nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
|
@@ -1,386 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
from dataclasses import dataclass
|
|
3
|
-
from typing import Any, Optional
|
|
4
|
-
|
|
5
|
-
import mlx.core as mx
|
|
6
|
-
import mlx.nn as nn
|
|
7
|
-
from mlx_lm.models.rope_utils import initialize_rope
|
|
8
|
-
from mlx_lm.models.switch_layers import SwitchGLU
|
|
9
|
-
|
|
10
|
-
from ..base import (
|
|
11
|
-
LanguageModelOutput,
|
|
12
|
-
create_attention_mask,
|
|
13
|
-
scaled_dot_product_attention,
|
|
14
|
-
)
|
|
15
|
-
from ..cache import ChunkedKVCache, KVCache
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
@dataclass
|
|
19
|
-
class TextConfig:
|
|
20
|
-
model_type: str
|
|
21
|
-
hidden_size: int
|
|
22
|
-
intermediate_size: int
|
|
23
|
-
num_attention_heads: int
|
|
24
|
-
rms_norm_eps: float
|
|
25
|
-
vocab_size: int
|
|
26
|
-
num_key_value_heads: int
|
|
27
|
-
rope_theta: float = 500000.0
|
|
28
|
-
num_hidden_layers: int = 48
|
|
29
|
-
rope_traditional: bool = False
|
|
30
|
-
rope_scaling: Optional[dict] = None # Add missing rope_scaling attribute
|
|
31
|
-
tie_word_embeddings: bool = False
|
|
32
|
-
head_dim: int = 128
|
|
33
|
-
hidden_act: str = "silu"
|
|
34
|
-
intermediate_size_mlp: int = 16384
|
|
35
|
-
max_position_embeddings: int = 10485760
|
|
36
|
-
num_experts_per_tok: int = 1
|
|
37
|
-
num_local_experts: int = 16
|
|
38
|
-
attention_dropout: float = 0.0
|
|
39
|
-
use_qk_norm: bool = True
|
|
40
|
-
bos_token_id: int = 200000
|
|
41
|
-
eos_token_id: list = None
|
|
42
|
-
pad_token_id: int = 200018
|
|
43
|
-
attention_chunk_size: int = 8192
|
|
44
|
-
attention_bias: bool = False
|
|
45
|
-
interleave_moe_layer_step: int = 1
|
|
46
|
-
no_rope_layers: list = 4
|
|
47
|
-
output_router_logits: bool = False
|
|
48
|
-
router_aux_loss_coef: float = 0.001
|
|
49
|
-
router_jitter_noise: float = 0.0
|
|
50
|
-
attn_temperature_tuning: int = 4
|
|
51
|
-
floor_scale: float = 8192
|
|
52
|
-
attn_scale: float = 0.1
|
|
53
|
-
moe_layers: list = None
|
|
54
|
-
|
|
55
|
-
@classmethod
|
|
56
|
-
def from_dict(cls, params):
|
|
57
|
-
return cls(
|
|
58
|
-
**{
|
|
59
|
-
k: v
|
|
60
|
-
for k, v in params.items()
|
|
61
|
-
if k in inspect.signature(cls).parameters
|
|
62
|
-
}
|
|
63
|
-
)
|
|
64
|
-
|
|
65
|
-
def __post_init__(self):
|
|
66
|
-
if self.num_key_value_heads is None:
|
|
67
|
-
self.num_key_value_heads = self.num_attention_heads
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
class Attention(nn.Module):
|
|
71
|
-
def __init__(self, config: TextConfig, layer_idx: int):
|
|
72
|
-
super().__init__()
|
|
73
|
-
|
|
74
|
-
dim = config.hidden_size
|
|
75
|
-
self.n_heads = n_heads = config.num_attention_heads
|
|
76
|
-
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
77
|
-
|
|
78
|
-
self.use_rope = int((layer_idx + 1) % 4 != 0) # rope unused for dense layers
|
|
79
|
-
self.attn_temperature_tuning = config.attn_temperature_tuning
|
|
80
|
-
self.floor_scale = config.floor_scale
|
|
81
|
-
self.attn_scale = config.attn_scale
|
|
82
|
-
|
|
83
|
-
self.head_dim = head_dim = config.head_dim or config.hidden_size // n_heads
|
|
84
|
-
|
|
85
|
-
self.scale = head_dim**-0.5
|
|
86
|
-
if hasattr(config, "attention_bias"):
|
|
87
|
-
attention_bias = config.attention_bias
|
|
88
|
-
else:
|
|
89
|
-
attention_bias = False
