nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,303 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- num_hidden_layers: int = 27
14
- hidden_size: int = 1152
15
- intermediate_size: int = 4304
16
- num_attention_heads: int = 16
17
- image_size: int = 384
18
- patch_size: int = 14
19
- projection_dim: int = 768
20
- vocab_size: int = 32000
21
- num_channels: int = 3
22
- layer_norm_eps: float = 1e-6
23
-
24
- @classmethod
25
- def from_dict(cls, params):
26
- return cls(
27
- **{
28
- k: v
29
- for k, v in params.items()
30
- if k in inspect.signature(cls).parameters
31
- }
32
- )
33
-
34
-
35
- def check_array_shape(arr):
36
- shape = arr.shape
37
-
38
- # Check if the shape has 4 dimensions
39
- if len(shape) != 4:
40
- return False
41
-
42
- out_channels, kH, KW, _ = shape
43
-
44
- # Check if out_channels is the largest, and kH and KW are the same
45
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
46
- return True
47
- else:
48
- return False
49
-
50
-
51
- class Attention(nn.Module):
52
- def __init__(
53
- self,
54
- dims: int,
55
- num_heads: int,
56
- query_input_dims: Optional[int] = None,
57
- key_input_dims: Optional[int] = None,
58
- value_input_dims: Optional[int] = None,
59
- value_dims: Optional[int] = None,
60
- value_output_dims: Optional[int] = None,
61
- bias: bool = False,
62
- ):
63
- super().__init__()
64
-
65
- if (dims % num_heads) != 0:
66
- raise ValueError(
67
- "The input feature dimensions should be divisible by the "
68
- f"number of heads ({dims} % {num_heads}) != 0"
69
- )
70
-
71
- query_input_dims = query_input_dims or dims
72
- key_input_dims = key_input_dims or dims
73
- value_input_dims = value_input_dims or key_input_dims
74
- value_dims = value_dims or dims
75
- value_output_dims = value_output_dims or dims
76
-
77
- self.num_heads = num_heads
78
- head_dim = dims // num_heads
79
- self.scale = head_dim**-0.5
80
-
81
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
82
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
83
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
84
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
85
-
86
- def __call__(self, queries, keys, values, mask=None):
87
- queries = self.q_proj(queries)
88
- keys = self.k_proj(keys)
89
- values = self.v_proj(values)
90
-
91
- num_heads = self.num_heads
92
- B, L, D = queries.shape
93
- _, S, _ = keys.shape
94
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
95
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
96
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
97
-
98
- output = mx.fast.scaled_dot_product_attention(
99
- queries, keys, values, scale=self.scale, mask=mask
100
- )
101
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
102
- return self.out_proj(output)
103
-
104
-
105
- class MHA(nn.Module):
106
- def __init__(
107
- self,
108
- dims: int,
109
- num_heads: int,
110
- bias: bool = False,
111
- ):
112
- super().__init__()
113
-
114
- if (dims % num_heads) != 0:
115
- raise ValueError(
116
- "The input feature dimensions should be divisible by the "
117
- f"number of heads ({dims} % {num_heads}) != 0"
118
- )
119
-
120
- self.num_heads = num_heads
121
- head_dim = dims // num_heads
122
- self.scale = head_dim**-0.5
123
-
124
- self.in_proj = nn.Linear(dims, dims * 3, bias=bias)
125
- self.out_proj = nn.Linear(dims, dims, bias=bias)
126
-
127
- def __call__(self, queries: mx.array, kv: mx.array, mask=None):
128
- B, L, D = queries.shape
129
-
130
- qkv = self.in_proj(queries)
131
- _, keys, values = mx.split(qkv, 3, axis=-1)
132
-
133
- num_heads = self.num_heads
134
- B, L, D = queries.shape
135
- _, S, _ = keys.shape
136
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
137
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
138
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
139
-
140
- output = mx.fast.scaled_dot_product_attention(
141
- queries, keys, values, scale=self.scale, mask=mask
142
- )
