nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,243 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Any, Dict, List, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str = "molmo"
19
- max_position_embeddings: int = 4096
20
- d_model: int = 3584
21
- n_heads: int = 28
22
- n_kv_heads: int = 4
23
- n_layers: int = 28
24
- mlp_ratio: int = 4
25
- max_sequence_length: int = 1024
26
- act_output_multiplier: int = 0.5
27
- mlp_hidden_size: int = 37888
28
- vocab_size: int = 152064
29
- embedding_size: Optional[int] = 152064
30
- additional_vocab_size: Optional[int] = None
31
- attention_dropout: float = 0.1
32
- residual_dropout: float = 0.1
33
- embedding_dropout: float = 0.1
34
- layer_norm_eps: float = 1e-5
35
- initializer_range: float = 0.02
36
- pad_token_id: int = -1
37
- rope: bool = True
38
- rope_theta: float = 1000000.0
39
- weight_tying: bool = False
40
- rope_full_precision: bool = True
41
- rope_impl: str = "interleave"
42
- additional_vocab_size: Optional[int] = 128
43
-
44
- @classmethod
45
- def from_dict(cls, params):
46
- return cls(
47
- **{
48
- k: v
49
- for k, v in params.items()
50
- if k in inspect.signature(cls).parameters
51
- }
52
- )
53
-
54
-
55
- class SwiGLU(nn.Module):
56
- def __call__(self, x: mx.array) -> mx.array:
57
- x, gate = mx.split(x, 2, axis=-1)
58
- return nn.silu(gate) * x
59
-
60
-
61
- class MolmoBlock(nn.Module):
62
- def __init__(self, config: TextConfig):
63
- super().__init__()
64
- self.attn_out = nn.Linear(config.d_model, config.d_model, bias=False)
65
- self.ff_out = nn.Linear(
66
- int(config.act_output_multiplier * config.mlp_hidden_size),
67
- config.d_model,
68
- bias=False,
69
- )
70
- self.attn_norm = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
71
- self.ff_norm = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
72
- self.ff_proj = nn.Linear(config.d_model, config.mlp_hidden_size, bias=False)
73
- head_dim = config.d_model // config.n_heads
74
- self.rotary_emb = nn.RoPE(head_dim, base=config.rope_theta)
75
- self.scale = head_dim**-0.5
76
- self.n_heads = config.n_heads
77
- self.n_kv_heads = config.n_kv_heads
78
- self.fused_dims = (
79
- config.d_model,
80
- config.n_kv_heads * head_dim,
81
- config.n_kv_heads * head_dim,
82
- )
83
- self.att_proj = nn.Linear(config.d_model, sum(self.fused_dims), bias=True)
84
- self.act = SwiGLU()
85
-
86
- def __call__(self, x, mask=None, cache=None):
87
- batch_size, seq_len, D = x.shape
88
- attn_in = self.attn_norm(x)
89
-
90
- qkv = self.att_proj(attn_in)
91
-
92
- q, k, v = mx.split(
93
- qkv, [self.fused_dims[0], self.fused_dims[0] + self.fused_dims[1]], axis=-1
94
- )
95
-
96
- q = q.reshape(batch_size, seq_len, self.n_heads, D // self.n_heads).transpose(
97
- 0, 2, 1, 3
98
- )
99
- k = k.reshape(
100
- batch_size, seq_len, self.n_kv_heads, D // self.n_heads
101
- ).transpose(0, 2, 1, 3)
102
- v = v.reshape(
103
- batch_size, seq_len, self.n_kv_heads, D // self.n_heads
104
- ).transpose(0, 2, 1, 3)
105
-
106
- if cache is not None:
107
- q = self.rotary_emb(q, offset=cache.offset)
108
- k = self.rotary_emb(k, offset=cache.offset)
109
- k, v = cache.update_and_fetch(k, v)
110
- else:
111
- q = self.rotary_emb(q)
112
- k = self.rotary_emb(k)
113
-
114
- # Perform attention
115
- att = scaled_dot_product_attention(q, k, v, cache, scale=self.scale, mask=mask)
116
- att = att.transpose(0, 2, 1, 3).reshape(batch_size, seq_len, D)
117
- att = self.attn_out(att)
118
-
119
- # Add attention scores
120
- # shape: (batch_size, seq_len, d_model)
