nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
|
@@ -1,215 +0,0 @@
|
|
|
1
|
-
# Copied from transformers. Removed video-related code.
|
|
2
|
-
"""
|
|
3
|
-
Processor class for Qwen2-VL.
|
|
4
|
-
"""
|
|
5
|
-
|
|
6
|
-
from typing import Optional, Union
|
|
7
|
-
|
|
8
|
-
import numpy as np
|
|
9
|
-
|
|
10
|
-
from transformers.feature_extraction_utils import BatchFeature
|
|
11
|
-
from transformers.image_utils import ImageInput
|
|
12
|
-
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
|
|
13
|
-
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
|
14
|
-
from transformers.utils import logging
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
logger = logging.get_logger(__name__)
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class Qwen2VLImagesKwargs(ImagesKwargs):
|
|
21
|
-
min_pixels: Optional[int]
|
|
22
|
-
max_pixels: Optional[int]
|
|
23
|
-
patch_size: Optional[int]
|
|
24
|
-
temporal_patch_size: Optional[int]
|
|
25
|
-
merge_size: Optional[int]
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
class Qwen2VLProcessorKwargs(ProcessingKwargs, total=False):
|
|
29
|
-
images_kwargs: Qwen2VLImagesKwargs
|
|
30
|
-
_defaults = {
|
|
31
|
-
"text_kwargs": {
|
|
32
|
-
"padding": False,
|
|
33
|
-
"return_mm_token_type_ids": False,
|
|
34
|
-
},
|
|
35
|
-
}
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
class Qwen2VLProcessor(ProcessorMixin):
|
|
39
|
-
r"""
|
|
40
|
-
Constructs a Qwen2-VL processor which wraps a Qwen2-VL image processor and a Qwen2 tokenizer into a single processor.
|
|
41
|
-
[`Qwen2VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
|
|
42
|
-
[`~Qwen2VLProcessor.__call__`] and [`~Qwen2VLProcessor.decode`] for more information.
|
|
43
|
-
Args:
|
|
44
|
-
image_processor ([`Qwen2VLImageProcessor`], *optional*):
|
|
45
|
-
The image processor is a required input.
|
|
46
|
-
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
|
47
|
-
The tokenizer is a required input.
|
|
48
|
-
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
|
49
|
-
in a chat into a tokenizable string.
|
|
50
|
-
"""
|
|
51
|
-
|
|
52
|
-
attributes = ["image_processor", "tokenizer"]
|
|
53
|
-
image_processor_class = "AutoImageProcessor"
|
|
54
|
-
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
|
55
|
-
|
|
56
|
-
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
|
57
|
-
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
|
58
|
-
self.image_token_id = (
|
|
59
|
-
tokenizer.image_token_id
|
|
60
|
-
if getattr(tokenizer, "image_token_id", None)
|
|
61
|
-
else tokenizer.convert_tokens_to_ids(self.image_token)
|
|
62
|
-
)
|
|
63
|
-
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
64
|
-
|
|
65
|
-
def __call__(
|
|
66
|
-
self,
|
|
67
|
-
images: ImageInput = None,
|
|
68
|
-
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
|
|
69
|
-
**kwargs: Unpack[Qwen2VLProcessorKwargs],
|
|
70
|
-
) -> BatchFeature:
|
|
71
|
-
"""
|
|
72
|
-
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
73
|
-
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
|
|
74
|
-
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
|
75
|
-
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
|
|
76
|
-
|
|
77
|
-
Args:
|
|
78
|
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
|
|
79
|
-
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
80
|
-
tensor. Both channels-first and channels-last formats are supported.
|
|
81
|
-
text (`str`, `list[str]`, `list[list[str]]`):
|
|
82
|
-
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
83
|
-
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
84
|
-
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
85
|
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
86
|
-
If set, will return tensors of a particular framework. Acceptable values are:
|
|
87
|
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
88
|
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
89
|
-
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
90
|
-
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
91
|
-
|
|
92
|
-
Returns:
|
|
93
|
-
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
|
94
|
-
|
|
95
|
-
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
|
96
|
-
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
97
|
-
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
98
|
-
`None`).