143
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
144
- return self.out_proj(output)
145
-
146
-
147
- class MLP(nn.Module):
148
- def __init__(self, config: VisionConfig):
149
- super().__init__()
150
- self.activation_fn = nn.GELU(approx="fast")
151
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
152
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
153
-
154
- def __call__(self, x: mx.array) -> mx.array:
155
- x = self.activation_fn(self.fc1(x))
156
- x = self.fc2(x)
157
- return x
158
-
159
-
160
- class EncoderLayer(nn.Module):
161
- def __init__(self, config: VisionConfig):
162
- super().__init__()
163
- self.embed_dim = config.hidden_size
164
- self.self_attn = Attention(
165
- config.hidden_size, config.num_attention_heads, bias=True
166
- )
167
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
168
- self.mlp = MLP(config)
169
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
170
-
171
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
172
- y = self.layer_norm1(x)
173
- y = self.self_attn(y, y, y, mask)
174
- x = x + y
175
- y = self.layer_norm2(x)
176
- y = self.mlp(y)
177
- return x + y
178
-
179
-
180
- class Encoder(nn.Module):
181
- def __init__(self, config: VisionConfig):
182
- super().__init__()
183
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
184
-
185
-
186
- class VisionEmbeddings(nn.Module):
187
- def __init__(self, config: VisionConfig):
188
- super().__init__()
189
- self.config = config
190
- self.embed_dim = config.hidden_size
191
- self.image_size = config.image_size
192
- self.patch_size = config.patch_size
193
-
194
- self.patch_embedding = nn.Conv2d(
195
- in_channels=config.num_channels,
196
- out_channels=self.embed_dim,
197
- kernel_size=self.patch_size,
198
- stride=self.patch_size,
199
- bias=True,
200
- )
201
-
202
- self.num_patches = (self.image_size // self.patch_size) ** 2
203
- self.num_positions = self.num_patches
204
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
205
-
206
- def __call__(self, x: mx.array) -> mx.array:
207
- batch_size = x.shape[0]
208
- patch_embeddings = self.patch_embedding(x)
209
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
210
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
211
- embeddings = patch_embeddings
212
- embeddings += self.position_embedding(position_ids)
213
- return embeddings
214
-
215
-
216
- class SigLipVisionModel(nn.Module):
217
- def __init__(self, config: VisionConfig):
218
- super().__init__()
219
- self.embeddings = VisionEmbeddings(config)
220
- self.encoder = Encoder(config)
221
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
222
- self.head = SigLipMultiheadAttentionPoolingHead(config)
223
-
224
- def __call__(
225
- self,
226
- x: mx.array,
227
- output_hidden_states: Optional[bool] = None,
228
- ) -> mx.array:
229
- x = self.embeddings(x)
230
-
231
- encoder_states = (x,) if output_hidden_states else None
232
-
233
- for l in self.encoder.layers:
234
- x = l(x, mask=None)
235
- if output_hidden_states:
236
- encoder_states = encoder_states + (x,)
237
-
238
- pooler_output = self.post_layernorm(x[:, 0, :])
239
- pooler_output = self.head(pooler_output)
240
- return pooler_output, x, encoder_states
241
-
242
-
243
- class SigLipMultiheadAttentionPoolingHead(nn.Module):
244
-
245
- def __init__(self, config: VisionConfig):
246
- super().__init__()
247
-
248
- self.probe = mx.ones(
249
- (
250
- 1,
251
- 1,
252
- config.hidden_size,
253
- )
254
- )
255
- self.attention = MHA(
256
- config.hidden_size, num_heads=config.num_attention_heads, bias=True
257
- )
258
- self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
259
- self.mlp = MLP(config)
260
-
261
- def __call__(self, x: mx.array):
262
- x = self.attention(self.probe, x)[0]
263
-
264
- residual = x
265
- x = self.layernorm(x)
266
- x = residual + self.mlp(x)
267
-
268
- return x[:, 0]
269
-
270
-
271
- class VisionModel(nn.Module):
272
- def __init__(self, config: VisionConfig):
