nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,629 +0,0 @@
1
- import math
2
- from functools import partial
3
- from typing import Any, Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- from mlx_lm.models.cache import _BaseCache
8
-
9
- from ..base import (
10
- LanguageModelOutput,
11
- create_attention_mask,
12
- scaled_dot_product_attention,
13
- )
14
- from ..cache import KVCache, RotatingKVCache
15
- from .config import TextConfig
16
-
17
-
18
- class Gemma3nRMSNorm(nn.Module):
19
- def __init__(
20
- self,
21
- dim: int,
22
- eps: float = 1e-6,
23
- scale_shift: float = 0.0,
24
- with_scale: bool = True,
25
- ):
26
- super().__init__()
27
- self.eps = eps
28
- self.scale_shift = scale_shift
29
- self.with_scale = with_scale
30
-
31
- if self.with_scale:
32
- # Make weight a proper parameter
33
- self.weight = mx.ones(dim)
34
- else:
35
- self.weight = None
36
-
37
- def _norm(self, x):
38
- # Match PyTorch's normalization exactly
39
- return x * mx.rsqrt(x.square().mean(axis=-1, keepdims=True) + self.eps)
40
-
41
- def __call__(self, x: mx.array) -> mx.array:
42
- # Match PyTorch implementation
43
- output = self._norm(x.astype(mx.float32))
44
-
45
- if self.with_scale:
46
- output = output * (self.weight + self.scale_shift)
47
-
48
- return output.astype(x.dtype)
49
-
50
-
51
- class RMSNoScale(nn.Module):
52
- def __init__(self, eps: float = 1e-5):
53
- super().__init__()
54
- self.eps = eps
55
-
56
- def __call__(self, x):
57
- return mx.fast.rms_norm(x, None, self.eps)
58
-
59
-
60
- class Gemma3nLaurelBlock(nn.Module):
61
- """Learned Augmented Residual Layer"""
62
-
63
- def __init__(self, config: TextConfig):
64
- super().__init__()
65
- self.config = config
66
-
67
- self.linear_left = nn.Linear(
68
- self.config.hidden_size, self.config.laurel_rank, bias=False
69
- )
70
- self.linear_right = nn.Linear(
71
- self.config.laurel_rank, self.config.hidden_size, bias=False
72
- )
73
- self.post_laurel_norm = nn.RMSNorm(
74
- dims=self.config.hidden_size,
75
- eps=self.config.rms_norm_eps,
76
- )
77
-
78
- def __call__(self, x: mx.array) -> mx.array:
79
- laurel_x = self.linear_left(x)
80
- laurel_x = self.linear_right(laurel_x)
81
- normed_laurel_x = self.post_laurel_norm(laurel_x)
82
- return x + normed_laurel_x
83
-
84
-
85
- class Gemma3nAttention(nn.Module):
86
- def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
87
- super().__init__()
88
- self.is_sliding = config.layer_types[layer_idx] == "sliding_attention"
89
-
90
- dim = config.hidden_size
91
- self.n_heads = n_heads = config.num_attention_heads
92
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
93
- self.repeats = n_heads // n_kv_heads
94
- self.head_dim = head_dim = config.head_dim
95
- self.layer_idx = layer_idx
96
-
97
- self.scale = 1.0
98
-
99
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
100
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
101
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
102
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
103
-
104
- self.q_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
105
- self.k_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
106
- self.v_norm = RMSNoScale(eps=config.rms_norm_eps)
107
-
108
- self.is_kv_shared_layer = is_kv_shared_layer
109
-
110
- self.rope = nn.RoPE(
111
- head_dim,
112
- traditional=False,
113
- base=(
114
- config.rope_local_base_freq if self.is_sliding else config.rope_theta