|
|
99
|
-
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
|
100
|
-
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
|
101
|
-
"""
|
|
102
|
-
output_kwargs = self._merge_kwargs(
|
|
103
|
-
Qwen2VLProcessorKwargs,
|
|
104
|
-
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
|
105
|
-
**kwargs,
|
|
106
|
-
)
|
|
107
|
-
|
|
108
|
-
image_inputs = {}
|
|
109
|
-
if images is not None:
|
|
110
|
-
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
|
|
111
|
-
image_grid_thw = image_inputs["image_grid_thw"]
|
|
112
|
-
|
|
113
|
-
if not isinstance(text, list):
|
|
114
|
-
text = [text]
|
|
115
|
-
|
|
116
|
-
text = text.copy() # below lines change text in-place
|
|
117
|
-
|
|
118
|
-
if images is not None:
|
|
119
|
-
merge_length = self.image_processor.merge_size**2
|
|
120
|
-
index = 0
|
|
121
|
-
for i in range(len(text)):
|
|
122
|
-
while self.image_token in text[i]:
|
|
123
|
-
num_image_tokens = image_grid_thw[index].prod() // merge_length
|
|
124
|
-
text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1)
|
|
125
|
-
index += 1
|
|
126
|
-
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
|
127
|
-
|
|
128
|
-
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
|
129
|
-
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
|
|
130
|
-
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"], return_tensors=None)
|
|
131
|
-
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
|
|
132
|
-
|
|
133
|
-
if return_mm_token_type_ids:
|
|
134
|
-
array_ids = np.array(text_inputs["input_ids"])
|
|
135
|
-
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
|
|
136
|
-
mm_token_type_ids[array_ids == self.image_token_id] = 1
|
|
137
|
-
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
|
138
|
-
|
|
139
|
-
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
|
|
140
|
-
|
|
141
|
-
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
|
142
|
-
"""
|
|
143
|
-
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
|
|
144
|
-
Args:
|
|
145
|
-
image_sizes (`list[list[int]]`, *optional*):
|
|
146
|
-
The input sizes formatted as (height, width) per each image.
|
|
147
|
-
Returns:
|
|
148
|
-
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
|
|
149
|
-
input modalities, along with other useful data.
|
|
150
|
-
"""
|
|
151
|
-
|
|
152
|
-
vision_data = {}
|
|
153
|
-
if image_sizes is not None:
|
|
154
|
-
images_kwargs = Qwen2VLProcessorKwargs._defaults.get("images_kwargs", {})
|
|
155
|
-
images_kwargs.update(kwargs)
|
|
156
|
-
merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size
|
|
157
|
-
|
|
158
|
-
num_image_patches = [
|
|
159
|
-
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
|
|
160
|
-
for image_size in image_sizes
|
|
161
|
-
]
|
|
162
|
-
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
|
|
163
|
-
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
|
164
|
-
|
|
165
|
-
return MultiModalData(**vision_data)
|
|
166
|
-
|
|
167
|
-
def batch_decode(self, *args, **kwargs):
|
|
168
|
-
"""
|
|
169
|
-
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
170
|
-
refer to the docstring of this method for more information.
|
|
171
|
-
"""
|
|
172
|
-
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
173
|
-
|
|
174
|
-
def decode(self, *args, **kwargs):
|
|
175
|
-
"""
|
|
176
|
-
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
177
|
-
the docstring of this method for more information.
|
|
178
|
-
"""
|
|
179
|
-
return self.tokenizer.decode(*args, **kwargs)
|
|
180
|
-
|
|
181
|
-
def post_process_image_text_to_text(
|
|
182
|
-
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
|
|
183
|
-
):
|
|
184
|
-
"""
|
|
185
|
-
Post-process the output of the model to decode the text.
|
|
186
|
-
|
|
187
|
-
Args:
|
|
188
|
-
generated_outputs (`torch.Tensor` or `np.ndarray`):
|
|
189
|
-
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
|
|
190
|
-
or `(sequence_length,)`.
|
|
191
|
-
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
|
192
|
-
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
|
|
193
|
-
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
|
194
|
-
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
|
|
195
|
-
**kwargs:
|
|
196
|
-
Additional arguments to be passed to the tokenizer's `batch_decode method`.
|
|
197
|
-
|
|
198
|
-
Returns:
|
|
199
|
-
`list[str]`: The decoded text.
