nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,465 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass, field
3
- from typing import List, Optional, Tuple
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
-
9
- @dataclass
10
- class VisionConfig:
11
- model_type: str = "molmo"
12
- num_channels: int = 3
13
- image_default_input_size: Tuple[int, int] = (336, 336)
14
- image_patch_size: int = 14
15
- image_pos_patch_size: int = 14
16
- hidden_size: int = 18944
17
- image_emb_dim: int = 1024
18
- image_num_heads: int = 16
19
- image_num_key_value_heads: int = 16
20
- image_num_layers: int = 23
21
- image_head_dim: int = 64
22
- image_mlp_dim: int = 4096
23
- image_mlp_activations: str = "gelu"
24
- image_dropout_rate: float = 0.0
25
- image_num_pos: int = 577
26
- image_norm_eps: float = 1e-5
27
- attention_dropout: float = 0.0
28
- residual_dropout: float = 0.0
29
- initializer_range: float = 0.02
30
- d_model: int = 3584
31
- image_pooling_h: int = 2
32
- image_pooling_w: int = 2
33
- vit_layers: Optional[List[int]] = field(default_factory=lambda: [-2, -9])
34
- image_pooling_2d: str = "attention-meanq"
35
- image_padding_embed: str = "pad_and_partial_pad"
36
- intermediate_size: Optional[int] = None
37
-
38
- def __post_init__(self):
39
- if self.intermediate_size is None:
40
- self.intermediate_size = self.image_patch_size * self.image_patch_size * 3
41
-
42
- @property
43
- def image_num_patch(self):
44
- h, w = self.image_default_input_size
45
- return h // self.image_patch_size, w // self.image_patch_size
46
-
47
- @property
48
- def llm_patches_per_crop(self):
49
- h, w = self.image_num_patch
50
- # Round up in case we need to pad the image features for pooling
51
- h = (h + self.image_pooling_h - 1) // self.image_pooling_h
52
- w = (w + self.image_pooling_w - 1) // self.image_pooling_w
53
- return h, w
54
-
55
- @classmethod
56
- def from_dict(cls, params):
57
- return cls(
58
- **{
59
- k: v
60
- for k, v in params.items()
61
- if k in inspect.signature(cls).parameters
62
- }
63
- )
64
-
65
-
66
- class MLP(nn.Module):
67
- def __init__(self, config: VisionConfig, input_dim: int):
68
- super().__init__()
69
- self.config = config
70
- self.hidden_size = config.hidden_size
71
- self.w1 = nn.Linear(
72
- input_dim,
73
- self.hidden_size,
74
- bias=False,
75
- )
76
- self.w2 = nn.Linear(
77
- self.hidden_size,
78
- config.d_model,
79
- bias=False,
80
- )
81
- self.w3 = nn.Linear(
82
- input_dim,
83
- self.hidden_size,
84
- bias=False,
85
- )
86
-
87
- def __call__(self, x: mx.array) -> mx.array:
88
- x = self.w2(nn.silu(self.w1(x)) * self.w3(x))
89
- return x
90
-
91
-
92
- class ViTMLP(nn.Module):
93
- def __init__(self, config: VisionConfig):
94
- super().__init__()
95
- self.config = config
96
- self.w1 = nn.Linear(config.image_emb_dim, config.image_mlp_dim, bias=True)
97
- self.w2 = nn.Linear(config.image_mlp_dim, config.image_emb_dim, bias=True)
98
- self.act = nn.GELU(approx="fast")
99
-
100
- def __call__(self, x: mx.array) -> mx.array:
101
- x = self.w1(x)
102
- x = self.act(x)
103
- x = self.w2(x)
104
- return x
105
-
106
-
107
- class MultiHeadDotProductAttention(nn.Module):
108
- def __init__(self, config: VisionConfig, is_vit_layer: Optional[bool] = True):
109
- super().__init__()
110
- self.config = config
111
- self.embed_dim = config.image_emb_dim
112