115
- ),
116
- )
117
-
118
- def __call__(
119
- self,
120
- x: mx.array,
121
- mask: Optional[mx.array] = None,
122
- cache: Optional[Any] = None,
123
- ) -> mx.array:
124
- B, L, _ = x.shape
125
-
126
- queries = self.q_proj(x)
127
- queries = queries.reshape(B, L, -1, self.head_dim)
128
- queries = self.q_norm(queries)
129
-
130
- offset = 0
131
- if self.is_kv_shared_layer and cache is not None:
132
- # For shared layers, retrieve KV from the designated cache layer
133
- keys, values = cache.state
134
- offset = cache.offset
135
-
136
- else:
137
-
138
- if cache is not None:
139
- offset = cache.offset
140
-
141
- keys = self.k_proj(x).reshape(B, L, -1, self.head_dim)
142
- keys = self.k_norm(keys)
143
- keys = keys.transpose(0, 2, 1, 3)
144
- keys = self.rope(keys, offset=offset)
145
-
146
- values = self.v_proj(x).reshape(B, L, -1, self.head_dim)
147
- values = self.v_norm(values)
148
- values = values.transpose(0, 2, 1, 3)
149
-
150
- if cache is not None:
151
- keys, values = cache.update_and_fetch(keys, values)
152
-
153
- queries = queries.transpose(0, 2, 1, 3)
154
- queries = self.rope(queries, offset=offset)
155
-
156
- if isinstance(mask, mx.array) and mask.shape[-1] != keys.shape[-2]:
157
- mask = mask[:, : keys.shape[-2]]
158
-
159
- output = scaled_dot_product_attention(
160
- queries, keys, values, cache=cache, scale=self.scale, mask=mask
161
- )
162
-
163
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
164
-
165
- return self.o_proj(output)
166
-
167
-
168
- @partial(mx.compile, shapeless=True)
169
- def gelu_topk(inputs, std_multiplier):
170
- inputs_mean = mx.mean(inputs, axis=-1, keepdims=True)
171
- inputs_std = mx.std(inputs, axis=-1, keepdims=True)
172
- cutoff_x = inputs_mean + inputs_std * std_multiplier.astype(inputs_std.dtype)
173
- return nn.gelu_approx(mx.maximum(0, inputs - cutoff_x))
174
-
175
-
176
- class MLP(nn.Module):
177
- def __init__(self, config: TextConfig, layer_idx: int = 0):
178
- super().__init__()
179
- self.config = config
180
- self.hidden_size = config.hidden_size
181
- self.intermediate_size = config.intermediate_size
182
- self.gate_proj = nn.Linear(
183
- self.hidden_size, self.intermediate_size[0], bias=False
184
- )
185
- self.up_proj = nn.Linear(
186
- self.hidden_size, self.intermediate_size[0], bias=False
187
- )
188
- self.down_proj = nn.Linear(
189
- self.intermediate_size[0], self.hidden_size, bias=False
190
- )
191
- if config.activation_sparsity_pattern is not None:
192
- self.activation_sparsity = config.activation_sparsity_pattern[layer_idx]
193
- else:
194
- self.activation_sparsity = 0.0
195
- if self.activation_sparsity > 0:
196
- self._std_multiplier = math.sqrt(2.0) * mx.erfinv(
197
- 2 * self.activation_sparsity - 1
198
- )
199
-
200
- def __call__(self, x: mx.array):
201
- gate_proj = self.gate_proj(x)
202
- if self.activation_sparsity > 0.0:
203
- activations = gelu_topk(gate_proj, self._std_multiplier)
204
- else:
205
- activations = nn.gelu_approx(gate_proj)
206
- up_proj = self.up_proj(x)
207
- down_proj = self.down_proj(activations * up_proj)
208
- return down_proj
209
-
210
-
211
- class Gemma3nAltUp(nn.Module):
212
- """Alternating Updates (AltUp)"""
213
-
214
- def __init__(self, config: TextConfig):
215
- super().__init__()
216
- self.config = config
217
-
218
- self.correct_output_scale = mx.zeros((self.config.hidden_size,))
219
- self.correction_coefs = nn.Linear(
