nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,557 +0,0 @@
1
- import copy
2
- from dataclasses import dataclass
3
- from typing import List, Optional, Tuple, Type, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
- from PIL import Image
9
- from PIL.Image import Resampling
10
-
11
-
12
- @dataclass
13
- class SAMViTCfg:
14
- image_size: Union[Tuple[int, int], int] = 1024
15
- width: int = 768
16
- layers: int = 12
17
- heads: int = 12
18
- patch_size: int = 16
19
- window_size: int = 14
20
- prompt_embed_dim: int = 256
21
- global_attn_indexes: Union[List[int], Tuple[int]] = (2, 5, 8, 11)
22
- downsample_channels: Union[List[int], Tuple[int]] = (512, 1024)
23
-
24
-
25
- class MLPBlock(nn.Module):
26
- def __init__(
27
- self,
28
- embedding_dim: int,
29
- mlp_dim: int,
30
- act: Type[nn.Module] = nn.GELU,
31
- ) -> None:
32
- super().__init__()
33
- self.lin1 = nn.Linear(embedding_dim, mlp_dim)
34
- self.lin2 = nn.Linear(mlp_dim, embedding_dim)
35
- self.act = act()
36
-
37
- def __call__(self, x: mx.array):
38
- return self.lin2(self.act(self.lin1(x)))
39
-
40
-
41
- def resize_image(image_np, new_size=(96, 96), order=1):
42
- """
43
- Resize an image with multiple channels using PIL.
44
-
45
- Args:
46
- image_np (numpy.ndarray): The input image array of shape (batch, channels, height, width).
47
- new_size (tuple): The target size as (height, width).
48
- order (int): The order of interpolation (used to determine resampling method).
49
-
50
- Returns:
51
- numpy.ndarray: The resized image array in the same format as input.
52
- """
53
- # Remove batch dimension
54
- image_np = np.array(image_np[0])
55
-
56
- # Get dimensions
57
- channels, height, width = image_np.shape
58
-
59
- # Choose interpolation method based on order parameter
60
- resample_method = Resampling.BILINEAR # Default to bilinear
61
- if order == 0:
62
- resample_method = Resampling.NEAREST
63
- elif order == 2 or order == 3:
64
- resample_method = Resampling.BICUBIC
65
-
66
- # Handle different channel configurations
67
- if channels == 1:
68
- # For single-channel images (grayscale)
69
- # Reshape to 2D array (height, width)
70
- image_2d = image_np.reshape(height, width)
71
-
72
- # Create PIL image - ensure proper mode and data type conversion
73
- pil_image = Image.fromarray(image_2d.astype(np.float32))
74
-
75
- # Resize using PIL (note: PIL takes width, height order)
76
- resized_pil = pil_image.resize(
77
- (new_size[1], new_size[0]), resample=resample_method
78
- )
79
-
80
- # Convert back to numpy array, reshape to add channel dimension
81
- resized_np = np.array(resized_pil).reshape((1, new_size[0], new_size[1]))
82
- else:
83
- # For multi-channel images, process each channel individually
84
- resized_channels = []
85
-
86
- for c in range(channels):
87
- channel_data = image_np[c]
88
- pil_channel = Image.fromarray(channel_data.astype(np.float32))
89
- resized_channel = pil_channel.resize(
90
- (new_size[1], new_size[0]), resample=resample_method
91
- )
92
- resized_channels.append(np.array(resized_channel))
93
-
94
- # Stack channels back together
95
- resized_np = np.stack(resized_channels, axis=0)
96
-
97
- # Add batch dimension back and convert to mx.array
98
- return mx.array(resized_np)[None, :]
99
-
100
-
101
- class SAMEncoder(nn.Module):
102
- def __init__(
103
- self,
104
- img_size: int = 1024,
105
- patch_size: int = 16,
106
- in_chans: int = 3,
107
- embed_dim: int = 768,
108
- depth: int = 12,
109
- num_heads: int = 12,
110
- mlp_ratio: float = 4.0,
111
- out_chans: int = 256,
112
- qkv_bias: bool = True,
113
- norm_layer: Type[nn.Module] = nn.LayerNorm,
114
- act_layer: Type[nn.Module] = nn.GELU,
115
- use_abs_pos: bool = True,
116
- use_rel_pos: bool = True,
117
- rel_pos_zero_init: bool = True,
118
- window_size: int = 14,
119
- global_attn_indexes: Tuple[int, ...] = (2, 5, 8, 11),
120
- downsample_channels: Tuple[int, ...] = (512, 1024),
121
- ) -> None:
122
- """
123
- Args:
124
- img_size (int): Input image size.