|
|
200
|
-
"""
|
|
201
|
-
return self.tokenizer.batch_decode(
|
|
202
|
-
generated_outputs,
|
|
203
|
-
skip_special_tokens=skip_special_tokens,
|
|
204
|
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
205
|
-
**kwargs,
|
|
206
|
-
)
|
|
207
|
-
|
|
208
|
-
@property
|
|
209
|
-
def model_input_names(self):
|
|
210
|
-
tokenizer_input_names = self.tokenizer.model_input_names
|
|
211
|
-
image_processor_input_names = self.image_processor.model_input_names
|
|
212
|
-
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
__all__ = ["Qwen2VLProcessor"]
|
|
@@ -1,474 +0,0 @@
|
|
|
1
|
-
from enum import Enum
|
|
2
|
-
from functools import partial
|
|
3
|
-
from typing import Any, Dict, List, Optional, Union
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
class MessageFormat(Enum):
|
|
7
|
-
"""Enum for different message format types."""
|
|
8
|
-
|
|
9
|
-
LIST_WITH_IMAGE = "list_with_image"
|
|
10
|
-
LIST_WITH_IMAGE_FIRST = "list_with_image_first"
|
|
11
|
-
LIST_WITH_IMAGE_TYPE = "list_with_image_type"
|
|
12
|
-
LIST_WITH_IMAGE_TYPE_TEXT = "list_with_image_type_text"
|
|
13
|
-
LIST_WITH_IMAGE_TYPE_TEXT_IMAGE_LAST = "list_with_image_type_text_image_last"
|
|
14
|
-
IMAGE_TOKEN = "image_token"
|
|
15
|
-
IMAGE_TOKEN_PIPE = "image_token_pipe"
|
|
16
|
-
START_IMAGE_TOKEN = "start_image_token"
|
|
17
|
-
IMAGE_TOKEN_NEWLINE = "image_token_newline"
|
|
18
|
-
NUMBERED_IMAGE_TOKENS = "numbered_image_tokens"
|
|
19
|
-
PROMPT_ONLY = "prompt_only"
|
|
20
|
-
PROMPT_WITH_IMAGE_TOKEN = "prompt_with_image_token"
|
|
21
|
-
PROMPT_WITH_START_IMAGE_TOKEN = "prompt_with_start_image_token"
|
|
22
|
-
VIDEO_WITH_TEXT = "video_with_text"
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
# Model configuration mapping
|
|
26
|
-
MODEL_CONFIG = {
|
|
27
|
-
# List with image format models
|
|
28
|
-
"idefics2": MessageFormat.LIST_WITH_IMAGE,
|
|
29
|
-
"idefics3": MessageFormat.LIST_WITH_IMAGE_FIRST,
|
|
30
|
-
"aya_vision": MessageFormat.LIST_WITH_IMAGE,
|
|
31
|
-
"qwen2_vl": MessageFormat.LIST_WITH_IMAGE,
|
|
32
|
-
"qwen2_5_vl": MessageFormat.LIST_WITH_IMAGE_FIRST,
|
|
33
|
-
"mistral3": MessageFormat.LIST_WITH_IMAGE_FIRST,
|
|
34
|
-
"internvl_chat": MessageFormat.LIST_WITH_IMAGE_TYPE,
|
|
35
|
-
"kimi_vl": MessageFormat.LIST_WITH_IMAGE,
|
|
36
|
-
"gemma3": MessageFormat.START_IMAGE_TOKEN,
|
|
37
|
-
"gemma3n": MessageFormat.LIST_WITH_IMAGE_TYPE_TEXT_IMAGE_LAST,
|
|
38
|
-
"llama4": MessageFormat.LIST_WITH_IMAGE,
|
|
39
|
-
"smolvlm": MessageFormat.LIST_WITH_IMAGE_FIRST,
|
|
40
|
-
"llava": MessageFormat.LIST_WITH_IMAGE,
|
|
41
|
-
"llava_next": MessageFormat.LIST_WITH_IMAGE,
|
|
42
|
-
"mllama": MessageFormat.LIST_WITH_IMAGE,
|
|
43
|
-
"pixtral": MessageFormat.LIST_WITH_IMAGE_TYPE,
|
|
44
|
-
# Token-based models
|
|
45
|
-
"llava-qwen2": MessageFormat.IMAGE_TOKEN_NEWLINE,
|
|
46
|
-
"bunny-llama": MessageFormat.IMAGE_TOKEN_NEWLINE,
|
|
47
|
-
"phi3_v": MessageFormat.NUMBERED_IMAGE_TOKENS,
|
|
48
|
-
"multi_modality": MessageFormat.IMAGE_TOKEN,
|
|
49
|
-
"deepseek_vl_v2": MessageFormat.IMAGE_TOKEN_NEWLINE,
|
|
50
|
-
# Prompt-only models
|
|
51
|
-
"florence2": MessageFormat.PROMPT_ONLY,
|
|
52
|
-
"molmo": MessageFormat.PROMPT_ONLY,
|
|
53
|
-
"paligemma": MessageFormat.PROMPT_WITH_IMAGE_TOKEN,
|
|
54
|
-
}
|
|
55
|
-
|
|
56
|
-
# Models that don't support multi-image
|
|
57
|
-
SINGLE_IMAGE_ONLY_MODELS = {
|
|
58
|
-
"llava_next",
|
|
59
|
-
"llava-qwen2",
|
|
60
|
-
"bunny-llama",
|
|
61
|
-
"paligemma",
|
|
62
|
-
"multi_modality",
|
|
63
|
-
"mllama",
|
|
64
|
-
}
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
class MessageBuilder:
|
|
68
|
-
"""Builder for creating messages in various formats."""