220
- self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False
221
- )
222
- self.prediction_coefs = nn.Linear(
223
- self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False
224
- )
225
- self.modality_router = nn.Linear(
226
- self.config.hidden_size, self.config.altup_num_inputs, bias=False
227
- )
228
- self.router_norm = nn.RMSNorm(
229
- dims=self.config.hidden_size,
230
- eps=self.config.rms_norm_eps,
231
- )
232
-
233
- def compute_router_modalities(self, x: mx.array) -> mx.array:
234
- router_inputs = self.router_norm(x) * (self.config.hidden_size**-1.0)
235
- routed = self.modality_router(router_inputs).astype(mx.float32)
236
- return mx.tanh(routed)
237
-
238
- def predict(self, x: mx.array) -> mx.array:
239
- modalities = self.compute_router_modalities(x[self.config.altup_active_idx])
240
-
241
- self.prediction_coefs.weight = self.prediction_coefs.weight.astype(mx.float32)
242
-
243
- if self.config.altup_coef_clip is not None:
244
- self.prediction_coefs.weight = mx.clip(
245
- self.prediction_coefs.weight,
246
- -self.config.altup_coef_clip,
247
- self.config.altup_coef_clip,
248
- )
249
-
250
- all_coefs = (
251
- self.prediction_coefs(modalities)
252
- .reshape(
253
- *modalities.shape[:-1],
254
- self.config.altup_num_inputs,
255
- self.config.altup_num_inputs,
256
- )
257
- .transpose(0, 1, 3, 2)
258
- )
259
-
260
- x_up = x.astype(mx.float32)
261
- x_permuted = x_up.transpose(1, 2, 3, 0)
262
- predictions = mx.matmul(x_permuted, all_coefs)
263
- predictions = predictions.transpose(3, 0, 1, 2)
264
- predictions += x_up
265
- return predictions.astype(x.dtype)
266
-
267
- def correct(self, predictions: mx.array, activated: mx.array):
268
- modalities = self.compute_router_modalities(activated)
269
-
270
- self.correction_coefs.weight = self.correction_coefs.weight.astype(mx.float32)
271
-
272
- if self.config.altup_coef_clip is not None:
273
- self.correction_coefs.weight = mx.clip(
274
- self.correction_coefs.weight,
275
- -self.config.altup_coef_clip,
276
- self.config.altup_coef_clip,
277
- )
278
-
279
- all_coefs = self.correction_coefs(modalities) + 1.0
280
-
281
- active_x = predictions[self.config.altup_active_idx]
282
- innovation = activated - active_x
283
-
284
- all_coefs = all_coefs.transpose(2, 1, 0)
285
- corrected = innovation[None] * all_coefs[:, None]
286
- corrected += predictions
287
-
288
- return corrected.astype(activated.dtype)
289
-
290
-
291
- class Gemma3nDecoderLayer(nn.Module):
292
- def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
293
- super().__init__()
294
- self.config = config
295
- self.hidden_size = config.hidden_size
296
- self.layer_idx = layer_idx
297
- self.self_attn = Gemma3nAttention(config, layer_idx, is_kv_shared_layer)
298
- self.mlp = MLP(config, layer_idx=layer_idx)
299
- self.input_layernorm = nn.RMSNorm(
300
- self.hidden_size,
301
- eps=config.rms_norm_eps,
302
- )
303
-
304
- self.post_attention_layernorm = nn.RMSNorm(
305
- self.hidden_size,
306
- eps=config.rms_norm_eps,
307
- )
308
- self.pre_feedforward_layernorm = nn.RMSNorm(
309
- self.hidden_size,
310
- eps=config.rms_norm_eps,
311
- )
312
- self.post_feedforward_layernorm = nn.RMSNorm(
313
- self.hidden_size,
314
- eps=config.rms_norm_eps,
315
- )
316
- self.is_sliding = self.self_attn.is_sliding
317
- self.sliding_window = config.sliding_window
318
-
319
- self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