125
- patch_size (int): Patch size.
126
- in_chans (int): Number of input image channels.
127
- embed_dim (int): Patch embedding dimension.
128
- depth (int): Depth of ViT.
129
- num_heads (int): Number of attention heads in each ViT block.
130
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
131
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
132
- norm_layer (nn.Module): Normalization layer.
133
- act_layer (nn.Module): Activation layer.
134
- use_abs_pos (bool): If True, use absolute positional embeddings.
135
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
136
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
137
- window_size (int): Window size for window attention blocks.
138
- global_attn_indexes (list): Indexes for blocks using global attention.
139
- downsample_channels (list): Channels for downsampling layers.
140
- """
141
- super().__init__()
142
- self.img_size = img_size
143
-
144
- self.patch_embed = PatchEmbed(
145
- kernel_size=(patch_size, patch_size),
146
- stride=(patch_size, patch_size),
147
- in_chans=in_chans,
148
- embed_dim=embed_dim,
149
- )
150
-
151
- if use_abs_pos:
152
- # Initialize absolute positional embedding with pretrain image size.
153
- self.pos_embed = mx.zeros(
154
- (img_size // patch_size, img_size // patch_size, embed_dim)
155
- )[None, :]
156
-
157
- self.blocks = []
158
- for i in range(depth):
159
- block = Block(
160
- dim=embed_dim,
161
- num_heads=num_heads,
162
- mlp_ratio=mlp_ratio,
163
- qkv_bias=qkv_bias,
164
- norm_layer=norm_layer,
165
- act_layer=act_layer,
166
- use_rel_pos=use_rel_pos,
167
- rel_pos_zero_init=rel_pos_zero_init,
168
- window_size=window_size if i not in global_attn_indexes else 0,
169
- input_size=(img_size // patch_size, img_size // patch_size),
170
- )
171
- self.blocks.append(block)
172
-
173
- self.neck = [
174
- nn.Conv2d(
175
- embed_dim,
176
- out_chans,
177
- kernel_size=1,
178
- bias=False,
179
- ),
180
- nn.LayerNorm(out_chans),
181
- nn.Conv2d(
182
- out_chans,
183
- out_chans,
184
- kernel_size=3,
185
- padding=1,
186
- bias=False,
187
- ),
188
- nn.LayerNorm(out_chans),
189
- ]
190
-
191
- in_channels = out_chans
192
- self.downsamples = []
193
- for i in range(len(downsample_channels)):
194
- out_channels = downsample_channels[i]
195
- self.downsamples.append(
196
- nn.Conv2d(
197
- in_channels,
198
- out_channels,
199
- kernel_size=3,
200
- stride=2,
201
- padding=1,
202
- bias=False,
203
- )
204
- )
205
- in_channels = out_channels
206
-
207
- self.sam_hd = True
208
- if self.sam_hd:
209
- self.hd_alpha_downsamples = mx.zeros((1))
210
- self.neck_hd = copy.deepcopy(self.neck)
211
-
212
- def __call__(self, x: mx.array):
213
- x = self.patch_embed(x)
214
- if self.pos_embed is not None:
215
- x += self.pos_embed
216
-
217
- global_features = []
218
- for _, blk in enumerate(self.blocks):
219
- x = blk(x)
220
- if self.sam_hd and blk.window_size == 0:
221
- global_features.append(x)
222
-
223
- for _, n in enumerate(self.neck):
224
- x = n(x)
225
-
226
- x = x.transpose(0, 3, 1, 2)
227
- x = resize_image(x)
228
-
229
- x = x.transpose(0, 2, 3, 1)
230
-
231
- for _, downsample in enumerate(self.downsamples):
232
- x = downsample(x)
233
-
234
- if self.sam_hd:
235
- first_global_feature = global_features[0]
236
- for _, n_hd in enumerate(self.neck_hd):
237
- first_global_feature = n_hd(first_global_feature)
238
-
239
- first_global_feature = first_global_feature.transpose(0, 3, 1, 2)
240
-
241
- first_global_feature = resize_image(first_global_feature)
242
-
243
- first_global_feature = first_global_feature.transpose(0, 2, 3, 1)
244
- for _, downsample in enumerate(self.downsamples):
