nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,233 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- hidden_size: int
14
- num_attention_heads: int
15
- patch_size: int
16
- num_hidden_layers: int = 12
17
- intermediate_size: int = 3072
18
- image_size: int = 224
19
- num_channels: int = 3
20
- layer_norm_eps: float = 1e-6
21
-
22
- @classmethod
23
- def from_dict(cls, params):
24
- return cls(
25
- **{
26
- k: v
27
- for k, v in params.items()
28
- if k in inspect.signature(cls).parameters
29
- }
30
- )
31
-
32
-
33
- def check_array_shape(arr):
34
- shape = arr.shape
35
-
36
- # Check if the shape has 4 dimensions
37
- if len(shape) != 4:
38
- return False
39
-
40
- out_channels, kH, KW, _ = shape
41
-
42
- # Check if out_channels is the largest, and kH and KW are the same
43
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
44
- return True
45
- else:
46
- return False
47
-
48
-
49
- class Attention(nn.Module):
50
- def __init__(
51
- self,
52
- dims: int,
53
- num_heads: int,
54
- query_input_dims: Optional[int] = None,
55
- key_input_dims: Optional[int] = None,
56
- value_input_dims: Optional[int] = None,
57
- value_dims: Optional[int] = None,
58
- value_output_dims: Optional[int] = None,
59
- bias: bool = True,
60
- ):
61
- super().__init__()
62
-
63
- if (dims % num_heads) != 0:
64
- raise ValueError(
65
- "The input feature dimensions should be divisible by the "
66
- f"number of heads ({dims} % {num_heads}) != 0"
67
- )
68
-
69
- query_input_dims = query_input_dims or dims
70
- key_input_dims = key_input_dims or dims
71
- value_input_dims = value_input_dims or key_input_dims
72
- value_dims = value_dims or dims
73
- value_output_dims = value_output_dims or dims
74
-
75
- self.num_heads = num_heads
76
- head_dim = dims // num_heads
77
- self.scale = head_dim**-0.5
78
-
79
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
80
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
81
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
82
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
83
-
84
- def __call__(self, x, mask=None):
85
- queries = self.q_proj(x)
86
- keys = self.k_proj(x)
87
- values = self.v_proj(x)
88
-
89
- num_heads = self.num_heads
90
- B, L, D = queries.shape
91
- _, S, _ = keys.shape
92
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
93
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
94
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
95
-
96
- output = mx.fast.scaled_dot_product_attention(
97
- queries, keys, values, scale=self.scale, mask=mask
98
- )
99
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
100
- return self.out_proj(output)
101
-
102
-
103
- class MLP(nn.Module):
104
- def __init__(self, config: VisionConfig):
105
- super().__init__()
106
- self.activation_fn = nn.GELU(approx="precise")
107
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
108
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
109
-
110
- def __call__(self, x: mx.array) -> mx.array:
111
- x = self.fc1(x)
112
- x = self.activation_fn(x)
113
- x = self.fc2(x)
114
- return x
115
-
116
-
117
- class EncoderLayer(nn.Module):
118
- def __init__(self, config: VisionConfig):
119
- super().__init__()
120
- self.embed_dim = config.hidden_size
121
- self.self_attn = Attention(
122
- config.hidden_size, config.num_attention_heads, bias=True
123
- )
124
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
125
- self.mlp = MLP(config)
126
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
127
-
128
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
129
- r = self.self_attn(self.layer_norm1(x), mask)
130
- h = x + r
131
- r = self.mlp(self.layer_norm2(h))
132
- return h + r
133
-
134
-
135
- class Encoder(nn.Module):
136
- def __init__(self, config: VisionConfig):
137
- super().__init__()
138
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
139
-
140
- def __call__(
141
- self,
142
- x: mx.array,
143
- output_hidden_states: Optional[bool] = None,
144
- mask: Optional[mx.array] = None,
145
- ) -> mx.array:
146
- encoder_states = (x,) if output_hidden_states else None
147
- h = x
148
- for l in self.layers:
149
- x = l(x, mask=mask)
150
- if output_hidden_states:
151
- encoder_states = encoder_states + (x,)
152
-
153
- h = x
154
-
155
- return (h, encoder_states)
156
-
157
-
158
- class VisionEmbeddings(nn.Module):
159
