nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,307 +0,0 @@
1
- import mlx.core as mx
2
-
3
-
4
- def nearest_interpolate(x, size=None, scale_factor=None):
5
- """
6
- Nearest neighbor interpolation that exactly matches PyTorch's behavior.
7
- """
8
- # Get input dimensions
9
- batch_size, channels, in_h, in_w = x.shape
10
-
11
- # Calculate output dimensions
12
- if size is not None:
13
- out_h, out_w = size
14
- elif scale_factor is not None:
15
- if isinstance(scale_factor, (int, float)):
16
- scale_h = scale_w = scale_factor
17
- else:
18
- scale_h, scale_w = scale_factor
19
- out_h, out_w = int(in_h * scale_h), int(in_w * scale_w)
20
- else:
21
- raise ValueError("Either size or scale_factor must be specified")
22
-
23
- # Create dimensions tensor
24
- dims = mx.array([batch_size, channels, in_h, in_w, out_h, out_w], dtype=mx.int32)
25
-
26
- # Reshape input tensor to 1D for kernel processing
27
- x_flat = x.reshape(-1)
28
- input_dtype = x.dtype
29
- if input_dtype != mx.float32:
30
- x_flat = x_flat.astype(mx.float32)
31
-
32
- # Metal kernel source that matches PyTorch's coordinate calculation
33
- source = """
34
- uint x_out = thread_position_in_grid.x;
35
- uint y_out = thread_position_in_grid.y;
36
- uint bc_idx = thread_position_in_grid.z;
37
-
38
- int batch_size = dims[0];
39
- int channels = dims[1];
40
- int in_h = dims[2];
41
- int in_w = dims[3];
42
- int out_h = dims[4];
43
- int out_w = dims[5];
44
-
45
- if (x_out >= (uint)out_w || y_out >= (uint)out_h || bc_idx >= (uint)(batch_size * channels))
46
- return;
47
-
48
- int c = bc_idx % channels;
49
- int b = bc_idx / channels;
50
-
51
- // PyTorch's coordinate calculation for nearest neighbor
52
- // This matches: torch.nn.functional.interpolate(..., mode='nearest')
53
- float scale_h = float(in_h) / float(out_h);
54
- float scale_w = float(in_w) / float(out_w);
55
-
56
- // PyTorch uses floor for nearest neighbor coordinate mapping
57
- int y_in = int(floor(float(y_out) * scale_h));
58
- int x_in = int(floor(float(x_out) * scale_w));
59
-
60
- // Clamp to bounds
61
- y_in = max(0, min(y_in, in_h - 1));
62
- x_in = max(0, min(x_in, in_w - 1));
63
-
64
- int input_offset = ((b * channels + c) * in_h + y_in) * in_w + x_in;
65
- int output_offset = ((b * channels + c) * out_h + y_out) * out_w + x_out;
66
-
67
- output[output_offset] = input[input_offset];
68
- """
69
-
70
- # Create and run kernel
71
- kernel = mx.fast.metal_kernel(
72
- name="nearest_interpolation",
73
- input_names=["input", "dims"],
74
- output_names=["output"],
75
- source=source,
76
- )
77
-
78
- threadgroup = get_optimal_threadgroup(out_w, out_h)
79
- outputs = kernel(
80
- inputs=[x_flat, dims],
81
- grid=(out_w, out_h, batch_size * channels),
82
- threadgroup=threadgroup,
83
- output_shapes=[(batch_size * channels * out_h * out_w,)],
84
- output_dtypes=[mx.float32],
85
- )
86
-
87
- result = outputs[0].reshape(batch_size, channels, out_h, out_w)
88
- if input_dtype != mx.float32:
89
- result = result.astype(input_dtype)
90
-
91
- return result
92
-
93
-
94
- def bicubic_interpolate(x, size=None, scale_factor=None, align_corners=False):
95
- """
96
- Bicubic interpolation using MLX's built-in interpolate function.