|
|
69
|
-
|
|
70
|
-
@staticmethod
|
|
71
|
-
def text_message(text: str) -> Dict[str, str]:
|
|
72
|
-
"""Create a simple text message."""
|
|
73
|
-
return {"type": "text", "text": text}
|
|
74
|
-
|
|
75
|
-
@staticmethod
|
|
76
|
-
def content_message(content: str) -> Dict[str, str]:
|
|
77
|
-
"""Create a content-type text message."""
|
|
78
|
-
return {"type": "text", "content": content}
|
|
79
|
-
|
|
80
|
-
@staticmethod
|
|
81
|
-
def image_message() -> Dict[str, str]:
|
|
82
|
-
"""Create an image message."""
|
|
83
|
-
return {"type": "image"}
|
|
84
|
-
|
|
85
|
-
@staticmethod
|
|
86
|
-
def audio_message() -> Dict[str, str]:
|
|
87
|
-
"""Create an audio message."""
|
|
88
|
-
return {"type": "audio"}
|
|
89
|
-
|
|
90
|
-
@staticmethod
|
|
91
|
-
def video_message(
|
|
92
|
-
video_path: str, max_pixels: int = 224 * 224, fps: int = 1
|
|
93
|
-
) -> Dict[str, Any]:
|
|
94
|
-
"""Create a video message."""
|
|
95
|
-
return {
|
|
96
|
-
"type": "video",
|
|
97
|
-
"video": video_path,
|
|
98
|
-
"max_pixels": max_pixels,
|
|
99
|
-
"fps": fps,
|
|
100
|
-
}
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
class MessageFormatter:
|
|
104
|
-
"""Handles formatting messages for different model types."""
|
|
105
|
-
|
|
106
|
-
def __init__(self, model_name: str):
|
|
107
|
-
self.model_name = model_name.lower()
|
|
108
|
-
self.format_type = MODEL_CONFIG.get(self.model_name)
|
|
109
|
-
if not self.format_type:
|
|
110
|
-
raise ValueError(f"Unsupported model: {model_name}")
|
|
111
|
-
|
|
112
|
-
def format_message(
|
|
113
|
-
self,
|
|
114
|
-
prompt: str,
|
|
115
|
-
role: str = "user",
|
|
116
|
-
skip_image_token: bool = False,
|
|
117
|
-
skip_audio_token: bool = False,
|
|
118
|
-
num_images: int = 1,
|
|
119
|
-
num_audios: int = 1,
|
|
120
|
-
**kwargs,
|
|
121
|
-
) -> Union[str, Dict[str, Any]]:
|
|
122
|
-
"""Format a message based on the model type."""
|
|
123
|
-
|
|
124
|
-
# Check multi-image support
|
|
125
|
-
if num_images > 1 and self.model_name in SINGLE_IMAGE_ONLY_MODELS:
|
|
126
|
-
raise ValueError(
|
|
127
|
-
f"Model {self.model_name} does not support multi-image chat. "
|
|
128
|
-
f"Please only use 1 image."