320
-
321
- self.altup = Gemma3nAltUp(config)
322
- self.laurel = Gemma3nLaurelBlock(config)
323
- self.per_layer_input_gate = nn.Linear(
324
- self.hidden_size, self.hidden_size_per_layer_input, bias=False
325
- )
326
- self.per_layer_projection = nn.Linear(
327
- self.hidden_size_per_layer_input, self.hidden_size, bias=False
328
- )
329
- self.post_per_layer_input_norm = nn.RMSNorm(
330
- self.hidden_size,
331
- eps=config.rms_norm_eps,
332
- )
333
-
334
- def __call__(
335
- self,
336
- x: mx.array,
337
- mask: Optional[mx.array] = None,
338
- cache: Optional[Any] = None,
339
- per_layer_input: Optional[mx.array] = None,
340
- ):
341
- predictions = self.altup.predict(x)
342
- active_prediction = predictions[self.config.altup_active_idx]
343
-
344
- active_prediction_normed = self.input_layernorm(active_prediction)
345
- laurel_output = self.laurel(active_prediction_normed)
346
-
347
- attn = self.self_attn(
348
- active_prediction_normed,
349
- mask,
350
- cache,
351
- )
352
-
353
- attn = self.post_attention_layernorm(attn)
354
-
355
- attn_gated = active_prediction + attn
356
- attn_laurel = (attn_gated + laurel_output) * (2.0**-0.5)
357
-
358
- attn_norm = self.pre_feedforward_layernorm(attn_laurel)
359
- attn_ffw = self.mlp(attn_norm)
360
- attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
361
- attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
362
-
363
- corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated)
364
-
365
- first_prediction = corrected_predictions[self.config.altup_active_idx]
366
- if self.config.altup_correct_scale:
367
- first_prediction = first_prediction * self.altup.correct_output_scale
368
-
369
- first_prediction = self.per_layer_input_gate(first_prediction)
370
- first_prediction = nn.gelu_approx(first_prediction)
371
-
372
- first_prediction = mx.multiply(first_prediction, per_layer_input)
373
-
374
- first_prediction = self.per_layer_projection(first_prediction)
375
- first_prediction = self.post_per_layer_input_norm(first_prediction)
376
-
377
- corrected_predictions[1:] = corrected_predictions[1:] + first_prediction
378
-
379
- return corrected_predictions
380
-
381
-
382
- class Gemma3Model(nn.Module):
383
- def __init__(self, config: TextConfig):
384
- super().__init__()
385
- self.config = config
386
- self.hidden_size = config.hidden_size
387
- self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
388
- self.vocab_size = config.vocab_size
389
- self.vocab_size_per_layer_input = config.vocab_size_per_layer_input
390
- self.num_hidden_layers = config.num_hidden_layers
391
- self.first_kv_shared_layer_idx = (
392
- config.num_hidden_layers - config.num_kv_shared_layers
393
- )
394
-
395
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
396
- self.layers = [
397
- Gemma3nDecoderLayer(
398
- config=config,
399
- layer_idx=layer_idx,
400
- is_kv_shared_layer=layer_idx >= self.first_kv_shared_layer_idx,
401
- )
402
- for layer_idx in range(config.num_hidden_layers)
403
- ]
404
-
405
- self.embed_tokens_per_layer = nn.Embedding(
406
- config.vocab_size_per_layer_input,
407
- config.num_hidden_layers * config.hidden_size_per_layer_input,
408
- )
409
-
410
- self.per_layer_model_projection = nn.Linear(
411
- config.hidden_size,
412
- config.num_hidden_layers * config.hidden_size_per_layer_input,
413
- bias=False,
414
- )
415
-
416
- self.per_layer_projection_norm = nn.RMSNorm(
417
