nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,243 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from typing import Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- import numpy as np
9
-
10
-
11
- @dataclass
12
- class VisionConfig:
13
- model_type: str
14
- num_hidden_layers: int = 24
15
- hidden_size: int = 1024
16
- intermediate_size: int = 4096
17
- num_attention_heads: int = 16
18
- image_size: int = 336
19
- patch_size: int = 14
20
- projection_dim: int = 768
21
- vocab_size: int = 32000
22
- num_channels: int = 3
23
- layer_norm_eps: float = 1e-5
24
-
25
- @classmethod
26
- def from_dict(cls, params):
27
- return cls(
28
- **{
29
- k: v
30
- for k, v in params.items()
31
- if k in inspect.signature(cls).parameters
32
- }
33
- )
34
-
35
-
36
- def check_array_shape(arr):
37
- shape = arr.shape
38
-
39
- # Check if the shape has 4 dimensions
40
- if len(shape) != 4:
41
- return False
42
-
43
- out_channels, kH, KW, _ = shape
44
-
45
- # Check if out_channels is the largest, and kH and KW are the same
46
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
47
- return True
48
- else:
49
- return False
50
-
51
-
52
- class Attention(nn.Module):
53
- def __init__(
54
- self,
55
- dims: int,
56
- num_heads: int,
57
- query_input_dims: Optional[int] = None,
58
- key_input_dims: Optional[int] = None,
59
- value_input_dims: Optional[int] = None,
60
- value_dims: Optional[int] = None,
61
- value_output_dims: Optional[int] = None,
62
- bias: bool = False,
63
- ):
64
- super().__init__()
65
-
66
- if (dims % num_heads) != 0:
67
- raise ValueError(
68
- "The input feature dimensions should be divisible by the "
69
- f"number of heads ({dims} % {num_heads}) != 0"
70
- )
71
-
72
- query_input_dims = query_input_dims or dims
73
- key_input_dims = key_input_dims or dims
74
- value_input_dims = value_input_dims or key_input_dims
75
- value_dims = value_dims or dims
76
- value_output_dims = value_output_dims or dims
77
-
78
- self.num_heads = num_heads = num_heads
79
- head_dim = dims // num_heads
80
- self.scale = head_dim**-0.5
81
-
82
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
83
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
84
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
85
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
86
-
87
- def __call__(self, queries, keys, values, mask=None):
88
- queries = self.q_proj(queries)
89
- keys = self.k_proj(keys)
90
- values = self.v_proj(values)
91
-
92
- num_heads = self.num_heads
93
- B, L, D = queries.shape
94
- _, S, _ = keys.shape
95
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
96
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
97
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
98
-
99
- output = mx.fast.scaled_dot_product_attention(
100
- queries, keys, values, scale=self.scale, mask=mask
101
- )
102
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
103
-
104
- return self.out_proj(output)
105
-
106
-
107
- class MLP(nn.Module):
108
- def __init__(self, config: VisionConfig):
109
- super().__init__()
110
- self.activation_fn = nn.GELU(approx="fast")
111
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
112
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
113
-
114
- def __call__(self, x: mx.array) -> mx.array:
115
- x = self.activation_fn(self.fc1(x))
116
- x = self.fc2(x)
117
- return x
118
-
119
-
120
- class EncoderLayer(nn.Module):
121
- def __init__(self, config: VisionConfig):
122
- super().__init__()
123
- self.embed_dim = config.hidden_size
124
- self.self_attn = Attention(
125
- config.hidden_size, config.num_attention_heads, bias=True
126
- )
127
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
128
- self.mlp = MLP(config)
129
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
130
-
131
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
132
- y = self.layer_norm1(x)
133
- y = self.self_attn(y, y, y, mask)
134
- x = x + y
135
- y = self.layer_norm2(x)
136
- y = self.mlp(y)
137
- return x + y
138
-
139
-
140
- class Encoder(nn.Module):
141
- def __init__(self, config: VisionConfig):
142
- super().__init__()
143
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
144
-
145
-
146
- class VisionEmbeddings(nn.Module):
147
- def __init__(self, config: VisionConfig):
148
- super().__init__()
149
- self.config = config
150
- self.embed_dim = config.hidden_size