121
- x = x + att
122
-
123
- # Feed-forward layer
124
- og_x = x
125
- x = self.ff_norm(x)
126
- x = self.ff_proj(x)
127
- x = self.act(x)
128
- x = self.ff_out(x)
129
- x = og_x + x
130
-
131
- return x
132
-
133
-
134
- class Embedding(nn.Module):
135
- def __init__(
136
- self,
137
- num_embeddings: int,
138
- num_new_embeddings: int,
139
- features: int,
140
- initializer_range: float = 0.02,
141
- new_embed_initializer_range: float = 0.02,
142
- ):
143
- super().__init__()
144
- self.initializer_range = initializer_range
145
- self.new_embed_initializer_range = new_embed_initializer_range
146
-
147
- # Initialize embeddings
148
- self.embedding = mx.random.normal(
149
- (num_embeddings, features), scale=self.initializer_range
150
- )
151
- self.new_embedding = mx.random.normal(
152
- (num_new_embeddings, features), scale=self.new_embed_initializer_range
153
- )
154
-
155
- def __call__(self, x: mx.array) -> mx.array:
156
- return mx.concat([self.embedding, self.new_embedding], axis=0)[x]
157
-
158
-
159
- class Molmo(nn.Module):
160
- def __init__(self, config: TextConfig):
161
- super().__init__()
162
- self.config = config
163
-
164
- self.wte = Embedding(
165
- config.embedding_size, config.additional_vocab_size, config.d_model
166
- )
167
-
168
- self.blocks = [MolmoBlock(config) for _ in range(config.n_layers)]
169
-
170
- self.ln_f = nn.RMSNorm(config.d_model, eps=config.layer_norm_eps)
171
-
172
- if not config.weight_tying:
173
- self.ff_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
174
-
175
- def __call__(
176
- self,
177
- input_ids: mx.array,
178
- inputs_embeds: Optional[mx.array] = None,
179
- mask: Optional[mx.array] = None,
180
- cache: Optional[KVCache] = None,
181
- ) -> LanguageModelOutput:
182
-
183
- if inputs_embeds is None:
184
- h = self.wte(input_ids)
185
- else:
186
- h = inputs_embeds
187
-
188
- if cache is None:
189
- cache = [None] * self.config.n_layers
190
-
191
- if mask is None:
192
- mask = create_attention_mask(h, cache)
193
-
194
- for block, c in zip(self.blocks, cache):
195
- h = block(h, mask, c)
196
-
197
- h = self.ln_f(h)
198
-
199
- if self.config.weight_tying:
200
- logits = mx.matmul(h, self.wte.weight.T)
201
- else:
202
- logits = self.ff_out(h)
203
-
204
- return LanguageModelOutput(logits=logits)
205
-
206
-
207
- class LanguageModel(nn.Module):
208
- def __init__(self, config: TextConfig):
209
- super().__init__()
210
- self.config = config
211
- self.model_type = config.model_type
212
- if self.model_type != "molmo":
213
- raise ValueError(
214
- f"Model type {self.model_type} not supported. Currently only 'molmo' is supported"
215
- )
216
- self.model = Molmo(config)
217
-
218
- def __call__(
219
- self,
220
- input_ids: mx.array,
221
- inputs_embeds: Optional[mx.array] = None,
222
- mask: Optional[mx.array] = None,
223
- cache: Optional[KVCache] = None,
224
- ) -> LanguageModelOutput:
225
- outputs = self.model(input_ids, inputs_embeds, mask, cache)
226
- return outputs
227
-
228
- @staticmethod
229
- def sanitize(weights):
230
- # Remove unused precomputed rotary freqs
231
- return {k: v for k, v in weights.items() if "rotary_emb.inv_freq" not in k}
232
-
233
- @property
234
- def layers(self):
235
- return self.model.blocks
236
-
237
- @property
238
- def head_dim(self):
239
- return self.config.d_model // self.config.n_heads
240
-
241
- @property
242
- def n_kv_heads(self):
243
- return self.config.n_kv_heads
@@ -1,133 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass, field