- def __init__(self, config: VisionConfig):
160
- super().__init__()
161
- self.config = config
162
- self.embed_dim = config.hidden_size
163
- self.image_size = config.image_size
164
- self.patch_size = config.patch_size
165
-
166
- self.patch_embedding = nn.Conv2d(
167
- in_channels=config.num_channels,
168
- out_channels=self.embed_dim,
169
- kernel_size=self.patch_size,
170
- stride=self.patch_size,
171
- )
172
-
173
- self.num_patches = (self.image_size // self.patch_size) ** 2
174
- self.num_positions = self.num_patches
175
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
176
-
177
- def __call__(self, x: mx.array) -> mx.array:
178
- patch_embeddings = self.patch_embedding(x)
179
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
180
- position_ids = mx.array(mx.arange(self.num_positions)[None, :])
181
- embeddings = patch_embeddings
182
- embeddings += self.position_embedding(position_ids)
183
- return embeddings
184
-
185
-
186
- class VisionModel(nn.Module):
187
- def __init__(self, config: VisionConfig):
188
- super().__init__()
189
- self.model_type = config.model_type
190
- if self.model_type not in [
191
- "siglip_vision_model",
192
- "idefics3",
193
- "idefics3_vision",
194
- "smolvlm_vision",
195
- ]:
196
- raise ValueError(f"Unsupported model type: {self.model_type}")
197
-
198
- self.embeddings = VisionEmbeddings(config)
199
- self.encoder = Encoder(config)
200
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
201
-
202
- def __call__(
203
- self,
204
- x: mx.array,
205
- output_hidden_states: Optional[bool] = None,
206
- ) -> mx.array:
207
- x = self.embeddings(x)
208
- x = x.astype(self.embeddings.patch_embedding.weight.dtype)
209
- encoder_outputs = self.encoder(
210
- x=x, output_hidden_states=output_hidden_states, mask=None
211
- )
212
- pooler_output = self.post_layernorm(encoder_outputs[0])
213
- return pooler_output, x, encoder_outputs[-1]
214
-
215
- def sanitize(self, weights):
216
- sanitized_weights = {}
217
- for k, v in weights.items():
218
- if "position_ids" in k:
219
- # Remove unused position_ids
220
- continue
221
- elif "patch_embedding.weight" in k:
222
- # PyTorch conv2d weight tensors have shape:
223
- # [out_channels, in_channels, kH, KW]
224
- # MLX conv2d expects the weight be of shape:
225
- # [out_channels, kH, KW, in_channels]
226
- if check_array_shape(v):
227
- sanitized_weights[k] = v
228
- else:
229
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
230
- else:
231
- sanitized_weights[k] = v
232
-
233
- return sanitized_weights
@@ -1,9 +0,0 @@
1
- from .internvl_chat import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )
9
- from .processor import InternVLChatProcessor, InternVLImageProcessor
@@ -1,140 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- import numpy as np
11
- from huggingface_hub import snapshot_download
12
-
13
- from ..base import pixel_shuffle
14
- from .language import LanguageModel, TextConfig
15
- from .vision import VisionConfig, VisionModel
16
-
17
-
18
- @dataclass
19
- class ModelConfig:
20
- text_config: TextConfig
21
- vision_config: VisionConfig
22
- model_type: str
23
- ignore_index: int = -100
24
- image_token_index: int = 151667
25
- video_token_index: int = 151656
26
- vision_feature_select_strategy: str = "default"
27
- vision_feature_layer: int = -1
28
- vocab_size: int = 32000
29
- downsample_ratio: float = 0.5
30
- eos_token_id: Optional[List[int]] = None
31
-
32
- @classmethod
33
- def from_dict(cls, params):
34
- return cls(
35
- **{
36
- k: v
37
- for k, v in params.items()
38
- if k in inspect.signature(cls).parameters
39
- }
40
- )
41
-
42
-
43
- class Model(nn.Module):
44
- def __init__(self, config: ModelConfig):
45
- super().__init__()
46
- self.config = config
47
- self.vision_model = VisionModel(config.vision_config)
48
- self.language_model = LanguageModel(config.text_config)
49
-
50
- self.downsample_ratio = config.downsample_ratio
51
-
52
- vit_hidden_size = self.config.vision_config.hidden_size
53
- llm_hidden_size = self.config.text_config.hidden_size
54
-
55
- self.mlp1 = [
56
- nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
57
- nn.Linear(
58
- vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size
59
- ),
60
- nn.GELU(),
61
- nn.Linear(llm_hidden_size, llm_hidden_size),
62
- ]
63
-
64
- def get_input_embeddings(
65
- self,
66
- input_ids: Optional[mx.array] = None,