- self.num_heads = config.image_num_heads
113
- self.head_dim = config.image_head_dim
114
- self.num_key_value_heads = config.image_num_key_value_heads
115
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
116
- self.scale = self.head_dim**-0.5
117
- self.is_vit_layer = is_vit_layer
118
-
119
- n_layers = (
120
- 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
121
- )
122
-
123
- self.wq = nn.Linear(
124
- n_layers * self.embed_dim, self.num_heads * self.head_dim, bias=True
125
- )
126
- self.wk = nn.Linear(
127
- n_layers * self.embed_dim,
128
- self.num_key_value_heads * self.head_dim,
129
- bias=True,
130
- )
131
- self.wv = nn.Linear(
132
- n_layers * self.embed_dim,
133
- self.num_key_value_heads * self.head_dim,
134
- bias=True,
135
- )
136
- self.wo = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=True)
137
-
138
- def _split_heads(self, hidden_states, num_heads) -> mx.array:
139
- return hidden_states.reshape(
140
- hidden_states.shape[:2] + (num_heads, self.head_dim)
141
- )
142
-
143
- def _merge_heads(self, hidden_states) -> mx.array:
144
- return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
145
-
146
- def __call__(self, x: mx.array, kv: mx.array = None) -> mx.array:
147
- batch_size, seq_len, _ = x.shape
148
-
149
- if kv is None:
150
- k = x
151
- v = x
152
- else:
153
- k = kv
154
- v = kv
155
- q = self._split_heads(self.wq(x), self.num_heads).transpose(0, 2, 1, 3)
156
-
157
- k = self._split_heads(self.wk(k), self.num_key_value_heads).transpose(
158
- 0, 2, 1, 3
159
- )
160
- v = self._split_heads(self.wv(v), self.num_key_value_heads).transpose(
161
- 0, 2, 1, 3
162
- )
163
-
164
- attn = mx.fast.scaled_dot_product_attention(q, k, v, scale=self.scale)
165
- out = attn.transpose(0, 2, 1, 3)
166
- out = self._merge_heads(out)
167
- out = self.wo(out)
168
- return out
169
-
170
-
171
- class ResidualAttentionBlock(nn.Module):
172
- def __init__(self, config: VisionConfig):
173
- super().__init__()
174
- self.config = config
175
- self.attention = MultiHeadDotProductAttention(config)
176
- self.feed_forward = ViTMLP(config)
177
- self.attention_norm = nn.LayerNorm(
178
- config.image_emb_dim, eps=config.image_norm_eps
179
- )
180
- self.ffn_norm = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
181
-
182
- def __call__(self, x: mx.array) -> mx.array:
183
- x = x + self.attention(self.attention_norm(x))
184
- x = x + self.feed_forward(self.ffn_norm(x))
185
- return x
186
-
187
-
188
- class ResidualAttentionBlocks(nn.Module):
189
- def __init__(self, config: VisionConfig):
190
- super().__init__()
191
- self.resblocks = [
192
- ResidualAttentionBlock(config) for _ in range(config.image_num_layers)
193
- ]
194
-
195
- def __call__(self, x: mx.array) -> mx.array:
196
- h = []
197
- for block in self.resblocks:
198
- x = block(x)
199
- h.append(x)
200
- return h
201
-
202
-
203
- def _expand_token(token, batch_size: int):
204
- return mx.broadcast_to(
205
- mx.reshape(token, (1, 1, -1)), (batch_size, 1, token.shape[-1])
206
- )
207
-
208
-
209
- def pad_to_multiple(x, target_size, pad_mode="edge", pad_value=0):
210
- """
211
- Pad the last dimension of input tensor to match target size.
212
-
213
- Args:
214
- x: Input tensor with shape [..., D]
215
- target_size: Desired size for the last dimension
216
- pad_mode: Padding mode ('constant', 'reflect', etc.)