- dims=config.hidden_size_per_layer_input,
418
- eps=config.rms_norm_eps,
419
- )
420
-
421
- self.altup_projections = [
422
- nn.Linear(config.hidden_size, config.hidden_size, bias=False)
423
- for _ in range(1, self.config.altup_num_inputs)
424
- ]
425
-
426
- self.altup_unembed_projections = [
427
- nn.Linear(config.hidden_size, config.hidden_size, bias=False)
428
- for _ in range(1, self.config.altup_num_inputs)
429
- ]
430
-
431
- self.norm = nn.RMSNorm(
432
- config.hidden_size,
433
- eps=config.rms_norm_eps,
434
- )
435
-
436
- self.first_sliding_idx = self.config.layer_types.index("sliding_attention")
437
- self.first_full_idx = self.config.layer_types.index("full_attention")
438
-
439
- concrete_layers = self.config.layer_types[: self.first_kv_shared_layer_idx]
440
- shared_full_idx = (
441
- len(concrete_layers) - 1 - concrete_layers[::-1].index("full_attention")
442
- )
443
- shared_sliding_idx = (
444
- len(concrete_layers) - 1 - concrete_layers[::-1].index("sliding_attention")
445
- )
446
-
447
- self.layer_idx_to_cache_idx = []
448
- for i, layer_type in enumerate(self.config.layer_types):
449
- if i < self.first_kv_shared_layer_idx:
450
- self.layer_idx_to_cache_idx.append(i)
451
- else:
452
- if layer_type == "full_attention":
453
- self.layer_idx_to_cache_idx.append(shared_full_idx)
454
- elif layer_type == "sliding_attention":
455
- self.layer_idx_to_cache_idx.append(shared_sliding_idx)
456
- else:
457
- raise NotImplementedError(f"Unknown layer type: {layer_type}")
458
-
459
- def __call__(
460
- self,
461
- inputs: mx.array = None,
462
- inputs_embeds: mx.array = None,
463
- mask: mx.array = None,
464
- cache=None,
465
- **kwargs,
466
- ):
467
- per_layer_inputs = kwargs.pop("per_layer_inputs", None)
468
-
469
- if inputs_embeds is None:
470
- h = self.embed_tokens(inputs) * (self.hidden_size**0.5)
471
- else:
472
- h = inputs_embeds
473
-
474
- if per_layer_inputs is None and inputs is not None:
475
- per_layer_inputs = self.get_per_layer_inputs(inputs)
476
-
477
- per_layer_inputs = self.project_per_layer_inputs(h, per_layer_inputs)
478
-
479
- if cache is None:
480
- cache = [None] * len(self.layers)
481
-
482
- if mask is None:
483
- full_mask = create_attention_mask(
484
- h,
485
- cache[self.first_full_idx :],
486
- )
487
- sliding_window_mask = create_attention_mask(
488
- h,
489
- cache[self.first_sliding_idx :],
490
- )
491
- h0 = h
492
-
493
- # Expand hidden_states to support per-layer inputs
494
- target_magnitude = mx.mean(h0**2, axis=-1, keepdims=True) ** 0.5
495
-
496
- h_list = [h0]
497
- h_list.extend([proj(h0) for proj in self.altup_projections])
498
- h = mx.stack(h_list, axis=0)
499
- mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
500
- h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
501
-
502
- for i, layer in enumerate(self.layers):
503
- per_layer_input = per_layer_inputs[:, :, i, :]
504
-
505
- is_global = self.config.layer_types[i] == "full_attention"
506
-
507
- local_mask = mask
508
- if mask is None and is_global:
509
- local_mask = full_mask
510
- elif mask is None:
511
- local_mask = sliding_window_mask
512
-
513
- h = layer(
514
- h,
515
- local_mask,
516
- cache[self.layer_idx_to_cache_idx[i]],
517
- per_layer_input,
518
- )
519
-
520
- # Per-layer inputs to single output
521
- target_magnitude = mx.mean(h[0] ** 2, axis=-1, keepdims=True) ** 0.5
522
- for i, proj in enumerate(self.altup_unembed_projections):