67
- pixel_values: Optional[mx.array] = None,
68
- ):
69
-
70
- if pixel_values is None:
71
- return self.language_model.model.embed_tokens(input_ids)
72
-
73
- dtype = self.vision_model.embeddings.patch_embedding.weight.dtype
74
- pixel_values = pixel_values.astype(dtype)
75
-
76
- # TODO: Remove this after transformers implementation is merged
77
- if pixel_values.ndim == 5:
78
- pixel_values = pixel_values[0]
79
-
80
- # Get the input embeddings from the language model
81
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
82
-
83
- # Get the ouptut hidden states from the vision model
84
- hidden_states, _, _ = self.vision_model(
85
- pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
86
- )
87
-
88
- # Extract vision embeddings, removing the class token (first token)
89
- hidden_states = hidden_states[:, 1:, :]
90
-
91
- # Apply pixel shuffle with downsampling
92
- hidden_states = pixel_shuffle(
93
- hidden_states, shuffle_ratio=self.downsample_ratio
94
- )
95
-
96
- # Apply MLP transformation
97
- for layer in self.mlp1:
98
- hidden_states = layer(hidden_states)
99
-
100
- # Insert special image tokens in the input_ids
101
- final_inputs_embeds = self._merge_input_ids_with_image_features(
102
- hidden_states, inputs_embeds, input_ids
103
- )
104
- return final_inputs_embeds
105
-
106
- def _merge_input_ids_with_image_features(
107
- self, image_features, inputs_embeds, input_ids
108
- ):
109
- B, N, C = inputs_embeds.shape
110
- image_token_index = self.config.image_token_index
111
- video_token_index = self.config.video_token_index
112
-
113
- # Positions of <image> tokens in input_ids, assuming batch size is 1
114
- image_positions = input_ids == image_token_index
115
- if mx.sum(image_positions) == 0:
116
- image_positions = input_ids == video_token_index
117
-
118
- image_indices = np.where(image_positions)[1].tolist()
119
-
120
- image_features = image_features.reshape(-1, image_features.shape[-1])
121
-
122
- inputs_embeds[:, image_indices, :] = image_features
123
-
124
- return inputs_embeds.reshape(B, N, C)
125
-
126
- @property
127
- def layers(self):
128
- return self.language_model.model.layers
129
-
130
- def __call__(
131
- self,
132
- input_ids: mx.array,
133
- pixel_values: mx.array,
134
- mask: mx.array,
135
- cache=None,
136
- **kwargs,
137
- ):
138
- input_embddings = self.get_input_embeddings(input_ids, pixel_values)
139
- logits = self.language_model(None, cache=cache, inputs_embeds=input_embddings)
140
- return logits
@@ -1,220 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, Optional, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int
20
- num_hidden_layers: int
21
- intermediate_size: int
22
- num_attention_heads: int
23
- rms_norm_eps: float
24
- vocab_size: int
25
- max_window_layers: int
26
- hidden_act: str
27
- num_key_value_heads: Optional[int] = 8
28
- max_position_embeddings: Optional[int] = 40960
29
- rope_theta: float = 1000000.0
30
- rope_traditional: bool = False
31
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
32
- tie_word_embeddings: bool = False
33
- sliding_window: int = 32768
34
- use_sliding_window: bool = False
35
- use_cache: bool = True
36
-
37
- def __post_init__(self):
38
- if self.num_key_value_heads is None:
39
- self.num_key_value_heads = self.num_attention_heads
40
-
41
- @classmethod
42
- def from_dict(cls, params):
43
- return cls(
44
- **{
45
- k: v
46
- for k, v in params.items()
47
- if k in inspect.signature(cls).parameters
48
- }
49
- )
50
-
51
-
52
- class Attention(nn.Module):
53
- def __init__(self, args: TextConfig):
54
- super().__init__()
55
-
56
- dim = args.hidden_size
57
- self.n_heads = n_heads = args.num_attention_heads
58
- assert args.num_key_value_heads is not None
59
- self.n_kv_heads = n_kv_heads = args.num_key_value_heads
60
-
61
- self.head_dim = head_dim = args.hidden_size // n_heads
62
- self.scale = head_dim**-0.5
63
-
64
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
65
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
66
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
67
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
68
-
69
- self.rotary_emb = nn.RoPE(
70
- head_dim,
71
- base=args.rope_theta,
72
- traditional=args.rope_traditional,
73
- )
74
-
75
- def __call__(
76
- self,
77
- x: mx.array,
78
- mask: Optional[mx.array] = None,
79