273
- super().__init__()
274
- self.model_type = config.model_type
275
- if self.model_type != "siglip_vision_model":
276
- raise ValueError(f"Unsupported model type: {self.model_type}")
277
-
278
- self.vision_model = SigLipVisionModel(config)
279
-
280
- def __call__(
281
- self, x: mx.array, output_hidden_states: Optional[bool] = None
282
- ) -> mx.array:
283
- return self.vision_model(x, output_hidden_states)
284
-
285
- def sanitize(self, weights):
286
- sanitized_weights = {}
287
- for k, v in weights.items():
288
- if "position_ids" in k:
289
- # Remove unused position_ids
290
- continue
291
- elif "patch_embedding.weight" in k:
292
- # PyTorch conv2d weight tensors have shape:
293
- # [out_channels, in_channels, kH, KW]
294
- # MLX conv2d expects the weight be of shape:
295
- # [out_channels, kH, KW, in_channels]
296
- if check_array_shape(v):
297
- sanitized_weights[k] = v
298
- else:
299
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
300
- else:
301
- sanitized_weights[k] = v
302
-
303
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .llava_next import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
@@ -1,230 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int = 4096
20
- num_hidden_layers: int = 32
21
- intermediate_size: int = 14336
22
- num_attention_heads: int = 32
23
- rms_norm_eps: float = 1e-05
24
- vocab_size: int = 32064
25
- num_key_value_heads: int = 8
26
- rope_theta: float = 1000000
27
- rope_traditional: bool = False
28
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
29
- max_position_embeddings: int = 4096
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
- def __post_init__(self):
42
- if self.num_key_value_heads is None:
43
- self.num_key_value_heads = self.num_attention_heads
44
-
45
- if self.rope_scaling:
46
- required_keys = {"factor", "type"}
47
- if not all(key in self.rope_scaling for key in required_keys):
48
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
49
-
50
- if self.rope_scaling["type"] != "linear":
51
- raise ValueError("rope_scaling 'type' currently only supports 'linear'")
52
-
53
-
54
- class Attention(nn.Module):
55
- def __init__(self, config: TextConfig):
56
- super().__init__()
57
-
58
- dim = config.hidden_size
59
- self.n_heads = n_heads = config.num_attention_heads
60
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
-
62
- self.repeats = n_heads // n_kv_heads
63
-
64
- head_dim = config.hidden_size // n_heads
65
- self.scale = head_dim**-0.5
66
-
67
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
68
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
70
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
71
-
72
- rope_scale = (
73
- 1 / config.rope_scaling["factor"]
74
- if config.rope_scaling is not None
75
- and config.rope_scaling["type"] == "linear"
76
- else 1
77
- )
78
- self.rope = nn.RoPE(
79
- head_dim,
80
- traditional=config.rope_traditional,
81
- base=config.rope_theta,
82
- scale=rope_scale,
83
- )
84
-
85
- def __call__(
86
- self,
87
- x: mx.array,
88
- mask: Optional[mx.array] = None,
89
- cache: Optional[KVCache] = None,
90
- ) -> mx.array:
91
- B, L, D = x.shape
92
-
93
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
94
-
95
- # Prepare the queries, keys and values for the attention computation
96
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
97
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
99
-
100
- if cache is not None:
101
- queries = self.rope(queries, offset=cache.offset)
102
- keys = self.rope(keys, offset=cache.offset)
103
- keys, values = cache.update_and_fetch(keys, values)
104
- else:
105
- queries = self.rope(queries)
106
- keys = self.rope(keys)
107
-
108
- output = scaled_dot_product_attention(
109
- queries, keys, values, cache, scale=self.scale, mask=mask
110
- )
111
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
112
- return self.o_proj(output)
113
-
114
-
115
- class MLP(nn.Module):
116
