nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,240 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 4096
20
- num_hidden_layers: int = 32
21
- intermediate_size: int = 11008
22
- num_attention_heads: int = 32
23
- rms_norm_eps: float = 1e-6
24
- vocab_size: int = 32000
25
- num_key_value_heads: int = None
26
- rope_theta: float = 10000
27
- rope_traditional: bool = False
28
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
29
- max_position_embeddings: int = 4096
30
- tie_word_embeddings: bool = False
31
-
32
- @classmethod
33
- def from_dict(cls, params):
34
- return cls(
35
- **{
36
- k: v
37
- for k, v in params.items()
38
- if k in inspect.signature(cls).parameters
39
- }
40
- )
41
-
42
- def __post_init__(self):
43
- if self.num_key_value_heads is None:
44
- self.num_key_value_heads = self.num_attention_heads
45
-
46
- if self.rope_scaling:
47
- required_keys = {"factor", "type"}
48
- if not all(key in self.rope_scaling for key in required_keys):
49
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
50
-
51
- if self.rope_scaling["type"] != "linear":
52
- raise ValueError("rope_scaling 'type' currently only supports 'linear'")
53
-
54
-
55
- class Attention(nn.Module):
56
- def __init__(self, config: TextConfig):
57
- super().__init__()
58
-
59
- dim = config.hidden_size
60
- self.n_heads = n_heads = config.num_attention_heads
61
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
62
-
63
- self.repeats = n_heads // n_kv_heads
64
-
65
- head_dim = config.hidden_size // n_heads
66
- self.scale = head_dim**-0.5
67
-
68
- if config.model_type == "qwen2":
69
- attention_bias = True
70
- else:
71
- attention_bias = False
72
-
73
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
74
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
75
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
76
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
77
-
78
- rope_scale = (
79
- 1 / config.rope_scaling["factor"]
80
- if config.rope_scaling is not None
81
- and config.rope_scaling["type"] == "linear"
82
- else 1
83
- )
84
- self.rope = nn.RoPE(
85
- head_dim,
86
- traditional=config.rope_traditional,
87
- base=config.rope_theta,
88
- scale=rope_scale,
89
- )
90
-
91
- def __call__(
92
- self,
93
- x: mx.array,
94
- mask: Optional[mx.array] = None,
95
- cache: Optional[KVCache] = None,
96
- ) -> mx.array:
97
- B, L, D = x.shape
98
-
99
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
100
-
101
- # Prepare the queries, keys and values for the attention computation
102
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
103
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
104
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
105
-
106
- if cache is not None:
107
- queries = self.rope(queries, offset=cache.offset)
108
- keys = self.rope(keys, offset=cache.offset)
109
- keys, values = cache.update_and_fetch(keys, values)
110
- else:
111
- queries = self.rope(queries)
112
- keys = self.rope(keys)
113
-
114
- output = scaled_dot_product_attention(
115
- queries, keys, values, cache, scale=self.scale, mask=mask
116
- )
117
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
118
- return self.o_proj(output)
119
-
120
-
121
- class MLP(nn.Module):
122
- def __init__(self, dim, hidden_dim):
123
- super().__init__()
124
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
125
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
126
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
127
-
128
- def __call__(self, x) -> mx.array:
129
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
130
-
131
-
132
- class TransformerBlock(nn.Module):
133
- def __init__(self, config: TextConfig):
134
- super().__init__()
135
- self.num_attention_heads = config.num_attention_heads
136
- self.hidden_size = config.hidden_size
137
- self.self_attn = Attention(config)
138
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
139
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
140
- self.post_attention_layernorm = nn.RMSNorm(
141
- config.hidden_size, eps=config.rms_norm_eps
142
- )
143
- self.config = config
144
-
145
- def __call__(
146
- self,
147
- x: mx.array,
148
- mask: Optional[mx.array] = None,
149
- cache: Optional[KVCache] = None,
150
- ) -> mx.array:
151
- r = self.self_attn(self.input_layernorm(x), mask, cache)
152
- h = x + r
153
- r = self.mlp(self.post_attention_layernorm(h))
154
- out = h + r
155
- return out
156
-
157
-
158
- class Llama(nn.Module):
159
- def __init__(self, config: TextConfig):
160
- super().__init__()
161
- self.config = config
162
- self.vocab_size = config.vocab_size
163
- self.num_hidden_layers = config.num_hidden_layers
164
- assert self.vocab_size > 0
165
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
166
- self.layers = [
167
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
168
- ]
169
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
170
-
171
- def __call__(
172
- self,
173
- inputs: mx.array,
174
- inputs_embeds: Optional[mx.array] = None,
175
- mask: Optional[mx.array] = None,
176
- cache=None,
177
- ):
178
- # for passing merged input embeddings
179
- if inputs_embeds is None:
180
- h = self.embed_tokens(inputs)
181
- else:
182
- h = inputs_embeds
183
-
184
- if cache is None:
185
- cache = [None] * len(self.layers)