245
- first_global_feature = downsample(first_global_feature)
246
-
247
- x = x + first_global_feature * self.hd_alpha_downsamples
248
-
249
- return x
250
-
251
-
252
- class Block(nn.Module):
253
- """Transformer blocks with support of window attention and residual propagation blocks"""
254
-
255
- def __init__(
256
- self,
257
- dim: int,
258
- num_heads: int,
259
- mlp_ratio: float = 4.0,
260
- qkv_bias: bool = True,
261
- norm_layer: Type[nn.Module] = nn.LayerNorm,
262
- act_layer: Type[nn.Module] = nn.GELU,
263
- use_rel_pos: bool = False,
264
- rel_pos_zero_init: bool = True,
265
- window_size: int = 0,
266
- input_size: Optional[Tuple[int, int]] = None,
267
- ) -> None:
268
- """
269
- Args:
270
- dim (int): Number of input channels.
271
- num_heads (int): Number of attention heads in each ViT block.
272
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
273
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
274
- norm_layer (nn.Module): Normalization layer.
275
- act_layer (nn.Module): Activation layer.
276
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
277
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
278
- window_size (int): Window size for window attention blocks. If it equals 0, then
279
- use global attention.
280
- input_size (tuple(int, int) or None): Input resolution for calculating the relative
281
- positional parameter size.
282
- """
283
- super().__init__()
284
- self.norm1 = norm_layer(dim)
285
- self.attn = Attention(
286
- dim,
287
- num_heads=num_heads,
288
- qkv_bias=qkv_bias,
289
- use_rel_pos=use_rel_pos,
290
- rel_pos_zero_init=rel_pos_zero_init,
291
- input_size=input_size if window_size == 0 else (window_size, window_size),
292
- )
293
-
294
- self.norm2 = norm_layer(dim)
295
- self.mlp = MLPBlock(
296
- embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
297
- )
298
-
299
- self.window_size = window_size
300
-
301
- def __call__(self, x: mx.array):
302
- shortcut = x
303
- x = self.norm1(x)
304
- # Window partition
305
- if self.window_size > 0:
306
- H, W = x.shape[1], x.shape[2]
307
- x, pad_hw = window_partition(x, self.window_size)
308
-
309
- x = self.attn(x)
310
- # Reverse window partition
311
- if self.window_size > 0:
312
- x = window_unpartition(x, self.window_size, pad_hw, (H, W))
313
-
314
- x = shortcut + x
315
- x = x + self.mlp(self.norm2(x))
316
-
317
- return x
318
-
319
-
320
- class Attention(nn.Module):
321
- """Multi-head Attention block with relative position embeddings."""
322
-
323
- def __init__(
324
- self,
325
- dim: int,
326
- num_heads: int = 8,
327
- qkv_bias: bool = True,
328
- use_rel_pos: bool = False,
329
- rel_pos_zero_init: bool = True,
330
- input_size: Optional[Tuple[int, int]] = None,
331
- ) -> None:
332
- """
333
- Args:
334
- dim (int): Number of input channels.
335
- num_heads (int): Number of attention heads.
336
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
337
- rel_pos (bool): If True, add relative positional embeddings to the attention map.
338
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
339
- input_size (tuple(int, int) or None): Input resolution for calculating the relative
340
- positional parameter size.
341
- """
342
- super().__init__()
343
- self.num_heads = num_heads
344
- head_dim = dim // num_heads
345
- self.scale = head_dim**-0.5
346
-
347
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
348
- self.proj = nn.Linear(dim, dim)
349
-
350
- self.use_rel_pos = use_rel_pos
351
- if self.use_rel_pos:
352
- assert (
353
- input_size is not None
354
- ), "Input size must be provided if using relative positional encoding."