523
- h[i + 1] = proj(h[i + 1])
524
- mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
525
- h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
526
-
527
- h = mx.mean(h, axis=0)
528
-
529
- return self.norm(h)
530
-
531
- def get_per_layer_inputs(self, input_ids: mx.array) -> mx.array:
532
- per_layer_inputs_mask = input_ids < self.vocab_size_per_layer_input
533
- tokens = mx.where(per_layer_inputs_mask, input_ids, mx.zeros_like(input_ids))
534
- result = self.embed_tokens_per_layer(tokens) * (
535
- self.hidden_size_per_layer_input**0.5
536
- )
537
- return result.reshape(
538
- *input_ids.shape,
539
- self.num_hidden_layers,
540
- self.hidden_size_per_layer_input,
541
- )
542
-
543
- def project_per_layer_inputs(
544
- self,
545
- inputs_embeds: mx.array,
546
- per_layer_inputs: mx.array,
547
- ) -> mx.array:
548
- per_layer_projection = self.per_layer_model_projection(inputs_embeds) * (
549
- self.hidden_size**-0.5
550
- )
551
- per_layer_projection = per_layer_projection.reshape(
552
- *inputs_embeds.shape[:-1],
553
- self.config.num_hidden_layers,
554
- self.config.hidden_size_per_layer_input,
555
- )
556
- per_layer_projection = self.per_layer_projection_norm(per_layer_projection)
557
- return (per_layer_projection + per_layer_inputs) * (2.0**-0.5)
558
-
559
-
560
- @partial(mx.compile, shapeless=True)
561
- def logit_softcap(softcap, x):
562
- out = mx.tanh(x / softcap)
563
- out = out * softcap
564
- return out
565
-
566
-
567
- class LanguageModel(nn.Module):
568
- def __init__(self, config: TextConfig):
569
- super().__init__()
570
- self.config = config
571
- self.model_type = config.model_type
572
- self.model = Gemma3Model(config)
573
- self.final_logit_softcapping = config.final_logit_softcapping
574
-
575
- def __call__(
576
- self,
577
- inputs: mx.array = None,
578
- inputs_embeds: Optional[mx.array] = None,
579
- mask: Optional[mx.array] = None,
580
- cache=None,
581
- **kwargs,
582
- ):
583
- out = self.model(
584
- inputs, inputs_embeds=inputs_embeds, mask=mask, cache=cache, **kwargs
585
- )
586
- out = self.model.embed_tokens.as_linear(out)
587
- if self.final_logit_softcapping is not None:
588
- out = logit_softcap(self.final_logit_softcapping, out)
589
- return LanguageModelOutput(logits=out)
590
-
591
- def sanitize(self, weights):
592
- sanitized_weights = {}
593
-
594
- for k, v in weights.items():
595
- if "language_model.model" not in k and "language_model.lm_head" not in k:
596
- new_key = k.replace("language_model", "language_model.model")
597
- sanitized_weights[new_key] = v
598
- elif "self_attn.rotary_emb.inv_freq" in k:
599
- continue
600
- else:
601
- sanitized_weights[k] = v
602
- return sanitized_weights
603
-
604
- @property
605
- def layers(self):
606
- return self.model.layers
607
-
608
- @property
609
- def head_dim(self):
610
- return self.config.head_dim
611
-
612
- @property
613
- def n_kv_heads(self):
614
- return self.config.num_key_value_heads
615
-
616
- def make_cache(self):
617
- caches = []
618
- for layer_type in self.config.layer_types[
619
- : self.model.first_kv_shared_layer_idx
620
- ]:
621
- if layer_type == "full_attention":
622
- caches.append(KVCache())
623
- elif layer_type == "sliding_attention":
624
- caches.append(
625
- RotatingKVCache(max_size=self.config.sliding_window, keep=0)
626
- )
627
- else:
628
- raise NotImplementedError(f"Unknown layer type: {layer_type}")
629
- return caches