217
- pad_value: Value to use for constant padding
218
-
219
- Returns:
220
- Padded tensor with shape [..., target_size]
221
- """
222
- current_size = x.shape[-1]
223
-
224
- # Return early if no padding needed
225
- if current_size == target_size:
226
- return x
227
-
228
- # Ensure target size is larger
229
- if current_size > target_size:
230
- raise ValueError(
231
- f"Current size {current_size} is larger than target size {target_size}"
232
- )
233
-
234
- # Calculate padding needed
235
- pad_size = target_size - current_size
236
-
237
- # Create padding configuration
238
- # No padding for batch and channel dimensions (0,0), only pad the last dim
239
- pad_config = [(0, 0)] * (len(x.shape) - 1) + [(0, pad_size)]
240
-
241
- return mx.pad(x, pad_width=pad_config, mode=pad_mode, constant_values=pad_value)
242
-
243
-
244
- class VisionTransformer(nn.Module):
245
- def __init__(self, config: VisionConfig):
246
- super().__init__()
247
- self.config = config
248
- self.class_embedding = mx.zeros((config.image_emb_dim,))
249
- self.positional_embedding = mx.zeros(
250
- (config.image_num_pos, config.image_emb_dim)
251
- )
252
- self.patch_embedding = nn.Linear(
253
- config.intermediate_size,
254
- config.image_emb_dim,
255
- bias=False,
256
- )
257
- self.pre_ln = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
258
- self.transformer = ResidualAttentionBlocks(config)
259
-
260
- def add_pos_emb(self, x: mx.array, patch_num: int) -> mx.array:
261
- cls_emb = self.positional_embedding[0:1]
262
- pos_emb = self.positional_embedding[1:]
263
-
264
- # Reshape into 2D grid
265
- pos_emb_size = int(pos_emb.shape[0] ** 0.5)
266
- pos_emb = mx.reshape(pos_emb, (pos_emb_size, pos_emb_size, pos_emb.shape[1]))
267
-
268
- (patch_num_0, patch_num_1) = patch_num
269
-
270
- if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
271
- # Reshape for upsampling (add batch and channel dims)
272
- pos_emb = mx.expand_dims(pos_emb, 0)
273
- pos_emb = mx.transpose(pos_emb, (0, 3, 1, 2))
274
-
275
- # Create and apply upsampler
276
- upsampler = nn.Upsample(
277
- scale_factor=(
278
- patch_num_0 / pos_emb.shape[2],
279
- patch_num_1 / pos_emb.shape[3],
280
- ),
281
- mode="linear", # MLX doesn't have bicubic, using linear as closest alternative
282
- align_corners=False,
283
- )
284
- pos_emb = upsampler(pos_emb)
285
-
286
- # Restore original dimensions
287
- pos_emb = mx.transpose(pos_emb, (0, 2, 3, 1))
288
- pos_emb = mx.squeeze(pos_emb, 0)
289
-
290
- pos_emb = mx.reshape(pos_emb, (-1, pos_emb.shape[-1]))
291
-
292
- # Expand cls_emb and pos_emb
293
- expanded_cls = cls_emb[None, :, :]
294
- expanded_pos = pos_emb[None, :, :]
295
-
296
- # Concatenate and add to x
297
- pos_embedding = mx.concatenate([expanded_cls, expanded_pos], axis=1)
298
- x = x + pos_embedding
299
- return x
300
-
301
- def __call__(self, x: mx.array, patch_num: int = None) -> List[mx.array]:
302
- """
303
- : param x: (batch_size, num_patch, n_pixels)
304
- """
305
- if patch_num is None:
306
- patch_num = self.config.image_num_patch
307
- B, N, D = x.shape
308
-
309
- # (Optional) Due to quantization, pad around the image to match intermediate_size
310
- x = pad_to_multiple(x, self.config.intermediate_size)
311
-
312
- x = self.patch_embedding(x)
313
-
314
- # class embeddings and positional embeddings
315
- expanded_class_emb = _expand_token(self.class_embedding, x.shape[0])
316
- expanded_class_emb = expanded_class_emb
317
-
318
- x = mx.concatenate([expanded_class_emb, x], axis=1)
319
- x = self.add_pos_emb(x, patch_num)
320
-
321
- x = self.pre_ln(x)
322
-
323
- hidden_states = self.transformer(x)
324
- return hidden_states
325
-
326
-
327
- class VisionModel(nn.Module):