- def __init__(self, dim, hidden_dim):
117
- super().__init__()
118
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
119
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
120
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
121
-
122
- def __call__(self, x) -> mx.array:
123
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
124
-
125
-
126
- class TransformerBlock(nn.Module):
127
- def __init__(self, config: TextConfig):
128
- super().__init__()
129
- self.num_attention_heads = config.num_attention_heads
130
- self.hidden_size = config.hidden_size
131
- self.self_attn = Attention(config)
132
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
133
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
134
- self.post_attention_layernorm = nn.RMSNorm(
135
- config.hidden_size, eps=config.rms_norm_eps
136
- )
137
- self.config = config
138
-
139
- def __call__(
140
- self,
141
- x: mx.array,
142
- mask: Optional[mx.array] = None,
143
- cache: Optional[KVCache] = None,
144
- ) -> mx.array:
145
- r = self.self_attn(self.input_layernorm(x), mask, cache)
146
- h = x + r
147
- r = self.mlp(self.post_attention_layernorm(h))
148
- out = h + r
149
- return out
150
-
151
-
152
- class Llama(nn.Module):
153
- def __init__(self, config: TextConfig):
154
- super().__init__()
155
- self.config = config
156
- self.vocab_size = config.vocab_size
157
- self.num_hidden_layers = config.num_hidden_layers
158
- assert self.vocab_size > 0
159
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
160
- self.layers = [
161
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
162
- ]
163
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
164
-
165
- def __call__(
166
- self,
167
- inputs: mx.array,
168
- inputs_embeds: Optional[mx.array] = None,
169
- mask: Optional[mx.array] = None,
170
- cache=None,
171
- ):
172
- # for passing merged input embeddings
173
- if inputs_embeds is None:
174
- h = self.embed_tokens(inputs)
175
- else:
176
- h = inputs_embeds
177
-
178
- if cache is None:
179
- cache = [None] * len(self.layers)
180
-
181
- if mask is None:
182
- mask = create_attention_mask(h, cache)
183
-
184
- for layer, c in zip(self.layers, cache):
185
- h = layer(h, mask, c)
186
-
187
- return self.norm(h)
188
-
189
-
190
- class LanguageModel(nn.Module):
191
- def __init__(self, config: TextConfig):
192
- super().__init__()
193
- self.config = config
194
- self.model_type = config.model_type
195
- if self.model_type not in ["mistral", "llama"]:
196
- raise ValueError(
197
- f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
198
- )
199
- self.model = Llama(config)
200
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
201
-
202
- def __call__(
203
- self,
204
- inputs: mx.array,
205
- inputs_embeds=None,
206
- mask: Optional[mx.array] = None,
207
- cache=None,
208
- ):
209
- out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
210
- logits = self.lm_head(out)
211
- return LanguageModelOutput(logits=logits)
212
-
213
- @staticmethod
214
- def sanitize(weights):
215
- # Remove unused precomputed rotary freqs
216
- return {
217
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
218
- }
219
-
220
- @property
221
- def layers(self):
222
- return self.model.layers
223
-
224
- @property
225
- def head_dim(self):
226
- return self.config.hidden_size // self.config.num_attention_heads
227
-
228
- @property
229
- def n_kv_heads(self):
230
- return self.config.num_key_value_heads
@@ -1,160 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_index: int = 32000
24
- vision_feature_select_strategy: str = "default"
25
- vision_feature_layer: int = -2
26
- vocab_size: int = 32000
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class LlavaMultiModalProjector(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.linear_1 = nn.Linear(
44
- config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
45
- )
46
- self.gelu = nn.GELU()
47
- self.linear_2 = nn.Linear(
48