186
-
187
- # if mask is None:
188
- mask = create_attention_mask(h, cache)
189
-
190
- for layer, c in zip(self.layers, cache):
191
- h = layer(h, mask, c)
192
-
193
- return self.norm(h)
194
-
195
-
196
- class LanguageModel(nn.Module):
197
- def __init__(self, config: TextConfig):
198
- super().__init__()
199
- self.config = config
200
- self.model_type = config.model_type
201
- if self.model_type not in ["llama", "qwen2"]:
202
- raise ValueError(
203
- f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
204
- )
205
- self.model = Llama(config)
206
- if not config.tie_word_embeddings:
207
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
208
-
209
- def __call__(
210
- self,
211
- inputs: mx.array,
212
- inputs_embeds: Optional[mx.array] = None,
213
- mask: Optional[mx.array] = None,
214
- cache=None,
215
- ):
216
- out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
217
- if self.config.tie_word_embeddings:
218
- out = self.model.embed_tokens.as_linear(out)
219
- else:
220
- out = self.lm_head(out)
221
- return LanguageModelOutput(logits=out)
222
-
223
- @staticmethod
224
- def sanitize(weights):
225
- # Remove unused precomputed rotary freqs
226
- return {
227
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
228
- }
229
-
230
- @property
231
- def layers(self):
232
- return self.model.layers
233
-
234
- @property
235
- def head_dim(self):
236
- return self.config.hidden_size // self.config.num_attention_heads
237
-
238
- @property
239
- def n_kv_heads(self):
240
- return self.config.num_key_value_heads
@@ -1,153 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_index: int = 32000
24
- vision_feature_select_strategy: str = "default"
25
- vision_feature_layer: int = -2
26
- vocab_size: int = 32000
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class LlavaMultiModalProjector(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.linear_1 = nn.Linear(
44
- config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
45
- )
46
- self.gelu = nn.GELU()
47
- self.linear_2 = nn.Linear(
48
- config.text_config.hidden_size, config.text_config.hidden_size, bias=True
49
- )
50
-
51
- def __call__(self, x: mx.array) -> mx.array:
52
- x = self.linear_1(x)
53
- x = self.gelu(x)
54
- x = self.linear_2(x)
55
- return x
56
-
57
-
58
- class Model(nn.Module):
59
- def __init__(self, config: ModelConfig):
60
- super().__init__()
61
- self.config = config
62
- self.vision_tower = VisionModel(config.vision_config)
63
- self.language_model = LanguageModel(config.text_config)
64
- self.multi_modal_projector = LlavaMultiModalProjector(config)
65
- self.vision_feature_layer = config.vision_feature_layer
66
- self.vision_feature_select_strategy = config.vision_feature_select_strategy
67
-
68
- def get_input_embeddings(
69
- self,
70
- input_ids: Optional[mx.array] = None,
71
- pixel_values: Optional[mx.array] = None,
72
- ):
73
- if pixel_values is None:
74
- return self.language_model.model.embed_tokens(input_ids)
75
-
76
- # Get the input embeddings from the language model
77
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
78
-
79
- # Get the ouptut hidden states from the vision model
80
- *_, hidden_states = self.vision_tower(
81
- pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
82
- )
83
-
84
- # Select the hidden states from the desired layer
85
- selected_image_feature = hidden_states[self.vision_feature_layer]
86
-
87
- if isinstance(self.vision_feature_layer, int):
88
- if self.vision_feature_select_strategy == "default":
89
- selected_image_feature = selected_image_feature[:, 1:]
90
-
91
- else:
92
- hs_pool = [
93
- hidden_states[layer_idx] for layer_idx in self.vision_feature_layer
94
- ]
95
- # For default; crop CLS from each hidden state in the hidden state pool
96
- if self.vision_feature_select_strategy == "default":
97
- hs_pool = [hs[:, 1:] for hs in hs_pool]
98
- selected_image_feature = mx.concatenate(hs_pool, axis=-1)
99
-
100
- # Pass image features through the multi-modal projector
101
- image_features = self.multi_modal_projector(selected_image_feature)
102
-
103
- # Insert special image tokens in the input_ids
104
- final_inputs_embeds = self._merge_input_ids_with_image_features(
105
- image_features, inputs_embeds, input_ids
106
- )
107
- return final_inputs_embeds
108
-
109
- def _merge_input_ids_with_image_features(
110
- self, image_features, inputs_embeds, input_ids
111
- ):
112
- image_token_index = self.config.image_token_index
113
-
114
- # Positions of <image> tokens in input_ids, assuming batch size is 1
115
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
116
- num_images, _, vision_hidden_size = image_features.shape
117
-
118
- reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
119
-
120
- # cast to the dtype of the input_embeds to support quantized models
121
- reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
122
- inputs_embeds.dtype
123
- )
124
-
125
- # Pad image_positions to match the length of reshaped_image_hidden_states
126
- num_positions_needed = len(image_positions)
127
-
128
- if reshaped_image_hidden_states.shape[0] > num_positions_needed:
129
- # TODO: Think about how to handle this case
130
- raise ValueError(
131
- "Llava model supports only one image per input. Please check your input_ids and pixel_values."