5
- from pathlib import Path
6
- from typing import Dict, List, Optional, Tuple, Union
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig = field(default_factory=TextConfig)
20
- vision_config: VisionConfig = field(default_factory=VisionConfig)
21
- model_type: str = "molmo"
22
- image_feature_dropout: float = 0.0
23
- image_pooling_h: int = 2
24
- image_pooling_w: int = 2
25
- image_pooling_2d: str = "attention"
26
- image_projector: str = "mlp"
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class Model(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.config = config
44
- self.language_model = LanguageModel(config.text_config)
45
- self.vision_tower = VisionModel(config.vision_config)
46
-
47
- @property
48
- def layers(self):
49
- return self.language_model.model.layers
50
-
51
- def __call__(
52
- self,
53
- input_ids: mx.array,
54
- pixel_values: mx.array,
55
- mask: mx.array,
56
- cache=None,
57
- **kwargs,
58
- ) -> Dict[str, Union[mx.array, List[Tuple[mx.array, mx.array]]]]:
59
- if input_ids.ndim == 1:
60
- input_ids = input_ids[None, :]
61
-
62
- batch_size, seq_len = input_ids.shape
63
-
64
- image_input_idx = kwargs.get("image_input_idx", None)
65
- image_masks = kwargs.get("image_masks", None)
66
-
67
- if pixel_values is not None:
68
- assert (
69
- image_masks is not None and image_input_idx is not None
70
- ), "image_masks and image_input_idx must be provided when images are given"
71
-
72
- dtype = self.vision_tower.image_vit.patch_embedding.weight.dtype
73
- pixel_values = pixel_values.astype(dtype)
74
-
75
- # Process images
76
- if pixel_values.ndim == 3:
77
- pixel_values = mx.expand_dims(pixel_values, 0)
78
- image_masks = (
79
- mx.expand_dims(image_masks, 0) if image_masks is not None else None
80
- )
81
- image_input_idx = (
82
- mx.expand_dims(image_input_idx, 0)
83
- if image_input_idx is not None
84
- else None
85
- )
86
-
87
- image_features, cls_embed = self.vision_tower(pixel_values, image_masks)
88
-
89
- # Insert image features into the input embeddings
90
- num_image, num_patch = image_features.shape[1:3]
91
-
92
- assert image_input_idx.shape == (
93
- batch_size,
94
- num_image,
95
- num_patch,
96
- ), f"image_input_idx.shape: {image_input_idx.shape}, expected: {(batch_size, num_image, num_patch)}"
97
-
98
- # Insert image features into the input embeddings
99
- image_features = image_features.reshape(
100
- batch_size, num_image * num_patch, -1
101
- )
102
- image_input_idx = image_input_idx.reshape(batch_size, num_image * num_patch)
103
-
104
- valid = np.where(image_input_idx >= 0)[0].tolist()
105
- batch_idx = mx.arange(batch_size)
106
- batch_idx = mx.tile(batch_idx[:, None], [1, image_features.shape[1]])
107
-
108
- input_embeddings = self.language_model.model.wte(input_ids)
109
- input_embeddings[
110
- batch_idx[valid], image_input_idx[valid]
111
- ] += image_features[valid]
112
- else:
113
- input_embeddings = None
114
-
115
- # Forward pass through the language model
116
- logits = self.language_model(
117
- input_ids,
118
- inputs_embeds=input_embeddings,
119
- mask=mask,
120
- cache=cache,
121
- )
122
-
123
- return logits
124
-
125
- def sanitize(self, weights):
126
- def transform_key(key):
127
- if "model.transformer" in key:
128
- key = key.replace("model.transformer", "language_model.model")
129
- if "model.vision_backbone" in key:
130
- key = key.replace("model.vision_backbone", "vision_tower")
131
- return key
132
-
133
- return {transform_key(k): v for k, v in weights.items()}