|
|
129
|
-
)
|
|
130
|
-
|
|
131
|
-
# Handle video format for specific models
|
|
132
|
-
if self.model_name in ["qwen2_vl", "qwen2_5_vl"] and kwargs.get("video"):
|
|
133
|
-
return self._format_video_message(prompt, kwargs)
|
|
134
|
-
|
|
135
|
-
# Route to appropriate formatter
|
|
136
|
-
formatter_map = {
|
|
137
|
-
MessageFormat.LIST_WITH_IMAGE: self._format_list_with_image,
|
|
138
|
-
MessageFormat.LIST_WITH_IMAGE_FIRST: partial(
|
|
139
|
-
self._format_list_with_image, image_first=True
|
|
140
|
-
),
|
|
141
|
-
MessageFormat.LIST_WITH_IMAGE_TYPE: self._format_list_with_image_type,
|
|
142
|
-
MessageFormat.LIST_WITH_IMAGE_TYPE_TEXT: partial(
|
|
143
|
-
self._format_list_with_image_type, message_type="text"
|
|
144
|
-
),
|
|
145
|
-
MessageFormat.LIST_WITH_IMAGE_TYPE_TEXT_IMAGE_LAST: partial(
|
|
146
|
-
self._format_list_with_image_type,
|
|
147
|
-
message_type="text",
|
|
148
|
-
image_first=False,
|
|
149
|
-
),
|
|
150
|
-
MessageFormat.IMAGE_TOKEN: partial(
|
|
151
|
-
self._format_with_token, token="<image>"
|
|
152
|
-
),
|
|
153
|
-
MessageFormat.IMAGE_TOKEN_PIPE: partial(
|
|
154
|
-
self._format_with_token, token="<|image|>"
|
|
155
|
-
),
|
|
156
|
-
MessageFormat.START_IMAGE_TOKEN: partial(
|
|
157
|
-
self._format_with_token, token="<start_of_image>", image_first=False
|
|
158
|
-
),
|
|
159
|
-
MessageFormat.IMAGE_TOKEN_NEWLINE: partial(
|
|
160
|
-
self._format_with_token, token="<image>\n"
|
|
161
|
-
),
|
|
162
|
-
MessageFormat.NUMBERED_IMAGE_TOKENS: self._format_numbered_tokens,
|
|
163
|
-
MessageFormat.PROMPT_ONLY: lambda *args, **kw: prompt,
|
|
164
|
-
MessageFormat.PROMPT_WITH_IMAGE_TOKEN: lambda *args, **kw: "<image>"
|
|
165
|
-
* num_images
|
|
166
|
-
+ prompt,
|
|
167
|
-
MessageFormat.PROMPT_WITH_START_IMAGE_TOKEN: lambda *args, **kw: prompt
|
|
168
|
-
+ "<start_of_image>" * num_images,
|
|
169
|
-
MessageFormat.VIDEO_WITH_TEXT: self._format_video_message,
|
|
170
|
-
}
|
|
171
|
-
|
|
172
|
-
formatter = formatter_map.get(self.format_type)
|
|
173
|
-
return formatter(
|
|
174
|
-
prompt,
|
|
175
|
-
role,
|
|
176
|
-
skip_image_token,
|
|
177
|
-
skip_audio_token,
|
|
178
|
-
num_images,
|
|
179
|
-
num_audios,
|
|
180
|
-
**kwargs,
|
|
181
|
-
)
|
|
182
|
-
|
|
183
|
-
def _format_list_with_image(
|
|
184
|
-
self,
|
|
185
|
-
prompt: str,
|
|
186
|
-
role: str,
|
|
187
|
-
skip_image_token: bool,
|
|
188
|
-
skip_audio_token: bool,
|
|
189
|
-
num_images: int,
|
|
190
|
-
num_audios: int,
|
|
191
|
-
image_first: bool = False,
|
|
192
|
-
**kwargs,
|
|
193
|
-
) -> Dict[str, Any]:
|
|
194
|
-
"""Format as a list with image tokens."""