- config.text_config.hidden_size, config.text_config.hidden_size, bias=True
49
- )
50
-
51
- def __call__(self, x: mx.array) -> mx.array:
52
- x = self.linear_1(x)
53
- x = self.gelu(x)
54
- x = self.linear_2(x)
55
- return x
56
-
57
-
58
- class Model(nn.Module):
59
- def __init__(self, config: ModelConfig):
60
- super().__init__()
61
- self.config = config
62
- self.vision_tower = VisionModel(config.vision_config)
63
- self.language_model = LanguageModel(config.text_config)
64
- embed_std = 1 / mx.sqrt(config.text_config.hidden_size)
65
- self.image_newline = (
66
- mx.random.normal((config.text_config.hidden_size,)) * embed_std
67
- )
68
-
69
- self.multi_modal_projector = LlavaMultiModalProjector(config)
70
- self.vision_feature_layer = config.vision_feature_layer
71
- self.vision_feature_select_strategy = config.vision_feature_select_strategy
72
-
73
- def get_input_embeddings(
74
- self,
75
- input_ids: Optional[mx.array] = None,
76
- pixel_values: Optional[mx.array] = None,
77
- ):
78
- if pixel_values is None:
79
- return self.language_model.model.embed_tokens(input_ids)
80
-
81
- # Get the input embeddings from the language model
82
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
83
-
84
- # Get the ouptut hidden states from the vision model
85
- *_, hidden_states = self.vision_tower(
86
- pixel_values[0].transpose(0, 2, 3, 1), output_hidden_states=True
87
- )
88
-
89
- # Select the hidden states from the desired layer
90
- selected_image_feature = hidden_states[self.vision_feature_layer]
91
-
92
- if self.vision_feature_select_strategy == "default":
93
- selected_image_feature = selected_image_feature[:, 1:]
94
- elif self.vision_feature_select_strategy == "full":
95
- selected_image_feature = selected_image_feature
96
- else:
97
- raise ValueError(
98
- "Unexpected feature selection strategy: "
99
- f"{self.vision_feature_select_strategy}"
100
- )
101
-
102
- # Pass image features through the multi-modal projector
103
- image_features = self.multi_modal_projector(selected_image_feature)
104
-
105
- # Add a newline token to the image features
106
- if self.image_newline is not None:
107
- self.image_newline = np.array(self.image_newline)[None, None, :]
108
- self.image_newline = np.broadcast_to(
109
- self.image_newline, image_features.shape
110
- )
111
- image_newline = mx.array(self.image_newline)
112
- image_features = mx.concatenate([image_features, image_newline], axis=0)
113
-
114
- # Insert special image tokens in the input_ids
115
- final_inputs_embeds = self._merge_input_ids_with_image_features(
116
- image_features, inputs_embeds, input_ids
117
- )
118
- return final_inputs_embeds
119
-
120
- def _merge_input_ids_with_image_features(
121
- self, image_features, inputs_embeds, input_ids
122
- ):
123
- image_token_index = self.config.image_token_index
124
- num_images, num_image_patches, embed_dim = image_features.shape
125
-
126
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
127
-
128
- text_segments = []
129
- start_idx = 0
130
-
131
- for position in image_positions:
132
- text_segments.append(inputs_embeds[:, start_idx:position])
133
- start_idx = position + 1
134
-
135
- image_embeddings = mx.split(image_features, image_features.shape[0])
136
- final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
137
- final_embeddings += [inputs_embeds[:, start_idx:]]
138
-
139
- # Create a final embedding of shape
140
- # (1, num_image_patches*num_images + sequence_len, embed_dim)
141
- return mx.concatenate(final_embeddings, axis=1)
142
-
143
- @property
144
- def layers(self):
145
- return self.language_model.model.layers
146
-
147
- def __call__(
148
- self,
149
- input_ids: mx.array,
150
- pixel_values: mx.array,
151
- mask: mx.array,
152
- cache=None,
153
- **kwargs,
154
- ):
155
-
156
- input_embddings = self.get_input_embeddings(input_ids, pixel_values)
157
- logits = self.language_model(
158
- input_ids, cache=cache, inputs_embeds=input_embddings
159
- )
160
- return logits