328
- def __init__(self, config):
329
- super().__init__()
330
- self.config = config
331
- self.model_type = config.model_type
332
- if self.model_type != "molmo":
333
- raise ValueError(
334
- f"Model type {self.model_type} not supported. Currently only 'molmo' is supported"
335
- )
336
- self.image_vit = VisionTransformer(config)
337
- self.num_prefix_tokens = 1
338
-
339
- self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
340
- self.image_projector = MLP(config, config.image_emb_dim)
341
- self.pad_embed = mx.zeros((2, config.image_emb_dim * 2))
342
-
343
- def encode_image(self, images: mx.array) -> mx.array:
344
- """
345
- : param images: (batch_size, num_crops, num_patch, n_pixels)
346
- """
347
- cfg = self.config
348
- B, T, N, D = images.shape
349
-
350
- # Check for -1 values across dimensions 1 and 2
351
- reshaped_images = mx.reshape(images, (B * T, N, D))
352
- mask = ~mx.all(reshaped_images == -1, axis=(1, 2), keepdims=True)
353
-
354
- # Output all hidden states
355
- images = reshaped_images
356
- image_features = self.image_vit(images)
357
-
358
- if cfg.vit_layers is not None:
359
- features = []
360
- for layer in cfg.vit_layers:
361
- features.append(image_features[layer])
362
- image_features = mx.concatenate(features, axis=-1)
363
- else:
364
- image_features = image_features[-1]
365
-
366
- cls_embed = None
367
- if self.num_prefix_tokens > 0:
368
- cls_embed = image_features[:, 0]
369
- image_features = image_features[:, 1:]
370
-
371
- image_features = image_features * mask
372
- image_features = mx.reshape(image_features, (B, T, N, -1))
373
-
374
- cls_embed = mx.reshape(cls_embed, (B, T, -1)) if cls_embed is not None else None
375
-
376
- return image_features, cls_embed
377
-
378
- def __call__(
379
- self, images: mx.array, image_masks: mx.array
380
- ) -> Tuple[mx.array, Optional[mx.array]]:
381
- cfg = self.config
382
-
383
- batch_size, num_image = images.shape[:2]
384
- image_features, cls_embed = self.encode_image(images)
385
-
386
- if cfg.image_padding_embed:
387
- assert image_masks is not None
388
- if cfg.image_padding_embed == "pad_embed":
389
- all_pad = image_masks == 0
390
- pad_embed = mx.reshape(self.pad_embed, (1, 1, 1, -1))
391
- image_features = image_features + pad_embed * mx.expand_dims(
392
- all_pad, -1
393
- )
394
- elif cfg.image_padding_embed == "regress":
395
- pad_embed = mx.reshape(self.pad_embed, (1, 1, 1, -1))
396
- image_features = image_features + pad_embed * mx.expand_dims(
397
- mx.maximum(image_masks, mx.zeros_like(image_masks)), -1
398
- )
399
- elif cfg.image_padding_embed == "pad_and_partial_pad":
400
- pad_embed = mx.reshape(self.pad_embed, (2, 1, 1, 1, -1))
401
- all_pad = image_masks == 0
402
- partial_pad = mx.logical_and(image_masks < 1, mx.logical_not(all_pad))
403
- partial_pad = partial_pad
404
- all_pad = all_pad
405
- image_features = image_features + pad_embed[0] * mx.expand_dims(
406
- all_pad, -1
407
- )
408
- image_features = image_features + pad_embed[1] * mx.expand_dims(
409
- partial_pad, -1
410
- )
411
- else:
412
- raise ValueError(cfg.image_padding_embed)
413
-
414
- image_features = mx.reshape(
415
- image_features, (batch_size, num_image) + cfg.image_num_patch + (-1,)
416
- )
417
-
418
- if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
419
- # Pad so we can still pool 2x2 patches
420
- image_features = mx.pad(
421
- image_features, [(0, 0), (0, 0), (0, 1), (0, 1), (0, 0)]
422
- )
423
-
424
- # image pooling
425
- # MLX equivalent of einops rearrange
426
- h_blocks = image_features.shape[2] // cfg.image_pooling_h
427
- w_blocks = image_features.shape[3] // cfg.image_pooling_w
428
- image_features = mx.reshape(
429
- mx.transpose(
430