97
-
98
- Args:
99
- x: MLX tensor of shape [B, C, H, W]
100
- size: Tuple of (out_h, out_w) or None
101
- scale_factor: Float or tuple of (scale_h, scale_w) or None
102
- align_corners: Whether to align corners
103
-
104
- Returns:
105
- Interpolated MLX tensor
106
- """
107
- # Get input dimensions
108
- batch_size, channels, in_h, in_w = x.shape
109
-
110
- # Calculate output dimensions
111
- if size is not None:
112
- out_h, out_w = size
113
- scale_h, scale_w = out_h / in_h, out_w / in_w
114
- elif scale_factor is not None:
115
- if isinstance(scale_factor, (int, float)):
116
- scale_h = scale_w = scale_factor
117
- else:
118
- scale_h, scale_w = scale_factor
119
- out_h, out_w = int(in_h * scale_h), int(in_w * scale_w)
120
- else:
121
- raise ValueError("Either size or scale_factor must be specified")
122
-
123
- # Create scale and align_corners parameters tensor
124
- params = mx.array(
125
- [scale_h, scale_w, 1.0 if align_corners else 0.0], dtype=mx.float32
126
- )
127
-
128
- # Create dimensions tensor
129
- dims = mx.array([batch_size, channels, in_h, in_w, out_h, out_w], dtype=mx.int32)
130
-
131
- # Reshape input tensor to 1D for kernel processing
132
- x_flat = x.reshape(-1)
133
-
134
- # Convert to float32 for processing if needed
135
- input_dtype = x.dtype
136
- if input_dtype != mx.float32:
137
- x_flat = x_flat.astype(mx.float32)
138
-
139
- # Metal kernel source code
140
- source = """
141
- // Get thread position
142
- uint x_out = thread_position_in_grid.x;
143
- uint y_out = thread_position_in_grid.y;
144
- uint bc_idx = thread_position_in_grid.z;
145
-
146
- // Extract dimensions from dims
147
- int batch_size = dims[0];
148
- int channels = dims[1];
149
- int in_h = dims[2];
150
- int in_w = dims[3];
151
- int out_h = dims[4];
152
- int out_w = dims[5];
153
-
154
- // Extract scales and flags
155
- float scale_h = params[0];
156
- float scale_w = params[1];
157
- bool align_corners = params[2] > 0.5;
158
-
159
- // Check bounds
160
- if (x_out >= (uint)out_w || y_out >= (uint)out_h || bc_idx >= (uint)(batch_size * channels))
161
- return;
162
-
163
- // Calculate batch and channel indices
164
- int c = bc_idx % channels;
165
- int b = bc_idx / channels;
166
-
167
- // Calculate input coordinates based on output position
168
- float x_in, y_in;
169
-
170
- if (align_corners && out_w > 1 && out_h > 1) {
171
- x_in = float(x_out) * (in_w - 1) / (out_w - 1);
172
- y_in = float(y_out) * (in_h - 1) / (out_h - 1);
173
- } else {
174
- // Fix the alignment calculation to ensure consistent mapping across thread boundaries
175
- x_in = ((float(x_out) + 0.5f) / float(out_w)) * float(in_w) - 0.5f;
176
- y_in = ((float(y_out) + 0.5f) / float(out_h)) * float(in_h) - 0.5f;
177
- }
178
-
179
- // Get integer and fractional parts
180
- int x0 = int(floor(x_in));
181
- int y0 = int(floor(y_in));
182
- float x_frac = x_in - x0;
183
- float y_frac = y_in - y0;
184
-
185
- // Improved cubic kernel function for better continuity
186
- auto cubic_kernel = [](float x) -> float {
187
- float absx = fabs(x);
188
- float absx2 = absx * absx;
189
- float absx3 = absx2 * absx;
190
-
191
- // Use a=-0.5 for smoother interpolation
192
- const float a = -0.5f;
193
-
194
- if (absx <= 1.0f) {
195
- return (a+2.0f)*absx3 - (a+3.0f)*absx2 + 1.0f;
196
- } else if (absx < 2.0f) {
197
- return a*absx3 - 5.0f*a*absx2 + 8.0f*a*absx - 4.0f*a;
198
- }
199
- return 0.0f;
200
- };
201
-
202
- // Perform bicubic interpolation with improved boundary handling
203
- float result = 0.0f;
204
- float weight_sum = 0.0f; // Track weight sum for normalization
205
-
206
- for (int i = -1; i <= 2; i++) {
207
- int y_pos = y0 + i;
208
- // Clamp y coordinate to valid range
209
- y_pos = max(0, min(y_pos, in_h - 1));
210