|
|
195
|
-
content = [MessageBuilder.text_message(prompt)]
|
|
196
|
-
|
|
197
|
-
if role == "user" and not skip_image_token:
|
|
198
|
-
image_tokens = [MessageBuilder.image_message()] * num_images
|
|
199
|
-
content = image_tokens + content if image_first else content + image_tokens
|
|
200
|
-
|
|
201
|
-
return {"role": role, "content": content}
|
|
202
|
-
|
|
203
|
-
def _format_list_with_image_type(
|
|
204
|
-
self,
|
|
205
|
-
prompt: str,
|
|
206
|
-
role: str,
|
|
207
|
-
skip_image_token: bool,
|
|
208
|
-
skip_audio_token: bool,
|
|
209
|
-
num_images: int,
|
|
210
|
-
num_audios: int,
|
|
211
|
-
message_type: str = "content",
|
|
212
|
-
image_first: bool = True,
|
|
213
|
-
**kwargs,
|
|
214
|
-
) -> Dict[str, Any]:
|
|
215
|
-
"""Format as a list with typed messages."""
|
|
216
|
-
msg_func = (
|
|
217
|
-
MessageBuilder.content_message
|
|
218
|
-
if message_type == "content"
|
|
219
|
-
else MessageBuilder.text_message
|
|
220
|
-
)
|
|
221
|
-
message = {"role": role, "content": [msg_func(prompt)]}
|
|
222
|
-
|
|
223
|
-
if role == "user":
|
|
224
|
-
if not skip_image_token:
|
|
225
|
-
message["content"] = (
|
|
226
|
-
[MessageBuilder.image_message()] * num_images + message["content"]
|
|
227
|
-
if image_first
|
|
228
|
-
else message["content"]
|
|
229
|
-
+ [MessageBuilder.image_message()] * num_images
|
|
230
|
-
)
|
|
231
|
-
if not skip_audio_token:
|
|
232
|
-
message["content"] = (
|
|
233
|
-
message["content"] + [MessageBuilder.audio_message()] * num_audios
|
|
234
|
-
)
|
|
235
|
-
|
|
236
|
-
if role == "assistant":
|
|
237
|
-
message["content"] = message["content"][0].get(
|
|
238
|
-
"content", message["content"][0].get("text")
|
|
239
|
-
)
|
|
240
|
-
|
|
241
|
-
return message
|
|
242
|
-
|
|
243
|
-
def _format_with_token(
|
|
244
|
-
self,
|
|
245
|
-
prompt: str,
|
|
246
|
-
role: str,
|
|
247
|
-
skip_image_token: bool,
|
|
248
|
-
skip_audio_token: bool,
|
|
249
|
-
num_images: int,
|
|
250
|
-
num_audios: int,
|
|
251
|
-
token: str,
|
|
252
|
-
image_first: bool = True,
|
|
253
|
-
**kwargs,
|
|
254
|
-
) -> Dict[str, Any]:
|
|
255
|
-
"""Format with image tokens in the text."""
|
|
256
|
-
content = prompt
|
|
257
|
-
|
|
258
|
-
if role == "user" and not skip_image_token:
|
|
259
|
-
prefix = token * num_images
|
|
260
|
-
content = f"{prefix}{content}" if image_first else f"{content}{prefix}"
|
|
261
|
-
|
|
262
|
-
return {"role": role, "content": content}
|
|
263
|
-
|
|
264
|
-
def _format_numbered_tokens(
|
|
265
|
-
self,
|
|
266
|
-
prompt: str,
|
|
267
|
-
role: str,
|
|
268
|
-
skip_image_token: bool,
|
|
269
|
-
skip_audio_token: bool,
|
|
270
|
-
num_images: int,
|
|
271
|
-
num_audios: int,
|
|
272
|
-
**kwargs,
|
|
273
|
-
) -> Dict[str, Any]:
|
|
274
|
-
"""Format with numbered image tokens."""
|
|
275
|
-
content = prompt
|
|
276
|
-
|
|
277
|
-
if role == "user" and not skip_image_token:
|
|
278
|
-
# phi3_v uses single token regardless of num_images
|
|
279
|
-
prefix = (
|
|
280
|
-
"<|image_1|>"
|
|
281
|
-
if self.model_name == "phi3_v"
|
|
282
|
-
else " ".join([f"<|image_{i+1}|>" for i in range(num_images)])
|
|
283
|
-
)
|
|
284
|
-
content = f"{prefix}{content}"
|
|
285
|
-
|
|
286
|
-
return {"role": role, "content": content}
|
|
287
|
-
|
|
288
|
-
def _format_video_message(
|
|
289
|
-
self,
|
|
290
|
-
prompt: str,
|
|
291
|
-
role: str = "user",
|
|
292
|
-
skip_image_token: bool = False,
|
|
293
|
-
skip_audio_token: bool = False,
|
|
294
|
-
num_images: int = 0,
|
|
295
|
-
num_audios: int = 0,
|
|
296
|
-
**kwargs,
|
|
297
|
-
) -> Dict[str, Any]:
|
|
298
|
-
"""Format a video message with text."""