|
|
90
|
-
|
|
91
|
-
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
|
|
92
|
-
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
|
93
|
-
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
|
94
|
-
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
|
|
95
|
-
|
|
96
|
-
self.use_qk_norm = config.use_qk_norm and self.use_rope
|
|
97
|
-
|
|
98
|
-
if self.use_rope:
|
|
99
|
-
self.rope = initialize_rope(
|
|
100
|
-
head_dim,
|
|
101
|
-
config.rope_theta,
|
|
102
|
-
traditional=True,
|
|
103
|
-
scaling_config=config.rope_scaling,
|
|
104
|
-
max_position_embeddings=config.max_position_embeddings,
|
|
105
|
-
)
|
|
106
|
-
|
|
107
|
-
def __call__(
|
|
108
|
-
self,
|
|
109
|
-
x: mx.array,
|
|
110
|
-
mask: Optional[mx.array] = None,
|
|
111
|
-
cache: Optional[Any] = None,
|
|
112
|
-
) -> mx.array:
|
|
113
|
-
B, L, D = x.shape
|
|
114
|
-
|
|
115
|
-
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
116
|
-
|
|
117
|
-
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
118
|
-
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
119
|
-
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
120
|
-
|
|
121
|
-
if cache is not None:
|
|
122
|
-
offset = cache.offset
|
|
123
|
-
else:
|
|
124
|
-
offset = 0
|
|
125
|
-
|
|
126
|
-
if self.use_rope:
|
|
127
|
-
queries = self.rope(queries, offset=offset)
|
|
128
|
-
keys = self.rope(keys, offset=offset)
|
|
129
|
-
|
|
130
|
-
if self.use_qk_norm:
|
|
131
|
-
queries = mx.fast.rms_norm(queries, weight=None, eps=1e-6)
|
|
132
|
-
keys = mx.fast.rms_norm(keys, weight=None, eps=1e-6)
|
|
133
|
-
|
|
134
|
-
if self.attn_temperature_tuning and not self.use_rope:
|
|
135
|
-
attn_scales = (
|
|
136
|
-
mx.log(
|
|
137
|
-
mx.floor(mx.arange(offset + 1, offset + L + 1) / self.floor_scale)
|
|
138
|
-
+ 1.0
|
|
139
|
-
)
|
|
140
|
-
* self.attn_scale
|
|
141
|
-
+ 1.0
|
|
142
|
-
)
|
|
143
|
-
attn_scales = attn_scales[:, None]
|
|
144
|
-
queries = (queries * attn_scales).astype(queries.dtype)
|
|
145
|
-
|
|
146
|
-
if cache is not None:
|
|
147
|
-
keys, values = cache.update_and_fetch(keys, values)
|
|
148
|
-
|
|
149
|
-
if self.use_rope and isinstance(mask, mx.array):
|
|
150
|
-
key_len = keys.shape[-2]
|
|
151
|
-
if mask.shape[-1] != key_len:
|
|
152
|
-
mask = mask[..., -key_len:]
|
|
153
|
-
|
|
154
|
-
output = scaled_dot_product_attention(
|
|
155
|
-
queries, keys, values, cache, scale=self.scale, mask=mask
|
|
156
|
-
)
|
|
157
|
-
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
158
|
-
return self.o_proj(output)
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
class MLP(nn.Module):
|
|
162
|
-
def __init__(self, config: TextConfig, intermediate_size: int = None):
|
|
163
|
-
super().__init__()
|
|
164
|
-
|
|
165
|
-
dim = config.hidden_size
|
|
166
|
-
hidden_dim = intermediate_size or config.intermediate_size
|
|
167
|
-
|
|
168
|
-
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
169
|
-
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
170
|
-
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
171
|
-
|
|
172
|
-
def __call__(self, x) -> mx.array:
|
|
173
|
-
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
class MoE(nn.Module):
|
|
177
|
-
def __init__(self, config):
|
|
178
|
-
super().__init__()
|
|
179
|
-
self.top_k = config.num_experts_per_tok
|
|
180
|
-
