = kwargs.pop("image_grid_thw", None)
|
|
440
|
-
video_grid_thw = kwargs.pop("video_grid_thw", None)
|
|
441
|
-
# reset rope_deltas when processing a new image/video
|
|
442
|
-
if pixel_values is not None:
|
|
443
|
-
self.rope_deltas = None
|
|
444
|
-
|
|
445
|
-
if position_ids is None and (mask is None or mask.ndim == 2):
|
|
446
|
-
# Calculate RoPE index once per generation in the pre-fill stage only
|
|
447
|
-
if (
|
|
448
|
-
(cache is not None and cache[0] is not None and cache[0].offset == 0)
|
|
449
|
-
or self.rope_deltas is None
|
|
450
|
-
or cache is None
|
|
451
|
-
):
|
|
452
|
-
position_ids, rope_deltas = self.get_rope_index(
|
|
453
|
-
inputs, image_grid_thw, video_grid_thw, mask
|
|
454
|
-
)
|
|
455
|
-
self.rope_deltas = rope_deltas
|
|
456
|
-
else:
|
|
457
|
-
# Use the prev pre-calculated rope-deltas to get the correct position ids
|
|
458
|
-
batch_size, seq_length = inputs.shape
|
|
459
|
-
delta = cache[-1].offset + self.rope_deltas if cache is not None else 0
|
|
460
|
-
delta = delta[None][None]
|
|
461
|
-
position_ids = mx.arange(seq_length).reshape(1, seq_length)
|
|
462
|
-
position_ids = mx.broadcast_to(position_ids, (batch_size, seq_length))
|
|
463
|
-
if cache is not None:
|
|
464
|
-
# Repeat delta for each batch
|
|
465
|
-
delta = mx.repeat(delta, batch_size // delta.shape[0], axis=0)
|
|
466
|
-
position_ids = mx.add(position_ids, delta).reshape(position_ids.shape)
|
|
467
|
-
position_ids = mx.broadcast_to(
|
|
468
|
-
position_ids, (3, batch_size, seq_length)
|
|
469
|
-
)
|
|
470
|
-
|
|
471
|
-
out = self.model(
|
|
472
|
-
inputs, cache=cache, inputs_embeds=inputs_embeds, position_ids=position_ids
|
|
473
|
-
)
|
|
474
|
-
if self.args.tie_word_embeddings:
|
|
475
|
-
out = self.model.embed_tokens.as_linear(out)
|
|
476
|
-
else:
|
|
477
|
-
out = self.lm_head(out)
|
|
478
|
-
return LanguageModelOutput(logits=out)
|
|
479
|
-
|
|
480
|
-
@property
|
|
481
|
-
def layers(self):
|
|
482
|
-
return self.model.layers
|
|
483
|
-
|
|
484
|
-
@property
|
|
485
|
-
def head_dim(self):
|
|
486
|
-
return self.args.hidden_size // self.args.num_attention_heads
|
|
487
|
-
|
|
488
|
-
@property
|
|
489
|
-
def n_kv_heads(self):
|
|
490
|
-
return self.args.num_key_value_heads
|