151
- self.image_size = config.image_size
152
- self.patch_size = config.patch_size
153
-
154
- self.class_embedding = mx.zeros((config.hidden_size,))
155
-
156
- self.patch_embedding = nn.Conv2d(
157
- in_channels=config.num_channels,
158
- out_channels=self.embed_dim,
159
- kernel_size=self.patch_size,
160
- stride=self.patch_size,
161
- bias=False,
162
- )
163
-
164
- self.num_patches = (self.image_size // self.patch_size) ** 2
165
- self.num_positions = self.num_patches + 1
166
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
167
-
168
- def __call__(self, x: mx.array) -> mx.array:
169
- batch_size = x.shape[0]
170
- patch_embeddings = self.patch_embedding(x)
171
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
172
- embed_dim = patch_embeddings.shape[-1]
173
- cls_embeddings = mx.broadcast_to(
174
- self.class_embedding, (batch_size, 1, embed_dim)
175
- )
176
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
177
-
178
- embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
179
- embeddings += self.position_embedding(position_ids)
180
- return embeddings
181
-
182
-
183
- class ClipVisionModel(nn.Module):
184
- def __init__(self, config: VisionConfig):
185
- super().__init__()
186
- self.embeddings = VisionEmbeddings(config)
187
- self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
188
- self.encoder = Encoder(config)
189
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
190
-
191
- def __call__(
192
- self,
193
- x: mx.array,
194
- output_hidden_states: Optional[bool] = None,
195
- ) -> mx.array:
196
- x = self.embeddings(x)
197
- x = self.pre_layrnorm(x)
198
-
199
- encoder_states = (x,) if output_hidden_states else None
200
-
201
- for l in self.encoder.layers:
202
- x = l(x, mask=None)
203
- if output_hidden_states:
204
- encoder_states = encoder_states + (x,)
205
-
206
- pooler_output = self.post_layernorm(x[:, 0, :])
207
- return pooler_output, x, encoder_states
208
-
209
-
210
- class VisionModel(nn.Module):
211
- def __init__(self, config: VisionConfig):
212
- super().__init__()
213
-
214
- self.model_type = config.model_type
215
- if self.model_type != "clip_vision_model":
216
- raise ValueError(f"Unsupported model type: {self.model_type}")
217
-
218
- self.vision_model = ClipVisionModel(config)
219
-
220
- def __call__(
221
- self, x: mx.array, output_hidden_states: Optional[bool] = None
222
- ) -> mx.array:
223
- return self.vision_model(x, output_hidden_states)
224
-
225
- def sanitize(self, weights):
226
- sanitized_weights = {}
227
- for k, v in weights.items():
228
- if "position_ids" in k:
229
- # Remove unused position_ids
230
- continue
231
- elif "patch_embedding.weight" in k:
232
- # PyTorch conv2d weight tensors have shape:
233
- # [out_channels, in_channels, kH, KW]
234
- # MLX conv2d expects the weight be of shape:
235
- # [out_channels, kH, KW, in_channels]
236
- if check_array_shape(v):
237
- sanitized_weights[k] = v
238
- else:
239
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
240
- else:
241
- sanitized_weights[k] = v
242
-
243
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .mistral3 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
@@ -1,283 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional, Tuple, Union
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
-
12
- from ..pixtral import LanguageModel
13
- from ..pixtral import Model as PixtralModel
14
- from ..pixtral import TextConfig, VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_index: int = 10
24
- vision_feature_select_strategy: str = "full"
25
- vision_feature_layer: int = -1
26
- vocab_size: int = 32000
27
- spatial_merge_size: int = 2
28
- multimodal_projector_bias: bool = False
29
- eos_token_id: Optional[List[int]] = None
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
-
42
- def _pair(x) -> Tuple[int, int]:
43
- """Convert input to a pair of values."""
44
- if isinstance(x, (list, tuple)):
45
- return tuple(x)
46
- return (x, x)
47
-
48
-
49
- def unfold(
50
- input: mx.array,
51
- kernel_size: Union[int, Tuple[int, int], List[int]],
52
- dilation: Union[int, Tuple[int, int], List[int]] = 1,
53
- padding: Union[int, Tuple[int, int], List[int]] = 0,
54
- stride: Union[int, Tuple[int, int], List[int]] = 1,
55
- ) -> mx.array:
56
- """
57
- Extract sliding local blocks from a batched input tensor (MLX implementation).