- float wy = cubic_kernel(y_frac - i);
211
-
212
- for (int j = -1; j <= 2; j++) {
213
- int x_pos = x0 + j;
214
- // Clamp x coordinate to valid range
215
- x_pos = max(0, min(x_pos, in_w - 1));
216
- float wx = cubic_kernel(x_frac - j);
217
- float weight = wy * wx;
218
-
219
- // Calculate input tensor offset
220
- int input_offset = ((b * channels + c) * in_h + y_pos) * in_w + x_pos;
221
-
222
- // Add weighted contribution
223
- result += input[input_offset] * weight;
224
- weight_sum += weight;
225
- }
226
- }
227
-
228
- // Normalize by weight sum to ensure consistent intensity
229
- if (weight_sum > 0.0f) {
230
- result /= weight_sum;
231
- }
232
-
233
- // Calculate output tensor offset
234
- int output_offset = ((b * channels + c) * out_h + y_out) * out_w + x_out;
235
-
236
- // Assign the result to output
237
- output[output_offset] = (float)result;
238
- """
239
-
240
- # Create the kernel
241
- kernel = mx.fast.metal_kernel(
242
- name="bicubic_interpolation",
243
- input_names=["input", "dims", "params"],
244
- output_names=["output"],
245
- source=source,
246
- )
247
-
248
- # Run the kernel
249
- threadgroup = get_optimal_threadgroup(out_w, out_h)
250
- outputs = kernel(
251
- inputs=[x_flat, dims, params],
252
- grid=(out_w, out_h, batch_size * channels),
253
- threadgroup=threadgroup,
254
- output_shapes=[(batch_size * channels * out_h * out_w,)],
255
- output_dtypes=[mx.float32], # Always use float32 for kernel output
256
- )
257
-
258
- # Reshape output back to 4D tensor and convert back to original dtype
259
- result = outputs[0].reshape(batch_size, channels, out_h, out_w)
260
- if input_dtype != mx.float32:
261
- result = result.astype(input_dtype)
262
-
263
- return result
264
-
265
-
266
- def get_optimal_threadgroup(out_w, out_h):
267
- # Calculate optimal threadgroup dimensions based on output dimensions
268
-
269
- # Maximum threadgroup size for most Metal GPUs
270
- # This could be made more dynamic with Metal API queries if needed
271
- MAX_THREADS_PER_GROUP = 1024
272
- MAX_THREADS_PER_DIM = 1024
273
-
274
- # Start with a reasonable default size for 2D workloads
275
- default_threadgroup = (32, 32, 1)
276
-
277
- try:
278
- # Don't create threadgroups larger than the work dimensions
279
- max_width = min(MAX_THREADS_PER_DIM, out_w)
280
- max_height = min(MAX_THREADS_PER_DIM, out_h)
281
-
282
- # Find largest power of 2 that fits within our dimensions
283
- width = 2 ** (max_width.bit_length() - 1)
284
- if width > max_width:
285
- width = width // 2
286
-
287
- height = 2 ** (max_height.bit_length() - 1)
288
- if height > max_height:
289
- height = height // 2
290
-
291
- # Ensure we don't exceed maximum threads per threadgroup
292
- while width * height > MAX_THREADS_PER_GROUP:
293
- # Reduce the larger dimension first
294
- if width >= height:
295
- width = width // 2
296
- else:
297
- height = height // 2
298
-
299
- # Ensure minimum size for efficiency
300
- width = max(8, width)
301
- height = max(8, height)
302
-
303
- return (width, height, 1)
304
-
305
- except Exception:
306
- # Return safe defaults if calculation fails
307
- return default_threadgroup
@@ -1,8 +0,0 @@
1
- from .kimi_vl import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
@@ -1,143 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- import re
5
- from dataclasses import dataclass
6
- from pathlib import Path
7
- from typing import List, Optional
8
-
9
- import mlx.core as mx
10
- import mlx.nn as nn
11
- import numpy as np
12
- from huggingface_hub import snapshot_download
13
- from transformers import AutoConfig
14
-
15
- from .language import LanguageModel, TextConfig
16
- from .vision import VisionConfig, VisionModel
17
-
18
-
19
- @dataclass
20
- class ModelConfig:
21
- text_config: TextConfig