132
- )
133
-
134
- inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
135
- return inputs_embeds
136
-
137
- @property
138
- def layers(self):
139
- return self.language_model.model.layers
140
-
141
- def __call__(
142
- self,
143
- input_ids: mx.array,
144
- pixel_values: mx.array,
145
- mask: mx.array,
146
- cache=None,
147
- **kwargs,
148
- ):
149
- input_embddings = self.get_input_embeddings(input_ids, pixel_values)
150
- logits = self.language_model(
151
- input_ids, mask=mask, cache=cache, inputs_embeds=input_embddings
152
- )
153
- return logits
@@ -1,259 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from typing import Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- import numpy as np
9
-
10
-
11
- @dataclass
12
- class VisionConfig:
13
- model_type: str
14
- num_hidden_layers: int = 24
15
- hidden_size: int = 1024
16
- intermediate_size: int = 4096
17
- num_attention_heads: int = 16
18
- image_size: int = 336
19
- patch_size: int = 14
20
- projection_dim: int = 768
21
- vocab_size: int = 32000
22
- num_channels: int = 3
23
- layer_norm_eps: float = 1e-5
24
-
25
- @classmethod
26
- def from_dict(cls, params):
27
- return cls(
28
- **{
29
- k: v
30
- for k, v in params.items()
31
- if k in inspect.signature(cls).parameters
32
- }
33
- )
34
-
35
-
36
- def check_array_shape(arr):
37
- shape = arr.shape
38
-
39
- # Check if the shape has 4 dimensions
40
- if len(shape) != 4:
41
- return False
42
-
43
- out_channels, kH, KW, _ = shape
44
-
45
- # Check if out_channels is the largest, and kH and KW are the same
46
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
47
- return True
48
- else:
49
- return False
50
-
51
-
52
- class Attention(nn.Module):
53
- def __init__(
54
- self,
55
- dims: int,
56
- num_heads: int,
57
- query_input_dims: Optional[int] = None,
58
- key_input_dims: Optional[int] = None,
59
- value_input_dims: Optional[int] = None,
60
- value_dims: Optional[int] = None,
61
- value_output_dims: Optional[int] = None,
62
- bias: bool = False,
63
- ):
64
- super().__init__()
65
-
66
- if (dims % num_heads) != 0:
67
- raise ValueError(
68
- "The input feature dimensions should be divisible by the "
69
- f"number of heads ({dims} % {num_heads}) != 0"
70
- )
71
-
72
- query_input_dims = query_input_dims or dims
73
- key_input_dims = key_input_dims or dims
74
- value_input_dims = value_input_dims or key_input_dims
75
- value_dims = value_dims or dims
76
- value_output_dims = value_output_dims or dims
77
-
78
- self.num_heads = num_heads = num_heads
79
- head_dim = dims // num_heads
80
- self.scale = head_dim**-0.5
81
-
82
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
83
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
84
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
85
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
86
-
87
- def __call__(self, queries, keys, values, mask=None):
88
- queries = self.q_proj(queries)
89
- keys = self.k_proj(keys)
90
- values = self.v_proj(values)
91
-
92
- num_heads = self.num_heads
93
- B, L, D = queries.shape
94
- _, S, _ = keys.shape
95
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
96
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
97
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
98
-
99
- output = mx.fast.scaled_dot_product_attention(
100
- queries, keys, values, scale=self.scale, mask=mask
101
- )
102
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
103
-
104
- return self.out_proj(output)
105
-
106
-
107
- class MLP(nn.Module):
108
- def __init__(self, config: VisionConfig):
109
- super().__init__()
110
- self.activation_fn = nn.GELU(approx="fast")
111
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
112
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
113
-
114
- def __call__(self, x: mx.array) -> mx.array:
115
- x = self.activation_fn(self.fc1(x))
116
- x = self.fc2(x)
117
- return x
118
-
119
-
120
- class EncoderLayer(nn.Module):
121
- def __init__(self, config: VisionConfig):
122
- super().__init__()
123
- self.embed_dim = config.hidden_size
124
- self.self_attn = Attention(
125
- config.hidden_size, config.num_attention_heads, bias=True
126
- )
127
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
128
- self.mlp = MLP(config)
129
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
130
-
131