- mx.reshape(
431
- image_features,
432
- (
433
- batch_size,
434
- num_image,
435
- h_blocks,
436
- cfg.image_pooling_h,
437
- w_blocks,
438
- cfg.image_pooling_w,
439
- -1,
440
- ),
441
- ),
442
- (0, 1, 2, 4, 3, 5, 6),
443
- ),
444
- (
445
- batch_size * num_image * h_blocks * w_blocks,
446
- cfg.image_pooling_h * cfg.image_pooling_w,
447
- -1,
448
- ),
449
- )
450
-
451
- if cfg.image_pooling_2d == "attention-meanq":
452
- query = mx.mean(image_features, axis=-2, keepdims=True)
453
- image_features = self.image_pooling_2d(query, image_features)
454
- elif cfg.image_pooling_2d not in {"none", "stack"}:
455
- image_features = self.image_pooling_2d(
456
- image_features[:, :1, :], image_features
457
- )
458
-
459
- h, w = cfg.llm_patches_per_crop
460
- image_features = mx.reshape(image_features, (batch_size, num_image, h * w, -1))
461
-
462
- # # MLP layer to map the feature
463
- image_features = self.image_projector(image_features)
464
-
465
- return image_features, cls_embed
@@ -1,10 +0,0 @@
1
- from .multi_modality import (
2
- ImageProcessor,
3
- LanguageModel,
4
- Model,
5
- ModelConfig,
6
- ProjectorConfig,
7
- TextConfig,
8
- VisionConfig,
9
- VisionModel,
10
- )
@@ -1,230 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 4096
20
- num_hidden_layers: int = 32
21
- intermediate_size: int = 11008
22
- num_attention_heads: int = 32
23
- rms_norm_eps: float = 1e-6
24
- vocab_size: int = 102400
25
- num_key_value_heads: int = None
26
- rope_theta: float = 10000
27
- rope_traditional: bool = False
28
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
29
- max_position_embeddings: int = 4096
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
- def __post_init__(self):
42
- if self.num_key_value_heads is None:
43
- self.num_key_value_heads = self.num_attention_heads
44
-
45
- if self.rope_scaling:
46
- required_keys = {"factor", "type"}
47
- if not all(key in self.rope_scaling for key in required_keys):
48
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
49
-
50
- if self.rope_scaling["type"] != "linear":
51
- raise ValueError("rope_scaling 'type' currently only supports 'linear'")
52
-
53
-
54
- class Attention(nn.Module):
55
- def __init__(self, config: TextConfig):
56
- super().__init__()
57
-
58
- dim = config.hidden_size
59
- self.n_heads = n_heads = config.num_attention_heads
60
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
-
62
- self.repeats = n_heads // n_kv_heads
63
-
64
- head_dim = config.hidden_size // n_heads
65
- self.scale = head_dim**-0.5
66
-
67
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
68
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
70
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
71
-
72
- rope_scale = (
73
- 1 / config.rope_scaling["factor"]
74
- if config.rope_scaling is not None
75
- and config.rope_scaling["type"] == "linear"
76
- else 1
77
- )
78
- self.rope = nn.RoPE(
79
- head_dim,
80
- traditional=config.rope_traditional,
81
- base=config.rope_theta,
82
- scale=rope_scale,
83
- )
84
-
85
- def __call__(
86
- self,
87
- x: mx.array,
88
- mask: Optional[mx.array] = None,
89
- cache: Optional[KVCache] = None,
90
- ) -> mx.array:
91
- B, L, D = x.shape
92
-
93
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
94
-
95
- # Prepare the queries, keys and values for the attention computation
96
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
97
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
99
-
100
- if cache is not None:
101
- queries = self.rope(queries, offset=cache.offset)
102
- keys = self.rope(keys, offset=cache.offset)
103
- keys, values = cache.update_and_fetch(keys, values)
104
- else:
105
- queries = self.rope(queries)
106
- keys = self.rope(keys)