355
- # initialize relative positional embeddings
356
-
357
- self.rel_pos_h = mx.zeros((2 * input_size[0] - 1, head_dim))
358
- self.rel_pos_w = mx.zeros((2 * input_size[1] - 1, head_dim))
359
-
360
- def __call__(self, x: mx.array):
361
- B, H, W, _ = x.shape
362
- x = mx.array(x)
363
- # qkv with shape (3, B, nHead, H * W, C)
364
- qkv = (
365
- self.qkv(x)
366
- .reshape(B, H * W, 3, self.num_heads, -1)
367
- .transpose(2, 0, 3, 1, 4)
368
- )
369
- # q, k, v with shape (B * nHead, H * W, C)
370
- q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1)
371
-
372
- def do_attention(q, k, v):
373
- attn = (q * self.scale) @ k.transpose(0, -1, -2)
374
- if self.use_rel_pos:
375
- attn = add_decomposed_rel_pos(
376
- attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
377
- )
378
-
379
- attn = mx.softmax(attn, axis=-1)
380
- x = (
381
- (attn @ v)
382
- .reshape(B, self.num_heads, H, W, -1)
383
- .transpose(0, 2, 3, 1, 4)
384
- .reshape(B, H, W, -1)
385
- )
386
-
387
- return x
388
-
389
- x = do_attention(q, k, v)
390
- x = self.proj(x)
391
-
392
- return x
393
-
394
-
395
- def window_partition(
396
- x: np.ndarray, window_size: int
397
- ) -> Tuple[np.ndarray, Tuple[int, int]]:
398
- """
399
- Partition into non-overlapping windows with padding if needed.
400
- Args:
401
- x (ndarray): input tokens with [B, H, W, C].
402
- window_size (int): window size.
403
-
404
- Returns:
405
- windows: windows after partition with [B * num_windows, window_size, window_size, C].
406
- (Hp, Wp): padded height and width before partition
407
- """
408
- B, H, W, C = x.shape
409
-
410
- pad_h = (window_size - H % window_size) % window_size
411
- pad_w = (window_size - W % window_size) % window_size
412
- if pad_h > 0 or pad_w > 0:
413
- x = np.pad(x, ((0, 0), (0, pad_h), (0, pad_w), (0, 0)))
414
- Hp, Wp = H + pad_h, W + pad_w
415
-
416
- x = x.reshape(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
417
- windows = x.transpose(0, 1, 3, 2, 4, 5).reshape(-1, window_size, window_size, C)
418
- return windows, (Hp, Wp)
419
-
420
-
421
- def window_unpartition(
422
- windows: np.ndarray,
423
- window_size: int,
424
- pad_hw: Tuple[int, int],
425
- hw: Tuple[int, int],
426
- ):
427
- """
428
- Window unpartition into original sequences and removing padding.
429
- Args:
430
- windows (ndarray): input tokens with [B * num_windows, window_size, window_size, C].
431
- window_size (int): window size.
432
- pad_hw (Tuple): padded height and width (Hp, Wp).
433
- hw (Tuple): original height and width (H, W) before padding.
434
-
435
- Returns:
436
- x: unpartitioned sequences with [B, H, W, C].
437
- """
438
- Hp, Wp = pad_hw
439
- H, W = hw
440
- B = windows.shape[0] // (Hp * Wp // window_size // window_size)
441
- x = windows.reshape(
442
- B, Hp // window_size, Wp // window_size, window_size, window_size, -1
443
- )
444
- x = x.transpose(0, 1, 3, 2, 4, 5).reshape(B, Hp, Wp, -1)
445
-
446
- if Hp > H or Wp > W:
447
- x = x[:, :H, :W, :]
448
- return x
449
-
450
-
451
- def get_rel_pos(q_size: int, k_size: int, rel_pos: np.ndarray) -> np.ndarray:
452
- """
453
- Get relative positional embeddings according to the relative positions of
454
- query and key sizes.
455
- Args:
456
- q_size (int): size of query q.
457
- k_size (int): size of key k.