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
132
- y = self.layer_norm1(x)
133
- y = self.self_attn(y, y, y, mask)
134
- x = x + y
135
- y = self.layer_norm2(x)
136
- y = self.mlp(y)
137
- return x + y
138
-
139
-
140
- class Encoder(nn.Module):
141
- def __init__(self, config: VisionConfig):
142
- super().__init__()
143
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
144
-
145
-
146
- class VisionEmbeddings(nn.Module):
147
- def __init__(self, config: VisionConfig):
148
- super().__init__()
149
- self.config = config
150
- self.embed_dim = config.hidden_size
151
- self.image_size = config.image_size
152
- self.patch_size = config.patch_size
153
-
154
- if config.model_type == "siglip_vision_model":
155
- bias = True
156
- self.class_embedding = None
157
- else:
158
- bias = False
159
- self.class_embedding = mx.zeros((config.hidden_size,))
160
-
161
- self.patch_embedding = nn.Conv2d(
162
- in_channels=config.num_channels,
163
- out_channels=self.embed_dim,
164
- kernel_size=self.patch_size,
165
- stride=self.patch_size,
166
- bias=bias,
167
- )
168
-
169
- self.num_patches = (self.image_size // self.patch_size) ** 2
170
- self.num_positions = (
171
- self.num_patches + 1
172
- if config.model_type == "clip_vision_model"
173
- else self.num_patches
174
- )
175
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
176
-
177
- def __call__(self, x: mx.array) -> mx.array:
178
- batch_size = x.shape[0]
179
- patch_embeddings = self.patch_embedding(x)
180
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
181
- if self.config.model_type == "siglip_vision_model":
182
- embeddings = patch_embeddings
183
- else:
184
- embed_dim = patch_embeddings.shape[-1]
185
- cls_embeddings = mx.broadcast_to(
186
- self.class_embedding, (batch_size, 1, embed_dim)
187
- )
188
- embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
189
-
190
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
191
-
192
- embeddings += self.position_embedding(position_ids)
193
- return embeddings
194
-
195
-
196
- class ClipVisionModel(nn.Module):
197
- def __init__(self, config: VisionConfig):
198
- super().__init__()
199
- self.config = config
200
- self.embeddings = VisionEmbeddings(config)
201
- if self.config.model_type == "clip_vision_model":
202
- self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
203
- self.encoder = Encoder(config)
204
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
205
-
206
- def __call__(
207
- self,
208
- x: mx.array,
209
- output_hidden_states: Optional[bool] = None,
210
- ) -> mx.array:
211
- x = self.embeddings(x)
212
- if self.config.model_type == "clip_vision_model":
213
- x = self.pre_layrnorm(x)
214
-
215
- encoder_states = (x,) if output_hidden_states else None
216
-
217
- for l in self.encoder.layers:
218
- x = l(x, mask=None)
219
- if output_hidden_states:
220
- encoder_states = encoder_states + (x,)
221
-
222
- pooler_output = self.post_layernorm(x[:, 0, :])
223
- return pooler_output, x, encoder_states
224
-
225
-
226
- class VisionModel(nn.Module):
227
- def __init__(self, config: VisionConfig):
228
- super().__init__()
229
-
230
- self.model_type = config.model_type
231
- if self.model_type not in ["clip_vision_model", "siglip_vision_model"]:
232
- raise ValueError(f"Unsupported model type: {self.model_type}")
233
-
234
- self.vision_model = ClipVisionModel(config)
235
-
236
- def __call__(
237
- self, x: mx.array, output_hidden_states: Optional[bool] = None
238
- ) -> mx.array:
239
- return self.vision_model(x, output_hidden_states)
240
-
241
- def sanitize(self, weights):
242
- sanitized_weights = {}
243
- for k, v in weights.items():
244
- if "position_ids" in k:
245
- # Remove unused position_ids
246
- continue
247
- elif "patch_embedding.weight" in k:
248
- # PyTorch conv2d weight tensors have shape:
249
- # [out_channels, in_channels, kH, KW]
250
- # MLX conv2d expects the weight be of shape:
251
- # [out_channels, kH, KW, in_channels]
252
- if check_array_shape(v):
253
- sanitized_weights[k] = v
254
- else:
255
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
256
- else:
257
- sanitized_weights[k] = v
258
-
259
- return sanitized_weights
@@ -1,9 +0,0 @@
1
- from .llava_bunny import (
2
- ImageProcessor,
3
- LanguageModel,
4
- Model,
5
- ModelConfig,
6
- TextConfig,
7
- VisionConfig,
8
- VisionModel,
9
- )