|
|
299
|
-
return {
|
|
300
|
-
"role": role,
|
|
301
|
-
"content": [
|
|
302
|
-
MessageBuilder.video_message(
|
|
303
|
-
kwargs["video"],
|
|
304
|
-
kwargs.get("max_pixels", 224 * 224),
|
|
305
|
-
kwargs.get("fps", 1),
|
|
306
|
-
),
|
|
307
|
-
MessageBuilder.text_message(prompt),
|
|
308
|
-
],
|
|
309
|
-
}
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
def get_message_json(
|
|
313
|
-
model_name: str,
|
|
314
|
-
prompt: str,
|
|
315
|
-
role: str = "user",
|
|
316
|
-
skip_image_token: bool = False,
|
|
317
|
-
skip_audio_token: bool = False,
|
|
318
|
-
num_images: int = 0,
|
|
319
|
-
num_audios: int = 0,
|
|
320
|
-
**kwargs,
|
|
321
|
-
) -> Union[str, Dict[str, Any]]:
|
|
322
|
-
"""
|
|
323
|
-
Get the appropriate JSON message based on the specified model.
|
|
324
|
-
|
|
325
|
-
Args:
|
|
326
|
-
model_name: The model for which to generate the message
|
|
327
|
-
prompt: The text prompt to be included in the message
|
|
328
|
-
role: The role of the message (default: "user")
|
|
329
|
-
skip_image_token: Whether to skip adding image tokens
|
|
330
|
-
skip_audio_token: Whether to skip adding audio tokens
|
|
331
|
-
num_images: Number of image tokens to add
|
|
332
|
-
num_audios: Number of audio tokens to add
|
|
333
|
-
**kwargs: Additional arguments (e.g., video path, max_pixels, fps)
|
|
334
|
-
|
|
335
|
-
Returns:
|
|
336
|
-
A dictionary or string representing the message for the specified model
|
|
337
|
-
"""
|
|
338
|
-
formatter = MessageFormatter(model_name)
|
|
339
|
-
|
|
340
|
-
return formatter.format_message(
|
|
341
|
-
prompt,
|
|
342
|
-
role,
|
|
343
|
-
skip_image_token,
|
|
344
|
-
skip_audio_token,
|
|
345
|
-
num_images,
|
|
346
|
-
num_audios,
|
|
347
|
-
**kwargs,
|
|
348
|
-
)
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
def get_chat_template(
|
|
352
|
-
processor,
|
|
353
|
-
messages: List[Dict[str, Any]],
|
|
354
|
-
add_generation_prompt: bool,
|
|
355
|
-
tokenize: bool = False,
|
|
356
|
-
**kwargs,
|
|
357
|
-
) -> Any:
|
|
358
|
-
"""Apply chat template using processor's tokenizer."""
|
|
359
|
-
try:
|
|
360
|
-
processor = (
|
|
361
|
-
processor
|
|
362
|
-
if "chat_template" in processor.__dict__.keys()
|
|
363
|
-
else processor.tokenizer
|
|
364
|
-
)
|
|
365
|
-
|
|
366
|
-
return processor.apply_chat_template(
|
|
367
|
-
messages,
|
|
368
|
-
tokenize=tokenize,
|
|
369
|
-
add_generation_prompt=add_generation_prompt,
|
|
370
|
-
**kwargs,
|
|
371
|
-
)
|
|
372
|
-
except AttributeError:
|
|
373
|
-
raise ValueError(
|
|
374
|
-
"Error: processor does not have 'chat_template' or 'tokenizer' attribute."
|
|
375
|
-
)
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
def apply_chat_template(
|
|
379
|
-
processor,
|
|
380
|
-
config: Union[Dict[str, Any], Any],
|
|
381
|
-
prompt: Union[str, Dict[str, Any], List[Any]],
|
|
382
|
-
add_generation_prompt: bool = True,
|
|
383
|
-
return_messages: bool = False,
|
|
384
|
-
num_images: int = 0,
|
|
385
|
-
num_audios: int = 0,
|
|
386
|
-
**kwargs,
|
|
387
|
-
) -> Union[List[Dict[str, Any]], str, Any]:
|
|
388
|
-
"""
|
|
389
|
-
Apply chat template to prompts.