458
- rel_pos (ndarray): relative position embeddings (L, C).
459
-
460
- Returns:
461
- Extracted positional embeddings according to relative positions.
462
- """
463
- rel_pos = np.array(rel_pos)
464
- max_rel_dist = int(2 * max(q_size, k_size) - 1)
465
- # Interpolate rel pos if needed.
466
- if rel_pos.shape[0] != max_rel_dist:
467
- # Interpolate rel pos.
468
- rel_pos_resized = np.expand_dims(rel_pos, axis=0)
469
- rel_pos_resized = np.transpose(rel_pos_resized, (0, 2, 1))
470
- rel_pos_resized = np.interp(
471
- np.linspace(0, max_rel_dist - 1, num=max_rel_dist),
472
- np.arange(rel_pos.shape[0]),
473
- rel_pos_resized[0],
474
- )
475
- rel_pos_resized = np.transpose(rel_pos_resized, (1, 0))
476
- else:
477
- rel_pos_resized = rel_pos
478
-
479
- # Scale the coords with short length if shapes for q and k are different.
480
- q_coords = np.arange(q_size)[:, np.newaxis] * max(k_size / q_size, 1.0)
481
- k_coords = np.arange(k_size)[np.newaxis, :] * max(q_size / k_size, 1.0)
482
- relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
483
- relative_coords = relative_coords.astype(np.int64)
484
- return rel_pos_resized[relative_coords]
485
-
486
-
487
- def add_decomposed_rel_pos(
488
- attn: np.ndarray,
489
- q: np.ndarray,
490
- rel_pos_h: np.ndarray,
491
- rel_pos_w: np.ndarray,
492
- q_size: Tuple[int, int],
493
- k_size: Tuple[int, int],
494
- ) -> np.ndarray:
495
- """
496
- Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
497
- https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
498
- Args:
499
- attn (ndarray): attention map.
500
- q (ndarray): query q in the attention layer with shape (B, q_h * q_w, C).
501
- rel_pos_h (ndarray): relative position embeddings (Lh, C) for height axis.
502
- rel_pos_w (ndarray): relative position embeddings (Lw, C) for width axis.
503
- q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
504
- k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
505
-
506
- Returns:
507
- attn (ndarray): attention map with added relative positional embeddings.
508
- """
509
- q_h, q_w = q_size
510
- k_h, k_w = k_size
511
- Rh = get_rel_pos(q_h, k_h, rel_pos_h)
512
- Rw = get_rel_pos(q_w, k_w, rel_pos_w)
513
-
514
- B, _, dim = q.shape
515
- r_q = q.reshape(B, q_h, q_w, dim)
516
-
517
- rel_h = np.einsum("bhwc,hkc->bhwk", r_q, Rh)
518
- rel_w = np.einsum("bhwc,wkc->bhwk", r_q, Rw)
519
-
520
- attn = (
521
- attn.reshape(B, q_h, q_w, k_h, k_w)
522
- + rel_h[:, :, :, :, np.newaxis]
523
- + rel_w[:, :, :, np.newaxis, :]
524
- ).reshape(B, q_h * q_w, k_h * k_w)
525
-
526
- return attn
527
-
528
-
529
- class PatchEmbed(nn.Module):
530
- """
531
- Image to Patch Embedding.
532
- """
533
-
534
- def __init__(
535
- self,
536
- kernel_size: Tuple[int, int] = (16, 16),
537
- stride: Tuple[int, int] = (16, 16),
538
- in_chans: int = 3,
539
- embed_dim: int = 768,
540
- ) -> None:
541
- """
542
- Args:
543
- kernel_size (Tuple): kernel size of the projection layer.
544
- stride (Tuple): stride of the projection layer.
545
- padding (Tuple): padding size of the projection layer.
546
- in_chans (int): Number of input image channels.
547
- embed_dim (int): Patch embedding dimension.
548
- """
549
- super().__init__()
550
-
551
- self.proj = nn.Conv2d(
552
- in_chans, embed_dim, kernel_size=kernel_size, stride=stride
553
- )
554
-
555
- def __call__(self, x: mx.array):
556
- x = self.proj(x)
557
- return x