58
-
59
- This is equivalent to PyTorch's nn.functional.unfold or im2col operation.
60
-
61
- Args:
62
- input: Input tensor of shape (B, C, H, W)
63
- kernel_size: Size of the sliding blocks
64
- dilation: Controls the spacing between kernel elements
65
- padding: Controls the amount of implicit padding
66
- stride: Controls the stride between blocks
67
-
68
- Returns:
69
- Unfolded tensor of shape (B, C*kernel_height*kernel_width, L)
70
- where L is the number of blocks
71
- """
72
- # Convert to pairs
73
- kernel_size = _pair(kernel_size)
74
- dilation = _pair(dilation)
75
- padding = _pair(padding)
76
- stride = _pair(stride)
77
-
78
- # Input shape
79
- batch_size, channels, height, width = input.shape
80
-
81
- # Add padding if needed
82
- if padding[0] > 0 or padding[1] > 0:
83
- padding_shape = (
84
- (0, 0),
85
- (0, 0),
86
- (padding[0], padding[0]),
87
- (padding[1], padding[1]),
88
- )
89
- input = mx.pad(input, padding_shape)
90
-
91
- # Calculate output dimensions
92
- height_out = (
93
- height + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1
94
- ) // stride[0] + 1
95
- width_out = (
96
- width + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1
97
- ) // stride[1] + 1
98
-
99
- # Initialize output arrays
100
- blocks = []
101
-
102
- # Extract blocks
103
- for i in range(
104
- 0, height + 2 * padding[0] - kernel_size[0] * dilation[0] + 1, stride[0]
105
- ):
106
- for j in range(
107
- 0, width + 2 * padding[1] - kernel_size[1] * dilation[1] + 1, stride[1]
108
- ):
109
- # Extract the block for all channels
110
- block = []
111
- for di in range(kernel_size[0]):
112
- for dj in range(kernel_size[1]):
113
- h_idx = i + di * dilation[0]
114
- w_idx = j + dj * dilation[1]
115
- # Get the block for all channels and add to our list
116
- block.append(input[:, :, h_idx, w_idx])
117
-
118
- # Stack the channel-blocks
119
- block = mx.stack(block, axis=1) # Shape: (B, k*k, C)
120
- block = mx.transpose(block, [0, 2, 1]) # Shape: (B, C, k*k)
121
- blocks.append(block)
122
-
123
- # Stack all blocks together
124
- result = mx.stack(blocks, axis=-1) # Shape: (B, C, k*k, L)
125
-
126
- # Reshape to match PyTorch's unfold output format: (B, C*k*k, L)
127
- result = mx.reshape(
128
- result,
129
- (
130
- batch_size,
131
- channels * kernel_size[0] * kernel_size[1],
132
- height_out * width_out,
133
- ),
134
- )
135
-
136
- return result
137
-
138
-
139
- class Mistral3PatchMerger(nn.Module):
140
- """
141
- Learned merging of spatial_merge_size ** 2 patches
142
- """
143
-
144
- def __init__(self, config: ModelConfig):
145
- super().__init__()
146
- self.config = config
147
-
148
- hidden_size = config.vision_config.hidden_size
149
- self.spatial_merge_size = config.spatial_merge_size
150
- self.patch_size = self.config.vision_config.patch_size
151
- self.merging_layer = nn.Linear(
152
- hidden_size * self.spatial_merge_size**2, hidden_size, bias=False
153
- )
154
-
155
- def __call__(self, image_features: mx.array, image_sizes: mx.array) -> mx.array:
156
-
157
- image_sizes = [
158
- (image_size[0] // self.patch_size, image_size[1] // self.patch_size)
159
- for image_size in image_sizes
160
- ]
161
-
162
- tokens_per_image = [h * w for h, w in image_sizes]
163
- d = image_features.shape[-1]
164
- image_features = image_features.astype(mx.bfloat16)
165
- image_sizes = mx.array(image_sizes)
166
-
167
- # Split the image features into chunks based on tokens_per_image
168
- split_indices = []
169
- current_index = 0
170
- for tokens in tokens_per_image:
171
- split_indices.append(current_index + tokens)
172
- current_index += tokens
173
-
174
- # Perform the split
175
- chunks = mx.split(image_features, split_indices[:-1], axis=1)
176
-
177
- permuted_tensor = []
178
- for image_index, image_tokens in enumerate(chunks):
179
-
180
- # Reshape image_tokens into a 2D grid
181
- if image_tokens.shape[1] > 0:
182
- h, w = image_sizes[image_index].tolist()
183
-
184
- image_grid = image_tokens.reshape(h, w, d).transpose(2, 0, 1)[None, ...]