|
|
390
|
-
|
|
391
|
-
Args:
|
|
392
|
-
processor: The processor with chat template functionality
|
|
393
|
-
config: Model configuration
|
|
394
|
-
prompt: Single prompt string, dict, or list of prompts
|
|
395
|
-
add_generation_prompt: Whether to add generation prompt
|
|
396
|
-
return_messages: Whether to return messages list instead of template
|
|
397
|
-
num_images: Number of images in the input
|
|
398
|
-
num_audios: Number of audio files in the input
|
|
399
|
-
**kwargs: Additional arguments for message formatting
|
|
400
|
-
|
|
401
|
-
Returns:
|
|
402
|
-
Formatted messages or chat template
|
|
403
|
-
"""
|
|
404
|
-
config = config if isinstance(config, dict) else config.__dict__
|
|
405
|
-
model_type = config["model_type"]
|
|
406
|
-
|
|
407
|
-
# Build messages from prompts
|
|
408
|
-
messages = []
|
|
409
|
-
|
|
410
|
-
if isinstance(prompt, str):
|
|
411
|
-
# Single string prompt
|
|
412
|
-
messages.append(
|
|
413
|
-
get_message_json(
|
|
414
|
-
model_type,
|
|
415
|
-
prompt,
|
|
416
|
-
num_images=num_images,
|
|
417
|
-
num_audios=num_audios,
|
|
418
|
-
**kwargs,
|
|
419
|
-
)
|
|
420
|
-
)
|
|
421
|
-
elif isinstance(prompt, dict):
|
|
422
|
-
# Single dict prompt
|
|
423
|
-
messages.append(
|
|
424
|
-
get_message_json(
|
|
425
|
-
model_type,
|
|
426
|
-
prompt["content"],
|
|
427
|
-
prompt["role"],
|
|
428
|
-
num_images=num_images,
|
|
429
|
-
num_audios=num_audios,
|
|
430
|
-
**kwargs,
|
|
431
|
-
)
|
|
432
|
-
)
|
|
433
|
-
elif isinstance(prompt, list):
|
|
434
|
-
# List of prompts
|
|
435
|
-
for i, p in enumerate(prompt):
|
|
436
|
-
if isinstance(p, str):
|
|
437
|
-
is_first = i == 0
|
|
438
|
-
messages.append(
|
|
439
|
-
get_message_json(
|
|
440
|
-
model_type,
|
|
441
|
-
p,
|
|
442
|
-
skip_image_token=not is_first,
|
|
443
|
-
skip_audio_token=not is_first,
|
|
444
|
-
num_images=num_images,
|
|
445
|
-
num_audios=num_audios,
|
|
446
|
-
**kwargs,
|
|
447
|
-
)
|
|
448
|
-
)
|
|
449
|
-
elif isinstance(p, dict):
|
|
450
|
-
role = p.get("role", "user")
|
|
451
|
-
is_first = i == 0 or (i == 1 and role not in ["system", "assistant"])
|
|
452
|
-
messages.append(
|
|
453
|
-
get_message_json(
|
|
454
|
-
model_type,
|
|
455
|
-
p["content"],
|
|
456
|
-
role,
|
|
457
|
-
skip_image_token=not is_first
|
|
458
|
-
or role in ["system", "assistant"],
|
|
459
|
-
skip_audio_token=not is_first
|
|
460
|
-
or role in ["system", "assistant"],
|
|
461
|
-
num_images=num_images,
|
|
462
|
-
num_audios=num_audios,
|
|
463
|
-
**kwargs,
|
|
464
|
-
)
|
|
465
|
-
)
|
|
466
|
-
|
|
467
|
-
if return_messages:
|
|
468
|
-
return messages
|
|
469
|
-
|
|
470
|
-
# Some models only need the last message
|
|
471
|
-
if model_type in ["paligemma", "molmo", "florence2"]:
|
|
472
|
-
return messages[-1]
|
|
473
|
-
|
|
474
|
-
return get_chat_template(processor, messages, add_generation_prompt)
|