- cache: Optional[KVCache] = None,
80
- ) -> mx.array:
81
- B, L, D = x.shape
82
-
83
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
84
-
85
- # Prepare the queries, keys and values for the attention computation
86
- queries = queries.reshape(B, L, self.n_heads, self.head_dim).transpose(
87
- 0, 2, 1, 3
88
- )
89
- keys = keys.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(0, 2, 1, 3)
90
- values = values.reshape(B, L, self.n_kv_heads, self.head_dim).transpose(
91
- 0, 2, 1, 3
92
- )
93
-
94
- offset = cache.offset if cache else 0
95
-
96
- if mask is not None and isinstance(mask, mx.array):
97
- mask = mask[..., : keys.shape[-2]]
98
-
99
- queries = self.rotary_emb(queries, offset=offset)
100
- keys = self.rotary_emb(keys, offset=offset)
101
-
102
- if cache is not None:
103
- keys, values = cache.update_and_fetch(keys, values)
104
-
105
- output = scaled_dot_product_attention(
106
- queries, keys, values, cache, scale=self.scale, mask=mask
107
- )
108
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
109
- return self.o_proj(output)
110
-
111
-
112
- class MLP(nn.Module):
113
- def __init__(self, dim, hidden_dim):
114
- super().__init__()
115
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
116
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
117
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
118
-
119
- def __call__(self, x) -> mx.array:
120
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
121
-
122
-
123
- class Qwen2VLDecoderLayer(nn.Module):
124
- def __init__(self, args: TextConfig):
125
- super().__init__()
126
- self.num_attention_heads = args.num_attention_heads
127
- self.hidden_size = args.hidden_size
128
- self.self_attn = Attention(args)
129
- self.mlp = MLP(args.hidden_size, args.intermediate_size)
130
- self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
131
- self.post_attention_layernorm = nn.RMSNorm(
132
- args.hidden_size, eps=args.rms_norm_eps
133
- )
134
- self.args = args
135
-
136
- def __call__(
137
- self,
138
- x: mx.array,
139
- mask: Optional[mx.array] = None,
140
- cache: Optional[KVCache] = None,
141
- ) -> mx.array:
142
- r = self.self_attn(self.input_layernorm(x), mask, cache)
143
- h = x + r
144
- r = self.mlp(self.post_attention_layernorm(h))
145
- out = h + r
146
- return out
147
-
148
-
149
- class Qwen2Model(nn.Module):
150
- def __init__(self, args: TextConfig):
151
- super().__init__()
152
- self.args = args
153
- self.vocab_size = args.vocab_size
154
- self.num_hidden_layers = args.num_hidden_layers
155
- assert self.vocab_size > 0
156
- self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
157
- self.layers = [
158
- Qwen2VLDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
159
- ]
160
- self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
161
-
162
- def __call__(
163
- self,
164
- inputs: mx.array,
165
- inputs_embeds: Optional[mx.array] = None,
166
- mask: Optional[mx.array] = None,
167
- cache=None,
168
- ):
169
- if inputs_embeds is None:
170
- h = self.embed_tokens(inputs)
171
- else:
172
- h = inputs_embeds
173
-
174
- if cache is None:
175
- cache = [None] * len(self.layers)
176
-
177
- if mask is None:
178
- mask = create_attention_mask(h, cache)
179
-
180
- for layer, c in zip(self.layers, cache):
181
- h = layer(h, mask, c)
182
-
183
- return self.norm(h)
184
-
185
-
186
- class LanguageModel(nn.Module):
187
- def __init__(self, args: TextConfig):
188
- super().__init__()
189
- self.args = args
190
- self.model_type = args.model_type
191
- self.model = Qwen2Model(args)
192
-
193
- if not args.tie_word_embeddings:
194
- self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
195
-
196
- def __call__(
197
- self,
198
- inputs: mx.array,
199
- inputs_embeds: Optional[mx.array] = None,
200
- mask: Optional[mx.array] = None,
201
- cache=None,
202
- ):
203
- out = self.model(inputs, cache=cache, inputs_embeds=inputs_embeds)
204
- if self.args.tie_word_embeddings:
205
- out = self.model.embed_tokens.as_linear(out)
206
- else:
207
- out = self.lm_head(out)
208
- return LanguageModelOutput(logits=out)
209
-
210
- @property
211
- def layers(self):
212
- return self.model.layers
213
-
214
- @property
215
- def head_dim(self):
216
- return self.args.hidden_size // self.args.num_attention_heads
217
-
218
- @property
219
- def n_kv_heads(self):
220
- return self.args.num_key_value_heads