self.num_experts = config.num_local_experts
|
|
181
|
-
self.experts = SwitchGLU(
|
|
182
|
-
config.hidden_size, config.intermediate_size, self.num_experts
|
|
183
|
-
)
|
|
184
|
-
self.router = nn.Linear(
|
|
185
|
-
config.hidden_size, config.num_local_experts, bias=False
|
|
186
|
-
)
|
|
187
|
-
self.shared_expert = MLP(config)
|
|
188
|
-
|
|
189
|
-
def __call__(self, x) -> mx.array:
|
|
190
|
-
logits = self.router(x)
|
|
191
|
-
k = self.top_k
|
|
192
|
-
indices = mx.argpartition(-logits, kth=k - 1, axis=-1)[..., :k]
|
|
193
|
-
scores = mx.take_along_axis(logits, indices, axis=-1)
|
|
194
|
-
scores = mx.sigmoid(scores.astype(mx.float32)).astype(x.dtype)
|
|
195
|
-
|
|
196
|
-
out = self.experts(x * scores, indices).squeeze(2)
|
|
197
|
-
return out + self.shared_expert(x)
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
class TransformerBlock(nn.Module):
|
|
201
|
-
def __init__(self, config: TextConfig, layer_idx: int):
|
|
202
|
-
super().__init__()
|
|
203
|
-
self.num_attention_heads = config.num_attention_heads
|
|
204
|
-
self.hidden_size = config.hidden_size
|
|
205
|
-
self.self_attn = Attention(config, layer_idx)
|
|
206
|
-
self.use_chunked_attention = int((layer_idx + 1) % 4 != 0)
|
|
207
|
-
self.is_moe_layer = (layer_idx % config.interleave_moe_layer_step) == (
|
|
208
|
-
config.interleave_moe_layer_step - 1
|
|
209
|
-
)
|
|
210
|
-
if self.is_moe_layer:
|
|
211
|
-
self.feed_forward = MoE(config)
|
|
212
|
-
else:
|
|
213
|
-
self.feed_forward = MLP(config, config.intermediate_size_mlp)
|
|
214
|
-
|
|
215
|
-
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
216
|
-
self.post_attention_layernorm = nn.RMSNorm(
|
|
217
|
-
config.hidden_size, eps=config.rms_norm_eps
|
|
218
|
-
)
|
|
219
|
-
self.config = config
|
|
220
|
-
|
|
221
|
-
self.use_chunked_attention = int((layer_idx + 1) % 4 != 0) # <=> use rope
|
|
222
|
-
|
|
223
|
-
def __call__(
|
|
224
|
-
self,
|
|
225
|
-
x: mx.array,
|
|
226
|
-
mask: Optional[mx.array] = None,
|
|
227
|
-
cache: Optional[Any] = None,
|
|
228
|
-
) -> mx.array:
|
|
229
|
-
|
|
230
|
-
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
231
|
-
h = x + r
|
|
232
|
-
r = self.feed_forward(self.post_attention_layernorm(h))
|
|
233
|
-
out = h + r
|
|
234
|
-
return out
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
class LlamaModel(nn.Module):
|
|
238
|
-
def __init__(self, config: TextConfig):
|
|
239
|
-
super().__init__()
|
|
240
|
-
self.config = config
|
|
241
|
-
self.vocab_size = config.vocab_size
|
|
242
|
-
self.num_hidden_layers = config.num_hidden_layers
|
|
243
|
-
assert self.vocab_size > 0
|
|
244
|
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
245
|
-
self.layers = [
|
|
246
|
-
TransformerBlock(config, i) for i in range(config.num_hidden_layers)
|
|
247
|
-
]
|
|
248
|
-
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
249
|
-
|
|
250
|
-
def create_chunked_attention_mask(
|
|
251
|
-
self, seq_len: int, attention_chunk_size: int, start: int = 0, offset: int = 0
|
|
252
|
-
) -> mx.array:
|
|
253
|
-
"""
|
|
254
|
-
Generate the following:
|
|
255
|
-
|
|
256
|
-
'What' : 0 ■ ⬚ ⬚ ⬚ ⬚ ⬚ |
|
|
257
|
-
'▁is' : 1 ■ ■ ⬚ ⬚ ⬚ ⬚ |
|
|
258
|
-
'▁ch' : 2 ■ ■ ■ ⬚ ⬚ ⬚ |
|
|
259
|
-
'unked' : 3 ⬚ ⬚ ⬚ ■ ⬚ ⬚ |
|
|
260
|
-
'▁attention': 4 ⬚ ⬚ ⬚ ■ ■ ⬚ |
|
|
261
|
-
'?' : 5 ⬚ ⬚ ⬚ ■ ■ ■ |
|
|
262
|
-
|
|
263
|
-
If the chunk size is 3.
|
|
264
|
-
This can just be appplied over the already created attention mask
|
|
265
|
-
"""
|
|
266
|
-
|
|
267
|
-
end = offset + seq_len
|
|
268
|
-
linds = mx.arange(start, end)
|
|
269
|
-
rinds = mx.arange(offset, end)[:, None]
|
|
270
|
-
block_pos = mx.abs(
|
|
271
|
-
(linds // attention_chunk_size) - (rinds // attention_chunk_size)
|
|
272
|
-
)
|
|
273
|
-
token_pos = linds <= rinds
|
|
274
|
-
mask = (block_pos == 0) & (token_pos)
|
|
275
|
-
return mask
|
|
276
|
-
|
|
277
|
-
def __call__(
|
|
278
|
-
self,
|
|
279
|
-
input_ids: mx.array = None,
|
|
280
|
-
input_embeds: mx.array = None,
|
|
281
|
-
mask: mx.array = None,
|
|
282
|
-
cache=None,
|
|
283
|
-
):
|
|
284
|
-
if input_embeds is None:
|
|
285
|
-
h = self.embed_tokens(input_ids)
|
|
286
|
-
else:
|
|
287
|
-
h = input_embeds
|
|
288
|
-
|
|
289
|
-
if mask is None:
|
|
290
|
-
mask = create_attention_mask(h, cache)
|
|
291
|
-
|
|
292
|
-
if cache is not None:
|
|
293
|
-
for idx, c in enumerate(cache):
|
|
294
|
-
if (idx + 1) % 4 != 0:
|
|
295
|
-
c.maybe_trim_front()
|
|
296
|
-
start = cache[0].start_position
|
|
297
|
-
offset = cache[0].offset
|
|
298
|
-
else:
|
|
299
|
-
start = 0
|
|
300
|
-
offset = 0
|
|
301
|
-
|
|
302
|
-
# Create a mask for the chunked attention
|
|
303
|
-
chunk_mask = self.create_chunked_attention_mask(
|
|
304
|
-
h.shape[1], self.config.attention_chunk_size, start, offset
|
|
305
|
-
)
|
|
306
|
-
|
|
307
|
-
if cache is None:
|
|
308
|
-
cache = [None] * len(self.layers)
|
|
309
|
-
|
|
310
|
-
for idx, (layer, c) in enumerate(zip(self.layers, cache)):
|
|
311
|
-
use_chunked_attention = (idx + 1) % 4 != 0
|
|
312
|
-
if use_chunked_attention:
|
|
313
|
-
local_mask = chunk_mask
|
|
314
|
-
else:
|
|
315
|
-
local_mask = mask
|
|
316
|
-
h = layer(h, local_mask, cache=c)
|
|
317
|
-
|
|
318
|
-
return self.norm(h)
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
class LanguageModel(nn.Module):
|
|
322
|
-
def __init__(self, config: TextConfig):
|
|
323
|
-
super().__init__()
|
|
324
|
-
self.config = config
|
|
325
|
-
self.model_type = config.model_type
|
|
326
|
-
self.model = LlamaModel(self.config)
|
|
327
|
-
self.lm_head = nn.Linear(
|
|
328
|
-
self.config.hidden_size, self.config.vocab_size, bias=False
|
|
329
|
-
)
|
|
330
|
-
|
|
331
|
-
def __call__(
|
|
332
|
-
self,
|
|
333
|
-
input_ids: mx.array = None,
|
|
334
|
-
input_embeds: mx.array = None,
|
|
335
|
-
mask: mx.array = None,
|
|
336
|
-
cache=None,
|
|
337
|
-
):
|
|
338
|
-
out = self.model(
|
|
339
|
-
input_ids=input_ids,
|
|
340
|
-
input_embeds=input_embeds,
|
|
341
|
-
mask=mask,
|
|
342
|
-
cache=cache,
|
|
343
|
-
)
|
|
344
|
-
out = self.lm_head(out)
|
|
345
|
-
return LanguageModelOutput(logits=out)
|
|
346
|
-
|
|
347
|
-
def sanitize(self, weights):
|
|
348
|
-
# Rename expert weights for SwitchGLU
|
|
349
|
-
for l in range(self.config.num_hidden_layers):
|
|
350
|
-
prefix = f"language_model.model.layers.{l}.feed_forward.experts"
|
|
351
|
-
if f"{prefix}.gate_up_proj" in weights:
|
|
352
|
-
v = weights.pop(f"{prefix}.gate_up_proj")
|
|
353
|
-
gate_k = f"{prefix}.gate_proj.weight"
|
|
354
|
-
up_k = f"{prefix}.up_proj.weight"
|
|
355
|
-
gate_proj, up_proj = mx.split(v, 2, axis=-1)
|
|
356
|
-
weights[gate_k] = mx.swapaxes(gate_proj, 1, 2)
|
|
357
|
-
weights[up_k] = mx.swapaxes(up_proj, 1, 2)
|
|
358
|
-
if f"{prefix}.down_proj" in weights:
|
|
359
|
-
down_proj = weights.pop(f"{prefix}.down_proj")
|
|
360
|
-
weights[f"{prefix}.down_proj.weight"] = mx.swapaxes(down_proj, 1, 2)
|
|
361
|
-
return weights
|
|
362
|
-
|
|
363
|
-
@property
|
|
364
|
-
def layers(self):
|
|
365
|
-
return self.model.layers
|
|
366
|
-
|
|
367
|
-
@property
|
|
368
|
-
def n_kv_heads(self):
|
|
369
|
-
return self.config.num_key_value_heads
|
|
370
|
-
|
|
371
|
-
@property
|
|
372
|
-
def head_dim(self):
|
|
373
|
-
return (
|
|
374
|
-
self.config.head_dim
|
|
375
|
-
if self.config.head_dim
|
|
376
|
-
else self.config.hidden_size // self.config.num_attention_heads
|
|
377
|
-
)
|
|
378
|
-
|
|
379
|
-
def make_cache(self):
|
|
380
|
-
caches = []
|
|
381
|
-
for i in range(self.config.num_hidden_layers):
|
|
382
|
-
if (i + 1) % 4 != 0:
|
|
383
|
-
caches.append(ChunkedKVCache(self.config.attention_chunk_size))
|
|
384
|
-
else:
|
|
385
|
-
caches.append(KVCache()) # no chunking for dense layers
|
|
386
|
-
return caches
|
|
@@ -1,138 +0,0 @@
|
|
|
1
|
-
import glob
|
|
2
|
-
import inspect
|
|
3
|
-
import json
|
|
4
|
-
import re
|
|
5
|
-
from dataclasses import dataclass
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
from typing import Any, Callable, List, Optional, Tuple, Union
|
|
8
|
-
|
|
9
|
-
import mlx.core as mx
|
|
10
|
-
import mlx.nn as nn
|
|
11
|
-
import numpy as np
|
|
12
|
-
|
|
13
|
-
from .language import LanguageModel, TextConfig
|
|
14
|
-
from .vision import Llama4MultiModalProjector, VisionConfig, VisionModel
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
@dataclass
|
|
18
|
-
class ModelConfig:
|
|
19
|
-
text_config: TextConfig
|
|
20
|
-
vision_config: VisionConfig
|
|
21
|
-
model_type: str
|
|
22
|
-
ignore_index: int = -100
|
|
23
|
-
image_token_id: int = 200092
|
|
24
|
-
image_token_index: Optional[int] = None
|
|
25
|
-
eos_token_id: Optional[List[int]] = None
|
|
26
|
-
|
|
27
|
-
def __post_init__(self):
|
|
28
|
-
if self.image_token_index is None:
|
|
29
|
-
self.image_token_index = self.image_token_id
|
|
30
|
-
|
|
31
|
-
@classmethod
|
|
32
|
-
def from_dict(cls, params):
|
|
33
|
-
return cls(
|
|
34
|
-
**{
|
|
35
|
-
k: v
|
|
36
|
-
for k, v in params.items()
|
|
37
|
-
if k in inspect.signature(cls).parameters
|
|
38
|
-
}
|
|
39
|
-
)
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
class Model(nn.Module):
|
|
43
|
-
def __init__(self, config: ModelConfig):
|
|
44
|
-
super().__init__()
|
|
45
|
-
self.config = config
|
|
46
|
-
self.vision_model = VisionModel(config.vision_config)
|
|
47
|
-
self.multi_modal_projector = Llama4MultiModalProjector(config)
|
|
48
|
-
self.language_model = LanguageModel(config.text_config)
|
|
49
|
-
self.vocab_size = config.text_config.vocab_size
|
|
50
|
-
|
|
51
|
-
def set_input_embeddings(self, value):
|
|
52
|
-
self.language_model.set_input_embeddings(value)
|
|
53
|
-
|
|
54
|
-
def get_output_embeddings(self):
|
|
55
|
-
return self.language_model.get_output_embeddings()
|
|
56
|
-
|
|
57
|
-
def set_output_embeddings(self, new_embeddings):
|
|
58
|
-
self.language_model.set_output_embeddings(new_embeddings)
|
|
59
|
-
|
|
60
|
-
def set_decoder(self, decoder):
|
|
61
|
-
self.language_model.set_decoder(decoder)
|
|
62
|
-
|
|
63
|
-
def get_decoder(self):
|
|
64
|
-
return self.language_model.get_decoder()
|
|
65
|
-
|
|
66
|
-
def get_image_features(
|
|
67
|
-
self,
|
|
68
|
-
pixel_values: mx.array,
|
|
69
|
-
vision_feature_layer: Union[int, List[int]],
|
|
70
|
-
vision_feature_select_strategy: str,
|
|
71
|
-
**kwargs,
|
|
72
|
-
):
|
|
73
|
-
if vision_feature_select_strategy not in ["default", "full"]:
|
|
74
|
-
raise ValueError(
|
|
75
|
-
f"Unexpected select feature strategy: {self.vision_feature_select_strategy}"
|
|
76
|
-
)
|
|
77
|
-
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
|
78
|
-
hidden_state = self.vision_model(
|
|
79
|
-
pixel_values, output_hidden_states=False, **kwargs
|
|
80
|
-
)
|
|
81
|
-
return hidden_state
|
|
82
|
-
|
|
83
|
-
def get_input_embeddings(
|
|
84
|
-
self,
|
|
85
|
-
input_ids: Optional[mx.array] = None,
|
|
86
|
-
pixel_values: Optional[mx.array] = None,
|
|
87
|
-
**kwargs,
|
|
88
|
-
):
|
|
89
|
-
if pixel_values is None:
|
|
90
|
-
return self.language_model.model.embed_tokens(input_ids)
|
|
91
|
-
|
|
92
|
-
# Get the input embeddings from the language model
|
|
93
|
-
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
94
|
-
|
|
95
|
-
image_features = self.get_image_features(
|
|
96
|
-
pixel_values=pixel_values,
|
|
97
|
-
vision_feature_layer=kwargs.get("vision_feature_layer", -1),
|
|
98
|
-
vision_feature_select_strategy=kwargs.get(
|
|
99
|
-
"vision_feature_select_strategy", "default"
|
|
100
|
-
),
|
|
101
|
-
)
|
|
102
|
-
|
|
103
|
-
vision_flat = image_features.reshape(-1, image_features.shape[-1])
|
|
104
|
-
projected_vision_flat = self.multi_modal_projector(vision_flat)
|
|
105
|
-
|
|
106
|
-
# Insert special image tokens in the input_ids
|
|
107
|
-
final_inputs_embeds = self._prepare_inputs_for_multimodal(
|
|
108
|
-
projected_vision_flat, inputs_embeds, input_ids
|
|
109
|
-
)
|
|
110
|
-
return final_inputs_embeds
|
|
111
|
-
|
|
112
|
-
def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
|
|
113
|
-
image_token_index = self.config.image_token_index
|
|
114
|
-
|
|
115
|
-
# Positions of <image> tokens in input_ids, assuming batch size is 1
|
|
116
|
-
image_positions = np.where(input_ids == image_token_index)[1].tolist()
|
|
117
|
-
|
|
118
|
-
inputs_embeds[:, image_positions, :] = image_features
|
|
119
|
-
|
|
120
|
-
return inputs_embeds
|
|
121
|
-
|
|
122
|
-
@property
|
|
123
|
-
def layers(self):
|
|
124
|
-
return self.language_model.model.layers
|
|
125
|
-
|
|
126
|
-
def __call__(
|
|
127
|
-
self,
|
|
128
|
-
input_ids: mx.array,
|
|
129
|
-
pixel_values: mx.array,
|
|
130
|
-
cache=None,
|
|
131
|
-
**kwargs,
|
|
132
|
-
):
|
|
133
|
-
|
|
134
|
-
input_embeddings = self.get_input_embeddings(input_ids, pixel_values, **kwargs)
|
|
135
|
-
logits = self.language_model(
|
|
136
|
-
input_ids=input_ids, cache=cache, input_embeds=input_embeddings
|
|
137
|
-
)
|
|
138
|
-
return logits
|