107
-
108
- output = scaled_dot_product_attention(
109
- queries, keys, values, cache, scale=self.scale, mask=mask
110
- )
111
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
112
- return self.o_proj(output)
113
-
114
-
115
- class MLP(nn.Module):
116
- def __init__(self, dim, hidden_dim):
117
- super().__init__()
118
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
119
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
120
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
121
-
122
- def __call__(self, x) -> mx.array:
123
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
124
-
125
-
126
- class TransformerBlock(nn.Module):
127
- def __init__(self, config: TextConfig):
128
- super().__init__()
129
- self.num_attention_heads = config.num_attention_heads
130
- self.hidden_size = config.hidden_size
131
- self.self_attn = Attention(config)
132
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
133
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
134
- self.post_attention_layernorm = nn.RMSNorm(
135
- config.hidden_size, eps=config.rms_norm_eps
136
- )
137
- self.config = config
138
-
139
- def __call__(
140
- self,
141
- x: mx.array,
142
- mask: Optional[mx.array] = None,
143
- cache: Optional[KVCache] = None,
144
- ) -> mx.array:
145
- r = self.self_attn(self.input_layernorm(x), mask, cache)
146
- h = x + r
147
- r = self.mlp(self.post_attention_layernorm(h))
148
- out = h + r
149
- return out
150
-
151
-
152
- class Llama(nn.Module):
153
- def __init__(self, config: TextConfig):
154
- super().__init__()
155
- self.config = config
156
- self.vocab_size = config.vocab_size
157
- self.num_hidden_layers = config.num_hidden_layers
158
- assert self.vocab_size > 0
159
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
160
- self.layers = [
161
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
162
- ]
163
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
164
-
165
- def __call__(
166
- self,
167
- inputs: mx.array,
168
- inputs_embeds: Optional[mx.array] = None,
169
- mask: Optional[mx.array] = None,
170
- cache=None,
171
- ):
172
- # for passing merged input embeddings
173
- if inputs_embeds is None:
174
- h = self.embed_tokens(inputs)
175
- else:
176
- h = inputs_embeds
177
-
178
- if cache is None:
179
- cache = [None] * len(self.layers)
180
-
181
- if mask is None:
182
- mask = create_attention_mask(h, cache)
183
-
184
- for layer, c in zip(self.layers, cache):
185
- h = layer(h, mask, c)
186
-
187
- return self.norm(h)
188
-
189
-
190
- class LanguageModel(nn.Module):
191
- def __init__(self, config: TextConfig):
192
- super().__init__()
193
- self.config = config
194
- self.model_type = config.model_type
195
- if self.model_type != "llama":
196
- raise ValueError(
197
- f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
198
- )
199
- self.model = Llama(config)
200
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
201
-
202
- def __call__(
203
- self,
204
- inputs: mx.array,
205
- inputs_embeds: Optional[mx.array] = None,
206
- mask: Optional[mx.array] = None,
207
- cache=None,
208
- ):
209
- out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
210
- logits = self.lm_head(out)
211
- return LanguageModelOutput(logits=logits)
212
-
213
- @staticmethod
214
- def sanitize(weights):
215
- # Remove unused precomputed rotary freqs
216
- return {
217
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
218
- }
219
-
220
- @property
221
- def layers(self):
222
- return self.model.layers
223
-
224
- @property
225
- def head_dim(self):
226
- return self.config.hidden_size // self.config.num_attention_heads
227
-
228
- @property
229
- def n_kv_heads(self):
230
- return self.config.num_key_value_heads