22
- vision_config: VisionConfig
23
- model_type: str
24
- ignore_index: int = -100
25
- vocab_size: int = 128259
26
- scale_factor: int = 2
27
- media_placeholder_token_id: int = 163606
28
- image_token_index: Optional[int] = None
29
- eos_token_id: Optional[List[int]] = None
30
-
31
- def __post_init__(self):
32
- if self.image_token_index is None:
33
- self.image_token_index = self.media_placeholder_token_id
34
-
35
- @classmethod
36
- def from_dict(cls, params):
37
- return cls(
38
- **{
39
- k: v
40
- for k, v in params.items()
41
- if k in inspect.signature(cls).parameters
42
- }
43
- )
44
-
45
-
46
- class KimiVLMultiModalProjector(nn.Module):
47
-
48
- def __init__(self, config: ModelConfig):
49
- super().__init__()
50
-
51
- self.hidden_size = (
52
- config.vision_config.hidden_size
53
- * config.vision_config.merge_kernel_size[0]
54
- * config.vision_config.merge_kernel_size[1]
55
- )
56
-
57
- self.pre_norm = nn.LayerNorm(config.vision_config.hidden_size, eps=1e-05)
58
- self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
59
- self.act = nn.GELU()
60
- self.linear_2 = nn.Linear(
61
- self.hidden_size, config.text_config.hidden_size, bias=True
62
- )
63
-
64
- def __call__(self, image_features: list[mx.array]) -> mx.array:
65
- image_features = mx.concatenate(image_features, axis=0)
66
- h = self.pre_norm(image_features).reshape(-1, self.hidden_size)
67
- h = self.linear_1(h)
68
- h = self.act(h)
69
- h = self.linear_2(h)
70
- return h
71
-
72
-
73
- class Model(nn.Module):
74
- def __init__(self, config: ModelConfig):
75
- super().__init__()
76
- self.model_type = config.model_type
77
- self.config = config
78
-
79
- self.vision_tower = VisionModel(config.vision_config)
80
- self.language_model = LanguageModel(config.text_config)
81
- self.multi_modal_projector = KimiVLMultiModalProjector(config)
82
-
83
- def get_input_embeddings(
84
- self,
85
- input_ids: Optional[mx.array] = None,
86
- pixel_values: Optional[mx.array] = None,
87
- grid_thw: Optional[mx.array] = None,
88
- ):
89
- if pixel_values is None:
90
- return self.language_model.embed_tokens(input_ids)
91
-
92
- inputs_embeds = self.language_model.embed_tokens(input_ids)
93
-
94
- hidden_state = self.vision_tower(
95
- pixel_values.transpose(0, 2, 3, 1),
96
- output_hidden_states=True,
97
- grid_thw=grid_thw,
98
- )
99
-
100
- image_features = self.multi_modal_projector(hidden_state)
101
-
102
- final_inputs_embeds = self._prepare_inputs_for_multimodal(
103
- image_features, inputs_embeds, input_ids
104
- )
105
- return final_inputs_embeds
106
-
107
- def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
108
- image_token_index = self.config.image_token_index
109
-
110
- # Positions of <image> tokens in input_ids, assuming batch size is 1
111
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
112
-
113
- inputs_embeds[:, image_positions, :] = image_features
114
-
115
- return inputs_embeds
116
-
117
- @property
118
- def layers(self):
119
- return self.language_model.model.layers
120
-
121
- def __call__(
122
- self,
123
- input_ids: mx.array,
124
- pixel_values: mx.array,
125
- cache=None,
126
- **kwargs,
127
- ):
128
- image_grid_thw = kwargs.pop("image_grid_hws", None)
129
- video_grid_thw = kwargs.pop("video_grid_hws", None)
130
- grid_thw = image_grid_thw if image_grid_thw is not None else video_grid_thw
131
- input_embeddings = self.get_input_embeddings(
132
- input_ids, pixel_values, grid_thw=grid_thw
133
- )
134
- logits = self.language_model(
135
- inputs=input_ids, cache=cache, inputs_embeds=input_embeddings
136
- )
137
- return logits
138
-
139
- def sanitize(self, weights):
140
- return {
141
- k.replace("encoder.", "") if "vision_tower" in k else k: v
142
- for k, v in weights.items()
143
- }