185
-
186
- grid = unfold(
187
- image_grid,
188
- kernel_size=self.spatial_merge_size,
189
- stride=self.spatial_merge_size,
190
- )
191
- grid = grid.reshape(d * self.spatial_merge_size**2, -1).T
192
- permuted_tensor.append(grid)
193
-
194
- image_features = mx.concatenate(permuted_tensor, axis=0)
195
- image_features = self.merging_layer(image_features)
196
- return image_features[None, ...]
197
-
198
-
199
- class Mistral3MultiModalProjector(nn.Module):
200
- def __init__(self, config: ModelConfig):
201
- super().__init__()
202
-
203
- self.norm = nn.RMSNorm(config.vision_config.hidden_size)
204
- self.patch_merger = Mistral3PatchMerger(config)
205
-
206
- num_feature_layers = (
207
- 1
208
- if isinstance(config.vision_feature_layer, int)
209
- else len(config.vision_feature_layer)
210
- )
211
- self.linear_1 = nn.Linear(
212
- config.vision_config.hidden_size * num_feature_layers,
213
- config.text_config.hidden_size,
214
- bias=config.multimodal_projector_bias,
215
- )
216
- self.gelu = nn.GELU()
217
- self.linear_2 = nn.Linear(
218
- config.text_config.hidden_size,
219
- config.text_config.hidden_size,
220
- bias=config.multimodal_projector_bias,
221
- )
222
-
223
- def __call__(self, x: mx.array, image_sizes: mx.array) -> mx.array:
224
- x = self.norm(x)
225
-
226
- x = self.patch_merger(x, image_sizes)
227
- x = self.linear_1(x)
228
- x = self.gelu(x)
229
- x = self.linear_2(x)
230
- return x
231
-
232
-
233
- class Model(PixtralModel):
234
- def __init__(self, config: ModelConfig):
235
- super().__init__(config)
236
- self.config = config
237
-
238
- self.multi_modal_projector = Mistral3MultiModalProjector(config)
239
-
240
- def get_input_embeddings(
241
- self,
242
- input_ids: Optional[mx.array] = None,
243
- pixel_values: Optional[mx.array] = None,
244
- **kwargs,
245
- ):
246
- image_sizes = kwargs.get("image_sizes", None)
247
-
248
- if pixel_values is None:
249
- return self.language_model.model.embed_tokens(input_ids)
250
-
251
- # Get the input embeddings from the language model
252
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
253
-
254
- # Get the output hidden states from the vision model
255
- if isinstance(pixel_values, list):
256
- pixel_values = mx.concatenate(
257
- [mx.array(pv)[None, ...] for pv in pixel_values], axis=0
258
- )
259
- if pixel_values.ndim == 3:
260
- pixel_values = pixel_values[None, ...]
261
-
262
- # Pass pixel_values as list of images, as each image is individually run through conv2d and position encoding
263
- # Reference code from transformers: https://github.com/huggingface/transformers/blob/main/src/transformers/models/pixtral/modeling_pixtral.py#L479C9-L479C21
264
- # and mistral_inference: https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/vision_encoder.py#L85
265
- *_, hidden_states = self.vision_tower(
266
- pixel_values.transpose(0, 2, 3, 1),
267
- output_hidden_states=True,
268
- )
269
- # Select the hidden states from the desired layer
270
- selected_image_feature = hidden_states[self.vision_feature_layer]
271
-
272
- # Pass image features through the multi-modal projector
273
- image_features = self.multi_modal_projector(selected_image_feature, image_sizes)
274
-
275
- # Insert special image tokens in the input_ids
276
- final_inputs_embeds = self.merge_input_ids_with_image_features(
277
- self.config.image_token_index, image_features, inputs_embeds, input_ids
278
- )
279
- return final_inputs_embeds
280
-
281
- @property
282
- def layers(self):
283
- return self.language_model.model.layers
@@ -1,8 +0,0 @@
1
- from .mllama import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )